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Abstract

We describe an approach to the use of genetic programming for multi-class
object classification problems. Rather than using fixed static thresholds as bound-
aries to distinguish between different classes, this approach introduces two meth-
ods of classification where the boundaries between different classes can be dynam-
ically determined during the evolutionary process. The two methods are centred
dynamic class boundary determination and slotted dynamic class boundary de-
termination. The two methods are tested on four object classification problems of
increasing difficulty and are compared with the commonly used static class bound-
ary method. The results suggest that, while the static class boundary method
works well on relatively easy object classification problems, the two dynamic class
boundary determination methods outperform the static method for more difficult,
multiple class object classification problems.

Keywords Genetic programming, genetic algorithms, dynamic class boundary
determination, object recognition.
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Abstract. We describe an approach to the use of genetic programming
for multi-class object classification problems. Rather than using fixed
static thresholds as boundaries to distinguish between different classes,
this approach introduces two methods of classification where the bound-
aries between different classes can be dynamically determined during
the evolutionary process. The two methods are centred dynamic class
boundary determination and slotted dynamic class boundary determina-
tion. The two methods are tested on four object classification problems
of increasing difficulty and are compared with the commonly used static
class boundary method. The results suggest that, while the static class
boundary method works well on relatively easy, linearly separable object
classification problems, the two dynamic class boundary determination
methods outperform the static method for more difficult, multiple class
object classification problems.

1 Introduction

Classification tasks arise in a very wide range of applications, such as detecting
faces from video images, recognising words in streams of speech, diagnosing med-
ical conditions from the output of medical tests, and detecting fraudulent credit
card fraud transactions [1,2]. In many cases, people (possibly highly trained
experts) are able to perform the classification task well, but there is either a
shortage of such experts, or the cost of people is too high. Given the amount of
data that needs to be classified, automated classification systems are highly de-
sirable. However, creating automated classification systems that have sufficient
accuracy and reliability turns out to be very difficult.

GP research has considered a variety of kinds of classifier programs, using
different program representations, including decision tree classifiers and classifi-
cation rule sets [3]. Recently, a new form of classifier representation - numeric
expression classifiers - has been developed using GP [4-7]. In these years, this
form has become the “standard form” of GP and has been successfully applied
to some real world classification problems such as detecting and recognising par-
ticular classes of objects in images [5, 6, 8, 9], demonstrating the potential of GP
as a general method for classification problems.



Numeric expression GP classifiers model a solution to a classification problem
in the form of a mathematical expression, using a set of arithmetic and math-
ematical operators, possibly combined with conditional/logic operators such as
the “if-then-else” structures commonly used in computer programs.

The output of a numeric expression GP classifier is a numeric value that is
typically translated into a class label. For the simple binary classification case,
this translation can be based on the sign of the numeric value [5, 10-12]; for multi-
class problems, finding the appropriate boundary values to separate the different
classes is more difficult. The simplest approach — fixing the boundary values at
manually chosen points — often results in unnecessarily complex programs and
could lead to poor performance and very long training times [4,7,9].

The goal of this paper is to develop better classification strategies in GP for
multi-class object classification problems. The main focus is on the translation
of the numeric output of a genetic program classifier into class labels. Rather
than using manually pre-defined boundary values, we will consider new methods
which allow each genetic program to use a set of dynamically determined class
boundaries. We will compare the dynamic methods with the current static (man-
ually defined) method on a number of image classification problems of increasing
difficulty.

This paper is organised as follows. Section 2 describes the overall GP ap-
proach for object classification problems. Section 3 describes the class transla-
tion rules. Section 4 presents the four image classification problems used in this
approach. Section 5 presents the experimental results and section 6 gives the
concluding remarks.

2 The GP Approach for Object Classification

In this approach, we used the numeric expression based tree-structure to repre-
sent genetic programs. The ramped half-and-half method was used for generat-
ing the programs in the initial population and for the mutation operator. The
proportional selection mechanism and the reproduction, crossover and mutation
operators were used in the learning and evolutionary process.

In the remainder of this section, we address the other aspects of the GP
learning/evolutionary system: (1) Determination of the terminal set; (2) Deter-
mination of the function set; (3) Construction of the fitness measure; and (4)
Selection of the input parameters and determination of the termination strategy.

2.1 Terminals

For object classification problems, terminals generally correspond to image fea-
tures. Some conventional approaches to image recognition usually use high level,
domain specific features of images as inputs to a learning/classification system,
which generally involves a time consuming feature selection and a hand-crafting
of feature extraction programs. In this approach, we used pixel level, domain
independent statistical features (referred to as pixel statistics) as terminals and



we expect the GP evolutionary process can automatically select features that
are relevant to a particular domain to construct good genetic programs.

Four pixel statistics are used in this approach: the average intensity of the
whole object cutout image, the variance of intensity of the whole object cutout
image, the average intensity of the central local region, and the variance of
intensity of the central local region.

Since the range of these four features are quite different, we linearly nor-
malised these feature values into the range [-1, 1] based on all object image
examples to be classified.

In addition, we also used some constants as terminals. These constants are
randomly generated using a uniform distribution. To be consistent with the
feature terminals, we also set the range of the constants as [-1, 1]. Unlike the
feature terminals where the same feature usually has different values for different
object images, the constant terminals will remain unchanged for all object images
through the whole evolutionary process.

2.2 Functions

In the function set, the four standard arithmetic and a conditional operation
was used to form the function set:

FuncSet = {4+, —,*,/,if} (1)

The +, —, and * operators have their usual meanings — addition, subtraction
and multiplication, while / represents “protected” division which is the usual
division operator except that a divide by zero gives a result of zero. Each of
these functions takes two arguments. The if function takes three arguments.
The first argument, which can be any expression, constitutes the condition. If
the first argument is negative, the if function returns its second argument;
otherwise, it returns its third argument.

2.3 Fitness Function

We used classification accuracy on the training set of object cutout images as
the fitness function. The classification accuracy of a genetic program classifier
refers to the number of object cutout images that are correctly classified by the
genetic program classifier as a proportion of the total number of object images in
the training set. According to this design, the best fitness is 100%, meaning that
all object images have been correctly recognised without any missing objects or
any false alarms for any class.

To calculate the classification accuracy of a genetic program, one needs to
determine how to translate the program output to a class label. This is described
in section 3.



Table 1. Parameters used for GP training for the four datasets.

|Parameter Kinds|Parameter Names|Shape1|shape2| coinl | coin2 |

population-size 300 300 300 | 500
Search initial-max-depth 3 3 3 3
max-depth 5 5 6 8
Parameters |max-generations 50 50 50 50
object-size 16%x16 [16x16|70x70|70x 70
reproduction-rate | 20% | 20% | 20% | 20%
Genetic cross-rate 50% | 50% | 50% | 50%
mutation-rate 30% | 30% | 30% | 30%
Parameters |cross-term 15% | 15% | 15% | 15%
cross-func 85% | 85% | 85% | 85%

2.4 Parameters and Termination Criteria

The parameter values used in this approach are shown in table 1.
In this approach, the learning/evolutionary process is terminated when one
of the following conditions is met:

— The classification problem has been solved on the training set, that is, all
objects of interest in the training set have been correctly classified without
any missing objects or false alarms for any class.

— The accuracy on the validation set starts falling down.

— The number of generations reaches the pre-defined number, maz-generations.

3 Translation Rules in Classification

As mentioned earlier, each evolved genetic program has a numeric output value,
which needs to be translated into class labels. The methods which perform this
translation are referred to as class translation rules in this paper.

This section briefly describes the static class boundary determination (SCBD)
method for multi-class classification commonly used in many approaches, then
details the two new class translation rules: centred dynamic class boundary de-
termination (CDCBD) and slotted dynamic class boundary determination (SD-
CBD).

3.1 Static Class Boundary Determination

Introduced in [6, 7], the static class boundary determination (SCBD) method
has been used in many approaches to classification problems with three or more
classes. In this method, two or more pre-defined thresholds/boundaries are ap-
plied to the numeric output value of the genetic program and the ranges/regions
between these boundaries are linearly translated into different classes. This
method is simple because these regions are set by the fixed boundaries at the
beginning of evolution and remain constant during evolution.



If there are n classes in a classification task, these classes are sequentially
assigned n regions along the numeric output value space from some negative
numbers to positive numbers by n—1 thresholds/boundaries. Class 1 is allocated
to the region with all numbers less than the first boundary, class 2 is allocated to
all numbers between the first and the second boundaries and class n to the region
with all numbers greater than the last boundary n—1, as shown in equation 2.

class 1, v<Ty

class 2, Ty <v<T,
class 3, T <v <13

Class = . e

class i, Ti1<v<T;

class n, v>T, 1

In this equation, n refers to the number of object classes, v is the output value of
the evolved program, and T, T, T;,—1 are static, pre-defined class boundaries.

3.2 Centred Dynamic Class Boundary Determination

The first new method is the Centred Dynamic Class Boundary Determination
(CDCBD), where the class boundaries are dynamically determined by calcu-
lating the centre of the program output value for each class. The algorithm is
presented as follow.

Step 1 Initialise the class boundaries as certain pre-defined values as in the
SCBD method.

Step 2 Evaluate each genetic program in the population to obtain the program
output value for each training example based on the SCBD method.
During the evolutionary process, repeat step 3 and step 4:

Step 3 For each class ¢, calculate the centre of the class according to equation 3:

M L
>. > ProgOut,,

Center, = 2= #C:& T (3)

where M is the number of programs in the population and p is the index, L is
the number of training examples for class ¢ and p. is the index, ProgOuty,,,
is the output value of the pth program on training example . for class c.
Step 4 Calculate the boundary between every two classes by taking the middle
point of the two adjacent class centres.
Step 5 Perform classification based on the new boundaries and equation 2.

While this method could be applied to every generation of the evolutionary
process, we applied this method to the training examples every five generations
to keep balance between evolution and class boundary determination.



3.3 Slotted Dynamic Class Boundary Determination

The second new class translation rule is Slotted Dynamic Class Boundary De-
termination (SDCBD). In this method, the output value of a program is split
into certain slots. When a large number of slots are used, a large amount of com-
putation would be required. In our experiment, we used 100 slots derived from
the range of [-25, 25] with a step of 0.50. Since the input features (terminals)
are scaled into [-1, 1], the range [-25, 25] is usually sufficient to represent the
program output. Each slot will be assigned to a value for each class.

In the first step, this method evaluates each genetic program in the popu-
lation to obtain the program output value (ProgQOut) for each training example
based on the SCBD method.

In the second step, the method calculates the slot values for each class
(Array[slot] [class]) based on the program output value. The algorithm for
this step is as follows:

FOR each slot and each class
Array([slot] [class] = 0
FOR each training example X {
FOR each program p {
ProgOut = execute program p with X as input
Round ProgOut to nearest slot
IF ProgOut > 25 THEN ProgQOut = 25
IF ProgOut < -25 THEN ProgQOut = -25
Array[slot] [class] += 1

In the third step, this method dynamically determines to which class each slot
belongs by simply taking the class with the largest value at the slot. However,
in case a slot does not hold any positive value, that is, no programs produce any
output at that slot for any training examples, then this slot will be assigned to
the class of the nearest neighbouring slot, as shown in the following algorithm:

FOR slot = 1 to 100 {
FOR all class c {
IF values of all class c in Array[slot][c] are zero {
Class[slot] = ‘7?2’ }
ELSE {
Search ¢ for which Arrayl[slot][c] is largest
Class[slot] = c }
}
}

FOR slot = 1 to 100 {
IF Class[slot] = ‘7?2’ {
Class[slot] = nearest value to slot in the Class vector
whose value is not ‘¢?’’ }



Similarly to the CDCBD method, this method is also applied to the evolution-
ary process every five generations so that at other generations the classification
performance will be only improved based on the evolutionary process.

3.4 Characteristics of the Dynamic Methods

Compared with the SCBD method, these two new methods have the following
characteristics:

— The optimal boundaries for every two different classes or the optimal slot
values for each class can be dynamically determined during the evolutionary
process.

— Class labels do not have to fit into the predefined sequential regions. The
optimal regions for each class in the program output space can be automat-
ically determined in the evolutionary process. For example, class 3 can be
set in between class 1 and class 2 if necessary.

With these new properties, we expect that these two methods would perform
better on multi-class object classification problems, particularly for relatively
difficult problems.

4 Image Data Sets

We used four image databases in two groups with object classification problems
of increasing difficulty in the experiments. Example images are shown in figure 1.

(a)

Fig. 1. Example images from Shape (a), Coinl (b) and Coin2 (c)

4.1 Computer Generated Shape Datasets

The first group of images (figure 1 (a)) was generated to give well defined objects
against a noisy background. The pixels of the objects were produced using a
Gaussian generator with different means and variances for each class. Four classes
of 713 small objects were cut out from those images to form the classification



data. The four classes are: black circles, light grey squares, white circles, and the
grey noisy background.

Two different data sets, shapel and shape2 were constructed from this group
of images. While set shapel arranges the four classes in an ordinary order based
on the intensities, set shape2 out of this order. Table 2 gives the class order
and the initial setting of the boundaries between these classes for the SCBD,
CDCBD, and SDCBD methods. In the Shapel data set, for example, classes 1,
2, 3, and 4 are arranged based on the ascending order of the intensities of the
four classes. The class boundaries were set to -1.0, 0, and 1.0, meaning that if a
program output value is less than -1.0 for a particular object example, then this
object example will be classified as classl (black circles); if the program output
value is in (-1.0, 0], it will be classified as class2 (background). Clearly, the
classification problem is linearly separable in Shapel, but non-linear separable
in Shape2. The goal here is to investigate whether these classification methods
perform well for the same data with the two different orders of class setting.

Table 2. The class orders in the two shape data sets.

Dataset|class label|description |intensity|boundary

1 black circle 10+£5 1.0
Shapel |2 background | 140+50 0

3 grey square | 180450 1.0

4 white circle | 220£50

1 background | 140450 1.0
Shape2 |2 black circle | 10+5 0

3 white square| 220£50 10

4 grey square | 180+£50

4.2 NZ Coin Datasets

The second group of images has two NZ coin data sets. The first data set (coinl,
figure 1 (b)) consists of scanned 5 cent and 10 cent New Zealand coins. There are
five classes of 576 object cutouts: 5 cent heads, 5 cent tails, 10 cent heads and 10
cent tails, and a relatively uniform background. Compared with the shape data
set, this set of objects (heads versus tails for either 5 cent or 10 cent coins) are
more difficult to distinguish and it has more classes.

The second data set (coin2, figure 1 (c)) also consists of five classes of object
cutouts, but the background is highly clustered, which makes the classification
problems much harder. Even human eyes cannot perfectly distinguish these ob-
jects.

The objects in each of the these data sets were equally split into three separate
data sets: one third for the training set used directly for learning the genetic
program classifiers, one third for the validation set for controlling overfitting,
and one third for the test set for measuring the performance of the learned
program classifiers.



5 Results and Discussion

This section presents a series of results of the two new dynamic class boundary
determination methods on the four data sets in the shape and coin image groups.
These results are compared with those for the static class boundary method. For
all experiments, we run 10 times and the average results were presented.

5.1 Shape Data Sets

Table 3 shows the results of the three methods on the two shape data sets. The
first line shows that for the Shapel data set with 4 classes, the SCBD method
achieved an average accuracy of 99.90% of 10 runs on the test set and the average
number of generations of the 10 runs spent on the training process was 9.2.

Table 3. Results on the shape data sets.

Data set|Classes| Method |Gens|Accuracy
SCBD | 9.2 | 99.90%
Shapel 4 |CDCBD|17.0| 99.69%
SDCBD | 35.0 | 98.59%
SCBD |50.0| 96.87%
Shape?2 4 |CDCBD|26.5| 99.67%
SDCBD | 43.5| 98.46%

For the Shapel data set, all the three classification methods obtained nearly
ideal results, reflecting the fact that this classification problem is relatively easy.
In particular, the SCBD method achieved the best performance.

For the Shape2 data set, the two new dynamic methods gave very good
results. However, the static SCBD method produced a much worse performance
in both classification accuracy and training time! than the two new dynamic
methods because the classes in this data set were arranged arbitrary rather
than in an ordinary order. This suggests that while the SCBD method could
perform well on relatively easy, linearly separable classification problems with
the classes arranged in an ordinary order, this method is not very appropriate for
multi-class,non-linearly separable object classification problems with a randomly
arranged order of classes. The two new dynamic methods, however, should be
applied in this case. In addition, for these relatively easy classification problems,
the CDCBD method seemed to be more effective and more efficient than the
SDCBD method.

! Note that the dynamic boundary determination process takes a bit time time. How-
ever, since we apply the dynamic methods once every five generations and the com-
putation cost of the two dynamic methods is quite low, the average time spent on
each generation can be still considered similar.
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5.2 Coin Data Sets

Table 4 shows the results of the three methods on the two coin data sets. For
these more difficult datasets, both the two dynamic methods achieved better
results than the static method. In particular, the SDCBD was clearly superior
to the CDCBD method, suggesting that the SDCBD method is more effective
than the CDCBD for these difficult classification problems.

Table 4. Results on the coin data sets.

Data set|Classes| Method |Gens|Accuracy
SCBD | 50 | 82.94%
Coinl 5 |CDCBD|48.4| 85.46%
SDCBD | 48.5 | 89.44%
SCBD | 50 | 72.78%
Coin2 5 |CDCBD| 50 | 76.48%
SDCBD|49.3 | 84.50%

5.3 Summary and Discussion

In summary, the results suggest that the SCBD method could perform well on
relatively easy object classification problems if the classes were arranged in their
ordinary order (such as Shapel), but would perform badly when the classes
were out of this order (as in Shape2) or when the classification problems became
more difficult (such as Coinl and Coin2). This is mainly because a high degree
of non-linearity is required to map the class regions on the program output to
the object features in these situations.

The performances of all the three methods on the Coinl and Coin2 data sets
were worse than the two shape data sets, reflecting the fact that the classifica-
tion problems in these two data sets are more difficult than in the two shape
data sets. Because these problems were harder, more features might need to be
selected, extracted and added to the terminal set. Also more powerful functions
might also need to be applied in order to obtain good performance. However,
the investigation of these developments is beyond the goal and the scope of this
paper. We leave this for the future work.

In terms of the two dynamic methods, the CDCBD method performed better
for the relatively easy datasets, while the SDCBD method performed better for
the relatively difficult datasets.

6 Conclusions

The goal of this paper was to investigate and explore dynamic class boundary
determination methods as class translation rules in genetic programming for
multi-class object classification problems, and to determine whether the new
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dynamic methods could outperform the static method for relatively difficult
problems. Two new classification methods, CDCBD and SDCBD, were devel-
oped and implemented where the class boundaries were dynamically determined
during the evolutionary process.

The results on the four object classification problems in two groups of images
showed that the static method, SCBD, performed very well on the relatively easy,
linearly separable object classification problems where the classes were arranged
in their ordinary order, but performed less well when the classes were arranged in
an arbitrary order. While the two dynamic methods, CDCBD and SDCBD, also
performed very well on the relatively easy object classification problems, they
generally took longer training times. However, the two new dynamic methods
performed much better than the static SCBD method for the relatively difficult,
non-linearly separable object classification problems.

As expected, the classification performance on the four image datasets dete-
riorated as the degree of difficulty of the object classification problems increased.

These results suggest that, for relatively easy object classification problems
with classes in a linear order, both the static method (SCBD) and the two
dynamic methods (CDCBD and SDCBD) can be applied, but the static method
SCBD is recommended if training time is a critical factor. For other situations,
the two dynamic methods are recommended.

Although developed for image/object classification problems, these two dy-
namic methods are also expected to be applied to general classification problems.

For future work, we will investigate whether the performance on the rela-
tively difficult coin data sets can be improved if more features are added to the
terminal set. We will also investigate the power and reliability of the two new
methods on even more difficult, real-world image classification problems such as
face recognition problems and satellite image detection problems, and compare
the performance with other long-term established methods such as decision trees
and neural networks.
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