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Abstract

This paper describes an approach to the use of gradient descent search in tree
based genetic programming for object recognition problems. To learn better par-
tial programs, a weight parameter is introduced in each link between every two
nodes in a program tree, so that a change of a weight corresponds to a change of
the effect of the sub-program tree. Inside a particular generation, weight changes
are learnt locally by gradient descent search, but the whole evolution process is
still carried out across different generations globally by the genetic beam search.
This approach is examined and compared with the basic genetic programming
approach without gradient descent on three object classification problems of var-
ious difficulty. The results suggest that the new approach outperforms the basic
approach on all problems.
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1 Introduction

Since the early 1990s, there have been a number of reports on applying genetic programming
(GP) techniques to object recognition problems [1, 3, 6, 10, 11, 12, 13]. Typically, these GP
systems used either high level or low level image features as the terminal set, arithmetic and
conditional operators as the function set, and classification accuracy, error rate or similar
measures as the fitness function. During the evolutionary process, selection, crossover and
mutation operators were applied to the genetic beam search to find good solutions. While
some of these GP systems achieved reasonable even good results, others did not perform
well. In addition, they usually spent a long time for training/learning good programs for a
particular task. One reason for this is that they did not use the existing heuristics inside
individual programs, for example, the gap between the actual outputs of the programs and
the target outputs. Because of this, the evolutionary process was often stopped when a
maximum number of generations was reached, rather than an ideal solution was found.

Gradient descent is a long term established search/learning technique and commonly used
to train multilayer feed forward neural networks [7]. A main property of this search is that it
can use heuristics in a neural network or other methods effectively. This algorithm can also
guarantee to find a local minima for a particular task. While the local minima might not be
the best solution, it often meets the request of that task. A main characteristic of gradient
descent search is that the solutions can be improved locally but steadily.

Gradient descent search has been applied to numeric terminals [15] or constants [8] of
genetic programs in GP. In these approaches, gradient descent search is applied to individual
programs locally in a particular generation and the constants in a program are updated
accordingly.

1.1 Goals

The goal of this research is to develop a new approach to the use of gradient descent search
in genetic programming for multiclass object classification problems. Instead of searching
for certain good constants or numeric terminals in a genetic program, gradient descent in
this approach will used to learn partial structures in genetic programs. Specifically, we will
investigate:

e how to apply gradient descent to genetic programs so that better partial (sub) programs
can be learned.

e how the gradient descent search cooperate with the genetic beam search.

e whether this new approach can do a good enough job on a sequence of object classifi-
cation problems of increasing difficulty.

e whether this new approach outperforms the basic GP approach.

The rest of the paper is organised as follows. Section 2 describes the GP approach to
object classification, including terminals, functions, fitness function and genetic operators.
Section 3 specifies the gradient descent search algorithm in our approach. Section 4 gives the
image data sets used in the experiments. Section 5 presents experimental results and section
6 draws the conclusions and gives future work.

2 GP Applied to Object Classification

In the basic GP approach, we used the tree-structure to represent genetic programs [4]. The
ramped half-and-half method was used for generating programs in the initial population and



for the mutation operator [2]. Three-way tournament selection mechanism and the repro-
duction [14], crossover and mutation operators [5] were used in the learning and evolutionary
process.

2.1 Terminals

For object classification problems, terminals generally correspond to image features. In this
approach, we used pixel level, domain independent statistical features (referred to as pizel
statistics) as terminals and we expect the GP evolutionary process can automatically select
features that are relevant to a particular domain to construct good genetic programs.

Four pixel statistics are used in this approach: the average intensity of the whole object
cutout image, the variance of intensity of the whole object cutout image, the average intensity
of the central local region, and the variance of intensity of the central local region. Since the
range of these four features are quite different, we linearly normalised these feature values
into the range [-1, 1] based on all object image examples to be classified.

In addition, we also used some constants as terminals. These constants are randomly
generated using a uniform distribution. To be consistent with the feature terminals, we also
set the range of the constants as [-1, 1].

2.2 Functions

FuncSet = {+, —, x, pdiv,if}

The 4, —, and X operators have their usual meanings — addition, subtraction and
multiplication, while pdiv represents “protected” division which is the usual division operator
except that a divide by zero gives a result of zero. Each of these functions takes two arguments.
The if function takes three arguments. The first argument, which can be any expression,
constitutes the condition. If the first argument is negative, the if function returns its second
argument; otherwise, it returns its third argument.

2.3 Fitness Function

We used classification accuracy on the training set as the fitness function. The classification
accuracy of a genetic program classifier refers to the number of training set object images that
are correctly classified by the genetic program classifier as a proportion of the total number
of object images in the training set.

In this approach, we used a variant version of the program classification map [14] to
perform object classification. This variation situates class regions sequentially on the floating
point number line. The object image will be classified to the class of the region that the
program output with the object image input falls into. Class region boundaries start at some
negative number, and end at the same positive number. Boundaries between the starting
point and the end point are allocated with an identical interval of 1.0. For example, a five
class problem would have the following classification map.

Class 1 Class 2 Class 3 Class 4 Class 5

-0 -15-10 -05 0 05 10 15 +00

Figure 1: An example classification map.



3 Gradient Descent Applied to Weights in Program Structure

Our new GP approach used the same program representation, terminals, functions, fitness
function and genetic operators as the basic GP approach as described in section 2. However,
the new approach also introduced a new parameter, weight, to the links between every two
nodes in a genetic program so that the gradient descent search can be applied in order to learn
better programs locally. Due to the introduction of the weight parameter, the program trees,
functions and the genetic operators need some corresponding changes. This section describes
the weight parameter, corresponding changes associated with the weight parameter, and the
method of using gradient descent search for updating these weights.

3.1 Genetic Programs with Weights

Unlike the standard genetic programs, this approach introduces a weight parameter between
every two adjacent nodes (between every two adjacent functions or between a function and
an adjacent terminal), as shown in figure 2.

Noded Nodet

Figure 2: An example evolved program with weights.

The weights operate in a way similar to the weights in Neural Networks. Before being
passed on to the higher part of the tree, the result of each subtree in the evolved program
is multiplied by the value of the weight associated with the link. For example, if w;; is the
weight between node ¢ and node j, then the input of node i from the branch of node j will
be the weight w;; times the output o; of node j. A value of 1 for the weight corresponds to
the standard structure of genetic programs in the basic GP approach.

Due to the introduction of the weights, the program structures are changed. Accordingly,
the functions we used in the basic GP approach will also need corresponding changes. For
example, if a node of the addition function (+) with two child nodes a; and ag and corre-
sponding weights wi and ws, the output of the addition function would be wia; +wsas, which
is different from that in the basic GP approach, which is just a1 4+ a2. The new definitions of
the functions in the function set shown in figure 3 are described in table 1.

AT AT R TR Y

Figure 3: Functions with the new program structure.

To cope with this change, the genetic operators in this approach are also redefined in
a similar way. In the new crossover operators, the two sub-programs including the nodes
and the weights are swapped after two crossover points are randomly selected from the two



Table 1: New definitions of the functions in the function set.

‘ Functions ‘ Function output values ‘

+ wial + waaz
- wia1 — w2az
X w1a1w20a2
pdiv e
waa2
Zf (w1a1 < 0)?w2a2 T wsas

parent programs. In mutation, after a mutation point is randomly chosen, the sub-program
was replaced by a new sub-program with randomly mutated nodes and corresponding weights.
Examples for the new crossover and mutation are shown in figure 4. Not that the reproduction
operator still copy the selected number of best programs from the current generation into the
next generation.

(b)
Figure 4: New genetic operators. (a) Crossover; (b) Mutation.

Based on this structure, changing a weight in a program will change the performance
of the program. In this approach, all the weights are initialised to 1.0 as the standard GP
approach, then are learned and updated through the gradient descent search algorithm. Note
that the weight learning and updating process only happens locally for individual programs
in a generation, and the genetic beam search still control the whole evolutionary process
globally between different generations. We expect that this hybrid beam-gradient descent
approach can improve the system performance.

3.2 Gradient Descent Applied to Program Weights

This section describes the gradient descent algorithm in this approach — how to apply gra-
dient descent search to the weights in each program so that better programs can be found.

In this approach, gradient-descent is applied to changing the values of the weights. It
is assumed that a continuous cost surface C' can be found to describe the performance of a
program at a particular classification task for all possible values for the weights. To improve
the system performance, the gradient descent search is applied to taking steps “downhill” on
the C from the current group of weights.

The gradient of C'is found as the vector of partial derivatives with respect to the parameter
values. This gradient vector points along the surface, in the direction of maximum-slope at
the point used in the derivation. Changing the parameters proportionally to this vector
(negatively, as it points to “uphill”) will move the system down the surface C. If we use w;;



to represent the value of the weight between node ¢ and node j and y to represent the output
of the genetic program P, then the distance moved (the change of w;;) should therefore be:

N N
oC oC'  Oyy,
Awij:_a'za :_a.za_.a (1)
k=1 YWij k=1 YUk OWij
where « is a search factor and N is the number of patterns in the training set. In the rest of
this section, we will address the three parts — %—2, E)(;)U—y” and a.

3.2.1 Cost Surface and %

We used sum-squared error as the cost surface C, this is calculated as in equation 2.

N
>t (b — Yi)? 5
! )
where Y}, is the desired program output for training example k, y; is the actual calculated
program output for training example k, and N is the number of training examples.
Accordingly, the partial derivative of the cost function with respect to the genetic program

C =

would be:

oo o i)

oy WYk
The corresponding desired output Y is calculated as follows:

=yp — Y (3)

| 1
Y, = class — % (4)

where class is the class label of the object and numclass is the total number of classes. For
example, for a five class problem as described in section 1, the desired outputs are —2,—1,0,1
and 2 for object classes 1, 2, 3, 4 and 5, respectively.

3.2.2 Partial Derivative %

For presentation convenience, y; will be written as y with the pattern label k£ omitted.

In order to illustrate the calculation of the derivative of the program output by a change
in the value of an inclusion factor, the program in figure 2 is used as an example.

If we use O; to represent the output of node i, then the partial derivatives of the genetic
program with respect to the weight wss between node 3 and node 5 will be:

(3y o 601 o 801 603
81035 N 81035 N 803 . 81035
. 3(w1202 + w1303) . 3(71)3404 X w35O5)
005 Owss

= wiz- w34 0405

Since wi3 and w34 are known and O4 and Os can be obtained during evaluation of the
program, the formula is readily calculated. In this way the appropriate derivative for any
weight, in a program of any depth, can be obtained using the chain rule and the derivatives
of the functions in the function set, as shown in table 2.



Table 2:

Derivatives of the functions used in this approach.

Operation | 5‘—(1"1 6"—:2 | 661’51 | 6352 | 6% 8%3:
+ w1 W2 ai az
- w1y —w2 ai —asz
X wWi1wWwa2a2 WaW1 a1 a1w209 as2w1 a1
paiv s ~ ot 1tz ~ules
if 0 if (wya; < 0) 0 if (wya; <0) | if (wia1 <0) | if(wia; <0)
then w2 else 0 then as then 0 | then w3 else 0 | then ag else 0

3.2.3 Search Factor o

The search factor a in equation 1 was defined to be proportional to the inversed sum of the
square gradients on all weights along the cost surface, as shown in equation 5.

M
oC
a=n+y (5
o Owi

where M is the number of weights in the program, and 7 is a learning rate defined by the
user. This equation was found to be adequate in previous research [15], and is reused here.

(5)

3.2.4 Summary of the Gradient Descent Algorithm

The gradient descent algorithm in this approach is summarised as follows.

e For each training pattern, evaluate the program, save the outputs of all nodes in the
program.

e For each training pattern, calculate the partial derivative of the cost function on the

program %—2 using equations 3 and 4.

e For each training pattern, calculate the partial derivatives of the program on each
weights % using the chain rule and table 2.
ij

e (Calculate the search factor a using equation 5.
e (Calculate the change of each weight using equation 1.
e Update the weights using (w;j)new = wij + Aw;;.

Note that this algorithm is an offline scheme, that is, the weights are updated after all
the patterns in the training set are presented.

4 Data Sets

We used three data sets providing object classification problems of varying difficulty in the
experiments. Example images are shown in figure 5.



Figure 5: Sample image data sets. (a) Shape; (b) Coin; (c) Face.

4.1 Computer Generated Shape Data Set

The first set of images (figure 5a) was generated to give well defined objects against a relatively
clean background. The pixels of the objects were produced using a Gaussian generator with
different means and variances for each class. Three classes of 960 small objects were cut out
from those images to form the classification data set. The three classes are: black circles,
grey squares, and light circles. For presentation convenience, this dataset is referred to as
shape.

4.2 NZ Coin Data Sets

The second set of images (figure 5b) contains scanned 5 cent and 10 cent New Zealand coins.
The coins were located in different places with different orientations and appeared in different
sides (head and tail). In addition, the background was cluttered. We need to distinguish
different coins with different sides from the background. Five classes of 801 object cutouts
were created: 160 5-cent heads, 160 5-cent tails, 160 10-cent heads, 160 10-cent tails, and
the cluttered background (161 cutouts). Compared with the shape data set, the classification
problem in this data set is much harder. Although these are still regular, man-made objects,
the problem is very hard due to the noisy background and the low resolution.

4.3 Human Face Data Set

The third data set consists of 40 human faces (figure 5¢) taken at different times, varying
lighting slightly, with different expressions (open/closed eyes, smiling/non-smiling) and facial
details (glasses/no-glasses). These images were collected from the first four directories of the
ORL face database [9]. All the images were taken against a dark homogeneous background



with limited orientations. The task here is to distinguish those faces into the four different
people.

For the shape and the coin data sets, the objects were equally split into three separate data
sets: one third for the training set used directly for learning the genetic program classifiers,
one third for the validation set for controlling overfitting, and one third for the test set for
measuring the performance of the learned program classifiers. For the faces data set, due to
the small number of images, ten-fold cross validation was applied.

5 Experimental Results and Discussion

5.1 Experiment Configuration

The parameter values used in this approach are shown in table 3. The evolutionary process is
run for a fixed number (maz-generations) of generations, unless it finds a program that solves
the classification perfectly (100% accuracy on training set), at which point the evolution is
terminated early.

Table 3: Parameters used for GP training for the three datasets.

| Parameter Names | Shape | coin | face || Parameter Names | Shape | coin | face |
population-size 300 500 500 reproduction-rate 10% | 10% | 10%
initial-max-depth 5 5 5 crossover-rate 60% | 60% | 60%
max-depth 6 6 6 mutation-rate 30% | 30% | 30%
max-generations 100 100 100 cross-term 15% | 15% | 15%
object-size 16x16 | 70x70 | 92x112 || learning rate n 1.0 1.0 1.0

5.2 Results

Table 4 shows the results of the new GP approach (GP-gradient) with different learning rates
against the basic GP approach. The results at the learning rate “off” corresponds to the basic
GP approach — no gradient descent search is used.

Table 4: A comparison of the results of the GP-gradient and the basic GP approach.

| Dataset | Learning rate | Generations | Time (s) | Test Accuracy (%) ]

Off 15.56 0.85 99.66

0.5 10.30 2.31 99.53

Shape 1.0 6.38 1.39 99.69
2.0 4.58 0.97 99.71

3.0 5.52 1.22 99.80

0.0 43.46 1.68 90.89

0.5 43.56 7.12 89.15

Coin 1.0 43.34 7.48 90.22
2.0 43.22 .77 90.02

3.0 43.10 7.53 92.14

0.0 8.32 0.37 85.00

0.5 8.07 0.35 86.50

Face 1.0 7.30 0.32 86.25
2.0 6.23 0.27 86.30

3.0 6.72 0.31 88.15

From these results, the following observations can be made:



e Different learning rates in the GP-gradient approach resulted in different performance.
This is consistent with the nature of the gradient descent search — different local
minima can be reached from different learning rates.

e For all the three data sets investigated here, it was always possible to find certain
learning rates at which the GP-gradient approach outperformed the basic GP approach.

e For the three sets of experiments investigated here, it seemed that a learning rate of
3.0 achieved the best classification performance, suggesting that 3.0 could be used as a
starting point.

e The new GP-gradient descent method almost always used fewer number of generations
to find a good program classifier than the basic GP approach, and in some cases very
much so. This suggests that the gradient descent search locally applied to individual
programs did reduce the number of evolutions.

e In terms of the training time, it seems that the GP-gradient method spent more time
than the basic GP approach in the easy shape data set and the coin data set. However,
this is not the case for the relatively difficult face data set, where the new method used
less training time to find a good program classifier.

Table 5 shows the results of this approach with the constraints of gradient descent search
applied only to the weights connected with the numeric terminals. As shown in this table, the
results is very similar to those obtained with gradient descent applied all weights connected
with any sub-program tree classifier. This suggests that our previous approach, which applies
gradient descent to the numeric terminal only, is a special case of the GP-gradient approach
described in this paper, which can also achieve similar results on the same problems.

Table 5: Results of the approach with the constraints of gradient descent of numeric weights
only.

| Dataset | Learning rate | Generations | Time (s) | Test Accuracy (%) |

off 15.56 0.84 99.66

0.5 10.06 2.33 99.74

Shape 1.0 6.62 1.47 99.76
2.0 5.96 1.35 99.71

3.0 6.46 1.47 99.75

0.0 43.46 1.68 90.89

0.5 43.42 7.13 89.64

Coin 1.0 39.12 6.55 90.00
2.0 38.94 6.53 91.87

3.0 39.68 7.17 93.68

0.0 7.31 0.13 84.15

0.5 7.52 0.33 86.50

Face 1.0 7.11 0.31 86.75
2.0 7.76 0.37 87.85

3.0 7.46 0.35 88.65

6 Conclusions

This paper described an approach to the use of gradient descent search in tree based genetic
programming for multiclass object classification problems. To learn better partial programs,



a weight parameter was introduced in each link between every two nodes in a program tree,
so that a change of a weight corresponds to a change of the effect of the sub-program tree.
Inside a particular generation, learning the changes of a weight parameter was done locally by
gradient descent search, but the whole evolution process was still carried out across different
generations globally by the genetic beam search. Unlike the previous approaches which also
combines genetic beam search and gradient descent search but applies gradient descent to
the numeric terminals/constants only, this approach can learn better program structures by
updating the weights of the sub programs.

This approach was examined and compared with the basic genetic programming approach
without gradient descent on three object classification problems of varying difficulty. The
results suggest that the new approach outperformed the basic approach on all problems
under certain learning rates.

The results also showed that different learning rates resulted in different performance.
It was always possible to find certain learning rates, with which better performance could
be achieved. It does not seem to have a reliable way to obtain a good learning rate, which
usually needs an empirical search through experiments. However, if such a search could
improve the system performance, such a short search is a small price to pay. According to
our experiments, a learning rate of 3.0 seems a good starting points.

This work only used the offline learning scheme when updating the weights. We will
investigate the effectiveness of the online scheme for updating the weights in this approach
in the future.
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