
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematical and Computing Sciences

Computer Science

Applying Online Gradient Descent

Search to Genetic Programming for

Object Recognition

Will Smart, Mengjie Zhang

Technical Report CS-TR-03/13
October 2003

School of Mathematical and Computing Sciences
Victoria University
PO Box 600, Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

School of Mathematical and Computing Sciences

Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341, Fax: +64 4 463 5045
Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

Applying Online Gradient Descent

Search to Genetic Programming for

Object Recognition

Will Smart, Mengjie Zhang

Technical Report CS-TR-03/13
October 2003

Abstract

This paper describes an approach to the use of gradient descent search in ge-
netic programming (GP) for object classification problems. In this approach, pixel
statistics are used to form the feature terminals and a random generator produces
numeric terminals. The four arithmetic operators and a conditional operator form
the function set and the classification accuracy is used as the fitness function. In
particular, gradient descent search is introduced to the GP mechanism and is
embedded into the genetic beam search, which allows the evolutionary learning
process to globally follow the beam search and locally follow the gradient descent
search. This method is compared with the basic GP method on four image data
sets with object classification problems of increasing difficulty. The results show
that the new method outperformed the basic GP method on all cases in both
classification accuracy and training time, suggesting that the GP method with
the gradient descent search is more effective and more efficient than without on
object classification problems.

Keywords Genetic Programming, Machine Learning, Data Mining, Object Clas-
sifi cation.

Author Information

Will Smart is a BSc (Honours) student in computer science and Mengjie Zhang is an academic
staff member in computer science. Both authors are in the School of Mathematical and
Computing Sciences, Victoria University of Wellington, New Zealand.

Applying Online Gradient Descent Search to Genetic Programming

for Object Recognition

Will Smart Mengjie Zhang

School of Mathematical and Computer Science

Victoria University of Wellington,

P. O. Box 600, Wellington, New Zealand

Email: {smartwill,mengjie}@mcs.vuw.ac.nz

Abstract

This paper describes an approach to the use of gradi-

ent descent search in genetic programming (GP) for

object classification problems. In this approach, pixel

statistics are used to form the feature terminals and a

random generator produces numeric terminals. The

four arithmetic operators and a conditional operator

form the function set and the classification accuracy

is used as the fitness function. In particular, gradient

descent search is introduced to the GP mechanism

and is embedded into the genetic beam search, which

allows the evolutionary learning process to globally

follow the beam search and locally follow the gradi-

ent descent search. This method is compared with

the basic GP method on four image data sets with

object classification problems of increasing difficulty.

The results show that the new method outperformed

the basic GP method on all cases in both classifica-

tion accuracy and training time, suggesting that the

GP method with the gradient descent search is more

effective and more efficient than without on object

classification problems.

Keywords: Genetic Programming, Machine Learning,

Data Mining, Object Classification.

1 Introduction

Genetic programming (GP) is a relatively recent

and fast developing approach to automatic program-

ming (Banzhaf, Nordin, Keller & Francone 1998,

Koza 1992). In genetic programming, solutions to a

problem are represented as computer programs. Dar-

winian principles of natural selection and recombina-

tion are used to evolve a population of programs to-

wards an effective solution to specific problems. The

flexibility and expressiveness of computer program

representation, combined with the powerful capabili-

ties of evolutionary search, makes GP an exciting new

method to solve a great variety of problems.

Since the early 1990s, there has been only a

small amount of work on applying genetic pro-

gramming techniques to object recognition problems,

such as (Andre 1994, Howard, Roberts & Brankin

1999, Loveard & Ciesielski 2001, Song, Ciesielski &

Williams 2002, Tackett 1993, Winkeler & Manjunath

1997, Zhang & Ciesielski 1999). Typically, these GP

systems used either high level or low level image fea-

tures to form the terminal set, arithmetic and con-

ditional operators to form the function set, and clas-

sification accuracy, error rate or similar measures as

the fitness function. During the evolutionary process,

selection, crossover and mutation operators were ap-

plied to the genetic beam search to find good solu-

tions. While most of these GP systems achieved rea-

sonable even good results, they usually spent a long

time for training/learning good programs for a par-

ticular task. In addition, because of the long train-

ing times, the evolutionary process was often stopped

when a maximum number of generations was reached,

rather than an ideal solution was found.

Gradient descent is a long term established

search/learning technique and commonly used to

train multilayer feed forward neural networks

(Rumelhart, Hinton & Williams 1986). This algo-

rithm can guarantee to find a local minima for a par-

ticular task. While the local minima is not the best

solution, it often meets the request of that task.

In this paper, we apply the gradient descent search

to genetic programming, so that a hybrid beam-

gradient descent search scheme can be formed. Dur-

ing the evolutionary process, the beam search is still

the basic global search mechanism, but the gradient

descent search is locally applied to individual pro-

grams in the population inside a particular genera-

tion.

The goal of this research is to develop such a search

scheme in genetic programming for object classifica-

tion problems, and to investigate whether this ap-

proach can perform better than the basic GP ap-

proach in terms of training efficiency and classifica-

tion performance.

The rest of the paper is organised as follows. Sec-

tion 2 describes our basic GP approach to object clas-

sification, including terminals, functions, fitness func-

tion and genetic operations. Section 3 specifies the

gradient descent search algorithm in our approach.

Section 4 gives the image data sets used in the exper-

iments. Section 5 presents experimental results and

section 6 draws the conclusions and gives future work.

2 GP Applied to Object Classification

In this approach, we used the tree-structure to rep-

resent genetic programs (Koza 1992). The ramped

half-and-half method was used for generating the pro-

grams in the initial population and for the mutation

operator (Banzhaf et al. 1998). The proportional

selection mechanism and the reproduction (Zhang,

Ciesielski & Andreae 2003), crossover and mutation

operators (Koza 1994) were used in the learning and

evolutionary process.

In the remainder of this section, we address the

other aspects of our GP learning/evolutionary sys-

tem: (1) Determination of the terminal set; (2) De-

termination of the function set; (3) Construction of

the fitness measure; and (4) Selection of the input pa-

rameters and determination of the termination strat-

egy. The key part, gradient descent search applied to

genetic programming, will be descried in section 3.

2.1 Terminals

In this approach, we used two kinds of terminals: fea-

ture terminals and numeric terminals.

2.1.1 Feature Terminals

Feature terminals form the inputs from the environ-

ment and usually correspond to image features in ob-

ject recognition and image analysis. To achieve do-

main independent object classification, our system

used pixel statistics, domain independent low level

image features, as the feature terminals. While raw

image pixels can also achieve this objective, such sys-

tems would have to face the problem of a large number

of terminals and a long time of evolutionary compu-

tation. Since our goal is to introduce the gradient

descent search to genetic programming rather than

to investigate the effectiveness of raw pixels, we chose

a small number of pixel statistics as feature terminals

rather than raw pixels.

The pixel statistics considered in this approach are

the means and variances of certain regions in the ob-

ject cutout images. Two such regions are used, the

entire object cutout image (A-B-C-D) and the cen-

tral square region (E-F-G-H), as shown in figure 1.

This makes four feature terminals. Since the ranges

of these four features are quite different, we linearly

scaled these feature values into the range [-1, 1] based

on all object image examples to be classified.

n/2

E

GH

D

A

C

B

F

n

Figure 1: Region features as terminals.

The values of the feature terminals are the val-

ues of the pixel statistics for certain object exam-

ples. Similarly to neural network inputs which are

not changed during network training, these values

would remain unchanged in the evolutionary process,

although different objects usually have different fea-

ture values.

2.1.2 Numeric Terminals

Numeric terminals are floating point numbers ran-

domly generated using a uniform distribution at the

beginning of evolution. To be consistent with the fea-

ture terminals, we also set the range of these param-

eters to [-1.0, 1.0].

Unlike the feature terminals, the values of this

kind of terminals are the same for all object im-

ages. Similarly to feature terminals, they would re-

main unchange during the evolutionary recombina-

tion (crossover and reproduction). However, they will

be changed and updated with a continuous parame-

ter entity when the gradient-descent algorithm (see

section 3) is applied, which are similar to the weights

and biases in neural networks.

Thus, our gradient descent search algorithm will

be applied to this type of terminals rather than the

feature terminals.

2.2 Functions

In the function set, the four standard arithmetic and a

conditional operation were used to form the function

set:

FuncSet = {+,−, ∗, /, if} (1)

The +, −, and ∗ operators have their usual

meanings — addition, subtraction and multiplication,

while / represents “protected” division which is the

usual division operator except that a divide by zero

gives a result of zero. Each of these functions takes

two arguments. The if function takes three argu-

ments. The first argument, which can be any expres-

sion, constitutes the condition. If the first argument

is negative, the if function returns its second argu-

ment; otherwise, it returns its third argument. The if

function allows a program to contain a different ex-

pression in different regions of the feature space, and

allows discontinuous programs, rather than insisting

on smooth functions.

2

All functions can take the result of any other func-

tions or terminals as arguments.

2.3 Classification Strategy

The output of a genetic program in the standard GP

system is a floating point number. Generally ge-

netic programs can perform two class object classi-

fication tasks quite well where the division between

positive and negative numbers of a genetic program

output corresponds to the separation of the two ob-

ject classes. However, for multiple class object clas-

sification problems described here, where more than

two classes of objects are involved, the standard ge-

netic programming classification strategy mentioned

above cannot be applied.

In this approach, we used a different strategy —

a variant version of the program classification map

(Zhang et al. 2003). This variation situates class re-

gions sequentially on the floating point number line.

An object image will be classified to the class of the

region that the program output with the object im-

age input falls into. Class region boundaries start at

some negative number, and end at the same positive

number. Boundaries between the starting point and

the end point are allocated with an identical interval

of 1.0. For example, a five class problem would have

the following classification map:

class =



























Class 1, r < −1.5

Class 2, −1.5 ≤ r < −0.5

Class 3, −0.5 ≤ r < 0.5

Class 4, 0.5 ≤ r < 1.5

Class 5, 1.5 ≤ r

(2)

where r is the program output.

2.4 Fitness Function

We used classification accuracy on the training set of

object images as the fitness function. The classifica-

tion accuracy of a genetic program classifier refers to

the number of object images that are correctly classi-

fied by the genetic program classifier as a proportion

of the total number of object images in the training

set. According to this design, the best fitness is 100%,

meaning that all object images have been correctly

recognised.

2.5 Parameters and Termination Criteria

The parameter values used in this approach are shown

in table 1.

In this approach, the learning/evolutionary pro-

cess is terminated when one of the following condi-

tions is met:

• The classification problem has been solved on the

training set, that is, all objects of interest in the

training set have been correctly classified without

any missing objects or false alarms for any class.

• The accuracy on the validation set starts falling

down.

• The number of generations reaches the pre-

defined number, max-generations.

3 Gradient Descent Applied to Genetic Pro-

gramming

In this section, we describe how to apply the gradi-

ent descent search to genetic programming. In this

approach, the online learning (the stochastic proce-

dure) scheme is used, that is, the numeric terminals

are updated for each object in the training set.

3.1 Overview of the Algorithm

We assume the successful degree to which the task has

been performed can be measured on some real scale

and that the performance is scalar and continuous.

We also assume that the cost function C is used as

the measure.

A continuous cost surface can be formed for a given

task based on a set of parameters. The lower the

point in the cost surface, the better the performance

of the system. To improve the system performance,

the gradient descent search is applied to take steps

“downhill” on C from the current parameter θ. For

presentation convenience, the algorithm that applies

the gradient descent search to GP is referred to as the

gradient descent algorithm in this paper.

The gradient of C is found as the vector of par-

tial derivatives with respect to the parameter values.

This gradient vector points along the surface, in the

direction of maximum-slope at the point used in the

derivation. Changing the parameters proportionally

to this vector (negatively, as it points “uphill”) will

move the system down the surface C. The distance

moved should therefore be the length of the vector

times a factor α.

∆θi = −α ·
∂C

∂θi

(3)

where θi is the i’th parameter, α is a factor.

It is important to note that the gradient-descent

algorithm does not replace any of the normal genetic

operators that produce populations from generation

to generation. Instead, the gradient-descent algo-

rithm augments the existing GP system, by locally

applying gradient-descent search to each program in

the current population in a particular generation.

3

Table 1: Parameters used for GP training for the four datasets.

Parameter Kinds Parameter Names Shape coin1 coin2 coin3

population-size 300 300 500 500

Search initial-max-depth 3 3 3 3

max-depth 5 5 6 6

Parameters max-generations 51 51 51 51

object-size 16×16 70×70 70×70 70×70

reproduction-rate 20% 20% 20% 20%

Genetic cross-rate 50% 50% 50% 50%

mutation-rate 30% 30% 30% 30%

Parameters cross-term 15% 15% 15% 15%

cross-func 85% 85% 85% 85%

The parameters to be changed are the numeric ter-

minals in each program. The feature terminals can-

not be changed, as they are set based on actual object

examples. The gradient of the cost surface with re-

spect to the values of the numeric terminals can be

found through the gradient descent algorithm, which

is similar to the back propagation algorithm used in

training neural networks.

3.2 The Cost Function

In this approach, we used half of the squared differ-

ence between the program actual output and the de-

sired output for a particular object input as the cost

function, as shown in equation 4.

Cθ =
(Y − yθ)

2

2
(4)

where Cθ is the value of the cost surface at the current

parameters θ, yθ is the actual output of program with

the current object as input. Y is the corresponding

desired output and is calculated by equation 5.

Y = class−
numclass + 1

2
(5)

where class is the class label of the object and num-

class is the total number of classes. For example,

for a five class problem as described in equation 2,

the desired outputs are −2,−1, 0, 1, and 2 for object

classes 1, 2, 3, 4, and 5, respectively. In other words,

we take the centres of the class regions as desired out-

puts except the beginning and the end classes.

Based on equations 4 and 5, we will obtain the

derivative of the whole genetic program which con-

tains one or more numeric terminals, as shown in

equation 6.

∂C

∂y
=

∂((Y −y)2

2)

∂y
= y − Y (6)

The partial derivatives for the numeric terminals

can be obtained based on the chained rule, which will

be described in the next sub section.

3.3 Chained Rules in Genetic Programs

In general, if f , g and h are functions where f depends

on g and g depends on h, then the chained rule can

be represented as several parts based on some partial

derivatives:

∂f

∂h
=

∂f

∂g
×

∂g

∂h
(7)

Now we use the program tree shown in figure 2

as an example to describe the chained rule in our

algorithm. Assume Oj is the evaluated result of node

j, then y = O1 is the final output of the program.

Node 4 Node 5

*

+

y

(Numeric parameter terminal)(Feature terminal)

(Numeric parameter terminal)

Node 1

Node 3

Node 2

Figure 2: An example program.

Since nodes 2 and 5 are numeric terminals, the

gradient vector should contain values from the partial

derivatives from nodes 2 and 5. The partial deriva-

tives of the cost function on node 2 and node 5 are:

∂C

∂O2

=
∂C

∂y
·

∂y

∂O2

=
∂C

∂y
·

∂(O2O3)

∂O2

= (y − Y) · O3

∂C

∂O5

=
∂C

∂y
·

∂y

∂O5

=
∂C

∂y
·

∂(O2O3)

∂O5

=
∂C

∂y
·

∂(O2O3)

∂O3

·
∂O3

∂O5

=
∂C

∂y
·

∂(O2O3)

∂O3

·
∂(O4 + O5)

∂O5

= (y − Y) · O2 · 1 = (y − Y) · O2

Since y, Y, O2, and O3 can be obtained from eval-

uation of the whole program or a part of the pro-

gram or calculated by equation 5, these gradients

4

can be calculated accordingly. In other words, using

the chained rule the gradients can be broken down

to evaluated values and derived mathematical opera-

tors. The chained rule can be applied many times to

accommodate programs of any depth.

The derivatives of the various functions used in

this approach are listed in table 2.

Table 2: Function derivatives.

Function f meanings ∂f
∂a1

∂f
∂a2

∂f
∂a3

(+ a1 a2) a1 + a2 1 1 n/a

(- a1 a2) a1 − a2 1 -1 n/a

(* a1 a2) a1 × a2 a2 a1 n/a

(/ a1 a2) a1 ÷ a2 a−1

2
−a1 × a−2

2
n/a

(if a1 a2 a3) if a1 < 0 then 0 1 if a1 < 0 0 if a1 < 0

a2 else a3 0 0 if a1 ≥ 0 1 if a1 ≥ 0

3.4 Calculation of the Factor α

In this approach, the factor α in equation 3 is propor-

tional to the inversed sum of the square gradients on

all numeric terminals along the cost surface, as shown

in equation 8.

α = η ·
1

∑N

i (∂y
∂Oi

)2
(8)

where N is the number of numeric terminals in the

program, i indexes the numeric terminals, y is the

output of the program, Oi is the output of the ith

numeric terminal, η is a learning rate defined by the

user.

Based on equation 3, the change of the value of

the ith numeric terminal would be:

∆Oi = −η ·
1

∑N

i (∂y
∂Oi

)2
·

∂C

∂Oi

(9)

Accordingly, the new value of the numeric terminal

is:

(Oi)new = Oi+∆Oi = Oi−η ·
1

∑N

i (∂y
∂Oi

)2
·
∂C

∂Oi

(10)

Based on this definition, if the program only has

linear operators performed on subtrees with numeric

terminals, the changes to the numeric terminals on

the program are independent, and the learning rate η

is 1.0, then the program with the changes driven by

this gradient descent algorithm would produce ideal

result for this object input, that is, the error would

be zero (the prove is omitted here due to the page

limitation).

3.5 Summary of the Algorithm

FOR each program on each object, do the following:

S1 Evaluate program, save the outputs of all nodes

in the program.

S2 Calculate the (partial) derivatives of the cost

function at numeric terminals using the chained

rule and table 2.

S3 Calculate the change of the numeric terminals

based on equation 9.

S4 Update the numeric terminals according to equa-

tion 10.

4 Image Data Sets

We used four image databases in two groups in the

experiments. Example images are shown in figure 3.

(a) (b)

(c) (d)

Figure 3: Example images from Shape (a), Coin1 (b),

Coin2 (c) and Coin3 (d).

4.1 Computer Generated Shape Dataset

The first group of images (figure 3 (a)) was gener-

ated to give well defined objects against a noisy back-

ground. The pixels of the objects were produced using

a Gaussian generator with different means and vari-

ances for each class. Four classes of 713 small objects

were cut out from these images to form the classifica-

tion data set shape. The four classes are: black circles,

light grey squares, white circles, and grey noisy back-

ground. This set was considered to include an easy

object classification problem.

4.2 NZ Coin Datasets

The second group of images has three NZ coin

datasets. These datasets were intended to be harder

than group 1 and consist of scanned 5 cent and/or

10 cent New Zealand coins. In this group, three data

sets, coin1, coin2 and coin3, were constructed to pro-

vide object classification problems of increasing diffi-

culty. Example images for each of the three datasets

are shown in figure 3 (b), (c), and (d), respectively.

The first coin data set has 576 object cutout images

5

of three classes: 10 cent heads, 10c tails, and a noisy

background. The second coin data set consists of five

classes of object cutouts: 5 cent heads, 5 cent tails, 10

cent heads and 10 cent tails, and a relatively uniform

background. The third coin data set also consists of

five classes of object cutouts, but the background is

highly clustered, which makes the classification prob-

lems much harder.

The object cutout images in each of the these

datasets were equally split into three separate data

sets: one third for the training set used directly for

learning the genetic program classifiers, one third for

the validation set for controlling over-fitting, and one

third for the test set for measuring the performance

of the learned program classifiers.

5 Results and Discussion

This section presents the results of our GP approach

with the online gradient descent algorithm on the four

datasets and compare them with the results of the ba-

sic GP approach without the gradient descent search.

For all cases, 10 runs were carried out and the average

results on the test set are presented.

5.1 Shape Dataset

Table 3 shows the results on the shape data set us-

ing different learning rates. The first line shows that

for the Shape data set, the basic GP approach with-

out using the gradient descent algorithm (η is 0.0)

achieved an average accuracy of 99.48% over 10 runs

on the test set and the average number of generations

of the 10 runs spent on the training process was 9.56.

Table 3: Results of the shape Dataset.

Dataset η Generations Accuracy (%)

0.0 9.56 99.48

0.2 1.00 100.00

Shape 0.4 1.00 100.00

0.7 1.00 100.00

1.0 1.00 100.00

1.4 1.00 99.95

For dataset shape, the GP approach with the gra-

dient descent algorithm always outperformed the ba-

sic GP approach. In particular, using the gradient de-

scent algorithm at learning rates of 0.2, 0.4, 0.7 and

1.0, ideal performances were achieved and only one

generation1 was required for the evolutionary learn-

1One generation in GP with the gradient descent algorithm usu-

ally requires a slightly longer time than that in the basic GP ap-

proach. However, this was considerably improved by only applying

the gradient descent algorithm to the top 5% of the programs in

the population. Thus, the actual times for a single generation in

the two methods are still very similar.

ing process. This is considerably faster than the basic

GP approach.

5.2 Coin Datasets

The results for the three coin datasets are shown in

table 4. These results show a similar pattern to the

shape dataset. For all the three datasets, the accu-

racy performances of the GP approach with the gra-

dient descent algorithm were always superior to those

without using the algorithm, and this was particularly

true for difficult problems such as datasets coin2 and

coin3. These results suggests that a combination of

the basic genetic beam search with the gradient de-

scent search could always find better genetic program

classifiers than the genetic beam search only for these

object classification tasks.

Table 4: Results of the three coin Datasets.

Datasets η Generations Accuracy (%)

0.0 8.00 99.53

0.2 1.00 99.95

Coin1 0.4 1.00 99.84

0.7 1.00 99.79

1.0 1.00 99.95

1.4 1.00 99.95

0.0 51.00 82.12

0.2 20.40 98.94

Coin2 0.4 25.40 98.94

0.7 23.30 98.81

1.0 36.70 97.69

1.4 34.00 97.94

0.0 51.00 73.83

0.2 51.00 83.50

Coin3 0.4 51.00 82.83

0.7 50.20 85.17

1.0 51.00 86.50

1.4 51.00 80.83

In terms of the number of generations used in the

training process, the GP approach with the gradient

descent algorithm required much fewer generations to

achieve good results for datasets coin1 and coin2. For

the coin2 dataset, for example, the approach with

the gradient descent algorithm at a learning rate of

0.2 only used 20.4 generations and achieved almost

ideal performance (98.94%), while the basic GP ap-

proach used 51 generations but only obtained 82.12%

accuracy. For dataset coin3, both the GP approaches

used almost all the 51 generations (one of the stop-

ping criteria). However, after examining the inter-

nal behaviour of the evolutionary learning process,

we found that the method with the gradient descent

algorithm converged at generations 10-20 in all the

cases while the basic method without this algorithm

6

got converged at generations 45-51 in almost all the

cases. These results suggest that the GP approach

with the gradient descent algorithm converged faster

than without.

For dataset coin3, the accuracy performance could

not be improved with even more generations. This is

mainly because only four pixel statistics were used as

features terminals, which were not sufficient for this

difficult object classification task.

The results also show that different performances

would be obtained if different learning rates were

used. Similarly to the neural network method, this

learning parameter needs to be empirically searched

through tuning certain experiments to obtain good re-

sults. However, if this can lead to considerably better

results, this price is worth to pay. From our exper-

iments, a learning rate between 0.2 to 1.0 is a good

starting point for object classification problems.

As expected, the performances on all the four im-

age datasets deteriorated as the degree of difficulty of

the object classification problem was increased.

6 Conclusions

The goal of this paper is to develop an approach to in-

tegrating gradient descent search to genetic program-

ming (GP) and to investigate whether this new ap-

proach is better than the basic GP approach for ob-

ject classification problems. This goal was achieved

by constructing a terminal set, a function set, a clas-

sification rule and a fitness function, developing a gra-

dient descent algorithm, and applying both the new

approach and the basic GP approach to four object

classification problems of increasing difficulty.

The gradient descent search was introduced to the

GP mechanism and was embedded into the genetic

beam search, allowing the evolutionary learning pro-

cess to globally follow the beam search and locally

follow the gradient descent search to find good solu-

tions.

On the relatively easy object classification prob-

lems such as shape, coin1 and coin2, the new approach

achieved almost ideal performance (100% accuracy).

On the difficult dataset (coin3), the best result of

86.5% accuracy was achieved. On all the datasets

investigated here, the method with the gradient de-

scent algorithm always achieved better results than

the method without in both classification accuracy

and training generations.

These results show that the new method outper-

formed the basic GP method on all cases in both clas-

sification accuracy and training generations, suggest-

ing that the GP method with the gradient descent

search is more effective and more efficient than with-

out for object classification problems.

Although developed for object classification prob-

lems, this new method is expected to be able to be

applied to general classification and prediction tasks

in data mining applications.

For future work, we will investigate whether the

performance on the difficult coin data sets can be

improved if more features are added to the feature

terminal set. We will also investigate the power and

reliability of the new method on even more difficult

image classification problems such as face recognition

problems and satellite image detection problems to

find to what situations this method is best suited,

and compare the performance with other long-term

established methods such as decision trees, neural

networks, and support vector machines.

References

Andre, D. (1994), Automatically defined features:

The simultaneous evolution of 2-dimensional fea-

ture detectors and an algorithm for using them,

in K. E. Kinnear, ed., ‘Advances in Genetic Pro-

gramming’, MIT Press, pp. 477–494.

Banzhaf, W., Nordin, P., Keller, R. E. & Francone,

F. D. (1998), Genetic Programming: An Intro-

duction on the Automatic Evolution of computer

programs and its Applications, San Francisco,

Calif. : Morgan Kaufmann Publishers; Heidel-

burg : Dpunkt-verlag. Subject: Genetic pro-

gramming (Computer science); ISBN: 1-55860-

510-X.

Howard, D., Roberts, S. C. & Brankin, R. (1999),

‘Target detection in SAR imagery by genetic pro-

gramming’, Advances in Engineering Software

30, 303–311.

Koza, J. R. (1992), Genetic programming : on the

programming of computers by means of natural

selection, Cambridge, Mass. : MIT Press, Lon-

don, England.

Koza, J. R. (1994), Genetic Programming II: Au-

tomatic Discovery of Reusable Programs, Cam-

bridge, Mass. : MIT Press, London, England.

Loveard, T. & Ciesielski, V. (2001), Represent-

ing classification problems in genetic program-

ming, in ‘Proceedings of the Congress on Evo-

lutionary Computation’, Vol. 2, IEEE Press,

COEX, World Trade Center, 159 Samseong-

dong, Gangnam-gu, Seoul, Korea, pp. 1070–

1077.

*http://goanna.cs.rmit.edu.au/ toml/cec2001.ps

Rumelhart, D. E., Hinton, G. E. & Williams, R. J.

(1986), Learning internal representations by er-

ror propagation, in D. E. Rumelhart, J. L. Mc-

7

Clelland & the PDP research group, eds, ‘Par-

allel distributed Processing, Explorations in the

Microstructure of Cognition, Volume 1: Foun-

dations’, The MIT Press, Cambridge, Mas-

sachusetts, London, England, chapter 8.

Song, A., Ciesielski, V. & Williams, H. (2002), Tex-

ture classifiers generated by genetic program-

ming, in D. B. Fogel, M. A. El-Sharkawi, X. Yao,

G. Greenwood, H. Iba, P. Marrow & M. Shack-

leton, eds, ‘Proceedings of the 2002 Congress

on Evolutionary Computation CEC2002’, IEEE

Press, pp. 243–248.

Tackett, W. A. (1993), Genetic programming for

feature discovery and image discrimination, in

S. Forrest, ed., ‘Proceedings of the 5th Interna-

tional Conference on Genetic Algorithms, ICGA-

93’, Morgan Kaufmann, University of Illinois at

Urbana-Champaign, pp. 303–309.

Winkeler, J. F. & Manjunath, B. S. (1997), Genetic

programming for object detection, in J. R. Koza,

K. Deb, M. Dorigo, D. B. Fogel, M. Garzon,

H. Iba & R. L. Riolo, eds, ‘Genetic Program-

ming 1997: Proceedings of the Second Annual

Conference’, Morgan Kaufmann, Stanford Uni-

versity, CA, USA, pp. 330–335.

Zhang, M. & Ciesielski, V. (1999), Genetic pro-

gramming for multiple class object detection,

in N. Foo, ed., ‘Proceedings of the 12th Aus-

tralian Joint Conference on Artificial Intelli-

gence (AI’99)’, Springer-Verlag Berlin Heidel-

berg, Sydney, Australia, pp. 180–192. Lecture

Notes in Artificial Intelligence (LNAI Volume

1747).

Zhang, M., Ciesielski, V. & Andreae, P. (2003), ‘A

domain independent window-approach to mul-

ticlass object detection using genetic program-

ming’, EURIASP Journal on Signal Processing,

Special Issue on Genetic and Evolutionary Com-

putation for Signal Processing and Image Anal-

ysis 2003(8), 841–859.

8

