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Abstract

This paper describes an approach to the use of genetic programming for object
detection problems. In this approach, domain independent, local region pixel
statistics are used to form three terminal sets. The function set is constructed
by the four standard arithmetic operators and a conditional operator. A multi-
objective fitness function is constructed based on detection rate, false alarm rate,
false alram position and program size. This approach is applied to three object
detection problems of increasing difficulty. The results suggest that the concentric
circular pixel statistics are more effective than the square features for the these
object detection problems. The fitness function with program size is more effective
and more efficient for these object detection problems and the evolved genetic
programs using this fitness function are much shorter and easier to interpret.

Keywords Genetic programming, pixel statistics, false alarm position, program
size, multiclass object detection.
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Abstract. This paper describes an approach to the use of genetic pro-
gramming for object detection problems. In this approach, domain in-
dependent, local region pixel statistics are used to form three terminal
sets. The function set is constructed by the four standard arithmetic op-
erators and a conditional operator. A multi-objective fitness function is
constructed based on detection rate, false alarm rate, false alram posi-
tion and program size. This approach is applied to three object detection
problems of increasing difficulty. The results suggest that the concentric
circular pixel statistics are more effective than the square features for
these object detection problems. The fitness function with program size
is more effective and more efficient for these object detection problems
and the evolved genetic programs using this fitness function are much
shorter and easier to interpret.

1 Introduction

Object detection tasks arise in a very wide range of applications, such as de-
tecting faces from video images, finding tumors in a database of x-ray images,
and detecting cyclones in a database of satellite images. In many cases, people
(possibly highly trained experts) are able to perform the classification task well,
but there is either a shortage of such experts, or the cost of people is too high.
Given the amount of data that needs to be detected, automated object detec-
tion systems are highly desirable. However, creating such automated systems
that have sufficient accuracy and reliability turns out to be very difficult.

There have been a number of reports on the use of genetic programming
in object detection and classification [1–8]. Typically, simple image features or
high level features based on the whole objects (or the whole sliding windows)
are used to form terminals, and the four arithmetic operations form the function
set. However, genetic programming with the global pixel statistics for object
detection often results in many false alarms. The main reason is that these
global features are position and rotation invariant and not effective for object
localisation. In this paper, we investigates a number of domain independent
terminal sets based on pixel statistics of local regions from the whole object or
the whole sliding window.
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The main objective of a detection system is to achieve a high detection rate
and a low false alarm rate, so that fitness functions in genetic programming for
object detection are often based on detection rate and false alarm rate or similar
measures [9]. A problem with such fitness functions is that they may not reflect
small improvements of evolved genetic programs. A further problem is that the
sizes of evolved genetic programs are usually quite large and often have a large
amount of redundancy. Both problems could make the genetic search very slow
and very hard to find good solutions.

The overall goal of this paper is to develop a domain independent approach
to the use of genetic programming for object detection problems. Specifically,
we investigate two developments. The first is to explore the use of local region
pixel statistics to form the terminal sets and investigate which set is the most
effective. The second is to explore the effect on the evolutionary process of an
additional measure, program size, in the fitness function.

The rest of the paper is organised as follows. Section 2 describes the main
aspects of this approach. Section 3 describes the three image data sets and section
4 presents the experimental results. Section 5 draws the conclusions and gives
future directions.

2 The Approach

This approach has a learning process and a testing procedure. In the learn-
ing/evolutionary process, the evolved genetic programs use a square input field
which is large enough to contain each of the objects of interest. The programs
are applied, in a moving window fashion, to the entire images in the training set
to detect the objects of interest. In the test procedure, the best evolved genetic
program obtained in the learning process is then applied to the entire images in
the test set to measure object detection performance.

In this system, we used tree structures to represent genetic programs. The
ramped half-and-half method [10] was used for generating the programs in the
initial population and for the mutation operator. The proportional selection
mechanism and the reproduction, crossover and mutation operators [10] were
used in the learning process.

In the remainder of this section, we address the other aspects of the learn-
ing/evolutionary system: (1) Construction of the terminal set; (2) Determination
of the function set; (3) Development of the classification strategy; (4) Construc-
tion of the fitness measure; (5) Selection of the input parameters and determi-
nation of the termination strategy.

2.1 Terminal Sets

For object detection problems, terminals generally correspond to image features.
To meet the requirement of domain independence, we use low level pixel statis-
tics, mean and variance of the pixel values, as terminals. These features represent
overall brightness/intensity and the contrast of a region of the image. Instead of
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using global pixel statistics of an entire input image window only, we consider
a number of local regions from which pixel statistics will be computed. In this
approach, we investigated three sets of terminals based on different local regions.

Terminal Set I — Whole Window and Central Pixel Statistics. This
terminal set only consists of four pixel statistics: the mean (F1) and standard
deviation (F2) of the whole window, and the mean (F3) and standard deviation
(F4) of the central local region, as shown in figure 1 (a). Since the centres of the
objects are used to represent the object themselves, we hypothesised the central
region is important. The motivation of this set is to investigate whether a very
simple set like this can do a good enough job or not.
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Fig. 1. Terminals. (a) Terminal set I; (b) Terminal set II; (c) Terminal set III.

Terminal Sets II — Local Square Region Pixel Statistics. This terminal
set was constructed by the means and standard deviations computed from a
series of concentric local square regions centred in the input image window,
as shown in figure 1 (b). For each input image window, four such regions were
formed and eight features were constructed. The motivation here is to investigate
whether this group of local square region features can do a better job than the
first terminal set.

Terminal Sets III — Local Circular Region Pixel Statistics. This termi-
nal set was constructed by the means and standard deviations computed from a
series of concentric circular regions centred in the input image window, as shown
in figure 1 (c). For each input image window, three such regions were formed
and six features were constructed. The motivation here is to investigate whether
the circular local square region pixel statistics are more effective than the square
region features.

2.2 Function Sets

In the function set, the four standard arithmetic operators and a conditional
operator were used to form the non-terminal nodes:

FuncSet = {+,−, ∗, /, if}
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The +, −, and ∗ operators have their usual meanings — addition, subtraction
and multiplication, while / represents “protected” division which is the usual di-
vision operator except that a divide by zero gives a result of zero. Each of these
functions takes two arguments. The if function takes three arguments. The first
argument, which can be any expression, constitutes the condition. If the first
argument is positive, the if function returns its second argument; otherwise, it
returns its third argument. The if function allows a program to contain a differ-
ent expression in different regions of the feature space, and allows discontinuous
programs, rather than insisting on smooth functions.

2.3 Object Classification Strategy

The output of a genetic program in a standard GP system is a floating point
number. Generally genetic programs can perform one class object detection tasks
quite well where the division between positive and negative numbers of a genetic
program output corresponds to the separation of the objects of interest (of a sin-
gle class) from the background (non-objects). However, for multiple class object
detection problems described here, where two or more classes of objects of in-
terest are involved, the standard genetic programming classification strategy
mentioned above cannot be applied.

In this approach, we used a different strategy called program classification

map, as shown in equation 1, for the multiple class object detection problems
[9]. Based on the output of an evolved genetic program, this map can identify
which class of the object located in the current input field belongs to. In this
map, m refers to the number of object classes of interest, v is the output value
of the evolved program and T is a constant defined by the user, which plays a
role of a threshold.

Class =































background, v ≤ 0
class 1, 0 < v ≤ T

class 2, T < v ≤ 2T

· · · · · ·
class i, (i − 1) × T < v ≤ i × T

· · · · · ·
class m, v > i × T

(1)

2.4 Fitness Function

The goal of object detection is to achieve a high detection rate and a low false
alarm rate. In genetic programming, this typically needs a “multi-objective”
fitness function. An example fitness function [9] is:

fitness(DR, FAR) = Wd ∗ (1 − DR) + Wf ∗ FAR (2)

where DR is the Detection Rate (the number of small objects correctly reported
by a detection system as a percentage of the total number of actual objects in the
images) and FAR is the False Alarm Rate (also called false alarms per object, the
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number of non-objects incorrectly reported as objects by a detection system as a
percentage of the total number of actual objects in the images). The parameters
Wd, Wf reflect the relative importance between the detection rate and the false
alarm rate.

Although such a fitness function accurately reflects the performance measure
of an object detection system, it is not smooth. In particular, small improvements
in an evolved genetic program may not be reflected in any change to the fitness
function. The reason is the clustering process that is essential for the object
detection — as the sliding window is moved over a true object, the program will
generally identify an object at a cluster of window locations where the object is
approximately centered in the window. It is important that the set of positions
is clustered into the identification of a single object rather than the identification
of a set of objects on top of each other.

A poor program may incorrectly identify a large cluster of locations as an
object and a better program may identify a smaller cluster of locations (as shown
in figures 2 (b) and (c)). Although the second program is better than the first,
it has exactly the same FAR since both programs have two false positives. A
fitness function based solely on DR and FAR cannot correctly rank these two
programs, which means that the evolutionary process will have difficulty for
selecting better programs. To deal with this problem, the False Alarm Position
(FAP, the number of false alarm pixels which are not object centres but are
incorrectly reported as object centres before clustering) was added to the fitness
function [8].

(a) (c)(b)

Fig. 2. Sample object detection maps. (a) Original image; (b) Detection map produced
by a poor program; (c) Detection map produced by a better program.

Another problem of using this fitness function is that some genetic programs
evolved are often very long. When a short program and a long program pro-
duce the same detection rate and the same false alarm rate, the GP system will
randomly choose one for reproduction, mutation or crossover during the evolu-
tionary process. If the long programs are selected, the evolution for the rest of
the learning process will be slow. More importantly, the good building blocks in
these long programs will have a much greater chance to be destroyed than in
the short programs [10], which could lead to poor solutions by the evolutionary
process. This is mainly because this fitness function does not include any hints
about the size of programs.
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Fitness Function in The Approach. To smooth the fitness function so that
small improvement in genetic programs could be reflected and to consider the
effect of program size, we added two measures, false alarm position and program

size to the fitness function.
The new fitness of a genetic program is calculated as follows.

1. Apply the program as a moving n×n window template (n is the size of the
input image window) to each of the training images and obtain the output
value of the program at each possible window position. Label each win-
dow position with the ‘detected’ object according to the object classification
strategy. Call this data structure a detection map.

2. Find the centres of objects of interest only by the clustering algorithm:

– Scan the detection map for an object of interest. When one is found
mark this point as the centre of the object and continue the scan. Skip
pixels in n/2× n/2 square to right and below this point.

3. Match these detected objects with the known locations of each of the desired
true objects and their classes.

4. Calculate the detection rate DR, the false alarm rate FAR, and the false
alarm position FAP of the evolved program.

5. Count the size of the program by adding the number of terminals and the
number of functions in the program.

6. Compute the fitness of the program according to equation 3.

fitness = K1 · (1 − DR) + K2 · FAR + K3 · FAP + K4 · ProgSize (3)

where K1, K2, K3, and K4 are constant weights which reflect the relative
importance between detection rate, false alarm rate, false alarm area, and
program size.

2.5 Parameters and Termination Criteria

The important parameter values used in this approach are shown in table 1.
In this approach, the learning/evolutionary process is terminated when one

of the following conditions is met:

– The detection problem has been solved on the training set, that is, all objects
in each class of interest in the training set have been correctly detected with
no false alarms.

– The number of generations reaches the pre-defined number, max-generations.

3 Image Data Sets

We used three different data sets in the experiments. Example images are given
in figure 3. These data sets provide object detection problems of increasing dif-
ficulty. Data set 1 (Shape) was generated to give well defined objects against a
uniform background. The pixels of the objects were generated using a Gaussian
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Table 1. Parameters used for GP training for the three databases.

Parameter Kind Parameter Name Shape Coin1 Coin2

population-size 800 1000 1600
Search initial-max-depth 2 2 5

max-depth 6 7 8
Parameters max-generations 50 150 200

input-size 20×20 72×72 62×62

reproduction-rate 2% 2% 2%
Genetic cross-rate 72% 70% 70%

Parameters mutation-rate 28% 28% 28%

T 100 80 80
Fitness K1 5000 5000 5000

K2 100 100 100
Parameters K3 10 10 10

K4 1 1 1

No. of images: 10 No. of images: 20 No. of images: 20
Object size:18×18 Object size:70× 70 Object size:60×60

(Easy) (Coin1) (Coin2)

Fig. 3. Object Detection Problems

generator with different means and variances for different classes. There are two
classes of small objects of interest in this database: circles and squares. Data set
2 (Coin1) was intended to be somewhat harder and consists of scanned images of
New Zealand coins. There are two object classes of interest: the 5 cent coins and
10 cent coins. Each class has either tail side up or head side up and accordingly
has a greater variance than data set 1. The objects in each class have a similar
size but are located at arbitrary positions and with different rotations. Data set
3 (Coin2) also contains two object classes of interest, but the detection task is
significantly more difficult. The task is detecting the head side and the tail side
of New Zealand 5 cents from a highly cluttered background. This detection task
is very difficult and even human eyes could not detect those objects perfectly.

In the experiments, we used one, three, and five images as the training set
and used five, ten and ten images as the test set for the easy, coin1, and coin2

data sets, respectively.
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4 Results

This section describes the detection results. For all cases, the experiments were
repeated 10 times and the average results on the test set were presented.

4.1 Data Set I — Shape

The detection results using the three terminal sets and the two fitness functions
are shown in table 2. The GP system using each of the three terminal sets and
each of the two fitness function produced ideal result, that is, all the objects of
interest were correctly detected from the large images in the test set without
producing any false alarms. This reflects the fact that the detection problem in
this data set is relatively easy. However, the genetic program detectors evolved by
the evolutionary learning process were quite different if different fitness functions
were used. We now analyse the evolved genetic programs.

Table 2. Object detection results for the shape data set.

Shape Data Set Object Classes
circles squares

Best Detection Rate(%) 100 100

False Alarm Term set I 0 0
Rate (%) Term set II 0 0

Term set III 0 0

Genetic Program vs Fitness Function. To analyse the effect of program
size in fitness function, we use the second terminal set as an example for this
discussion. Other two terminal sets have a similar pattern.

To make a fair comparison, we did 20 experimental runs by using each of
the two fitness functions and chose the best 40 evolved genetic program detec-
tors trained using each fitness function. The average program size and a typical
evolved genetic program trained with each fitness function is shown in figure 4.

Fitness function I

Average program size: 62

Sample Program:
(/ (+ (* (/ (/F8 T) (+ T F1)) (+ (+ T F2) (if F7 T F8)))

(if (- (* T F4) F5) (- (+ F6 T) (* T F7)) (/ (- T F8) (- F1 T)))
)
(+ (if (/ (/ F2 T) (* T F3)) (+ (if T F4 F7) (- T F5))

(* (/ F1 F6) (+ F7 T))) (* (/ T (+ T T)) (/ T (/ T F4))))
)

Fitness function II

Average program size: 24
Sample program:

(/ (if (/ (- F7 T) F7) F8 (* (- F7 F3) F2)) (/ F7 F7))

Fig. 4. Program size, sample programs and fitness function
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As can be seen from figure 4, the size of evolved genetic program detectors
obtained using the second fitness function is much shorter than using the first.
This not only had the training time greatly reduced to find a good program
detector, but also could make the program detector much easier to interpret.
For example, the program detector obtained using the second fitness function in
figure 4 can be simplified as follows:

(if (- F7 T) F5 (* (- F7 F3) F2))

where F3, F5 and F7 are the means of the central regions S2, S3, and S4 (see
figure 1b) of a detected object window, respectively, F2 is the standard deviation
of the largest region, and T is a predefend threshold. This program can be
translated as the following rule:

if (F7 > T) then

ProgOut = F5;

else

ProgOut = (F7 - F3) * F2;

If the sweeping window is over the background only, F7 would be smaller than
the threshold (100 here), the program would execute the “else” part. Since F7
is equal to F3 in this case, the program output will be zero. According to the
classification strategy — object classification map, this case would be correctly
classified as background. If the input window contains a portion of an object of
interest and some background, F7 would be smaller than F3, which resulted in
a negative program output, corresponding to class background. If F7 is greater
than the threshold T, then the input window must contain an object of interest,
either for class1 or for class2, depending the value of F5.

While this program detector can be relatively easily interpreted and under-
stood, the programs obtained using the first fitness function are generally hard
to interpret due to the length of the program and lack of good building blocks.

4.2 Data Set II — Coin1

Since the second fitness function was proved to be better than the first fitness
function, we only applied the second fitness function to this and the next data
sets. The results for detecting 5 cent coins and 10 cent coins from a relatively
uniform background are shown in table 3.

Table 3. Object detection results for the second data set.

Coin1 Data Set Object Classes
coin10 coin05 overall

Best Detection Rate(%) 100 100 100

False Alarm Term set I 0 20.83 10.42
Rate (%) Term set II 0 12.5 6.25

Term set III 0 0 0
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According to table 3, all terminal sets correctly detected all the objects of
interest for each class. The false alarm rates produced by the three sets were,
however, quite different. While terminal set III gave the ideal performance, ter-
minal set II produced fewer false alarms than set I, indicating only four pixel
statistics from the whole window and a single central region were not sufficient
for the detection problems in this data set. In addition, terminal sets I and II
took much longer training time than set III. This suggests that the detection
problems in this data set are more difficult than the first data set, and the
terminal set III is the best suited to these detection problems.

4.3 Data Set III — Coin2

As can be seen from table 4, none of the three terminal sets gave the ideal results,
reflecting the difficulty of the object detection problems in this data set. While
all the three terminal sets correctly detected all objects of interest in all images,
they produced different false alarm rates. The first terminal set resulted in 68.5%
false alarm rate. In particular, it produced 100% false alarm rate for detecting
the tails. This indicates that four features only, two from the whole window
and two from the local central region of the window, are not sufficient at all for
this difficult detection problem. The result was improved to 50% by using more
local square region features in terminal set II. The third terminal set, with the
local circular region features, produced the best results. The overall false alarm
rate was decreased to 39.28%, which suggests that concentric local circular region
pixel statistics perform better than local square region features. This is probably
because the local circular regions captured more knowledge from the coins.

Table 4. Object detection results for the third data set.

Coin2 Data Set Object Classes
tails heads overall

Best Detection Rate(%) 100 100 100

False Alarm Term set I 100 30.7 68.5
Rate (%) Term set II 87.5 12.5 50

Term set III 55.35 23.21 39.28

It is interesting to note that in each case, the false alarm rate for the tails
was always higher than for heads. After a careful check and analysis from the
object centres detected by the system, it was observed that all false alarms for
the tails were generated along the borders of some objects of the heads. None of
the centres of class heads were reported as false alarms for class tails — it was
only the input windows with half of some objects in class heads and a bit more
than half window of background. Figure 5 (b) shows such an example, while (a)
and (c) are correctly detected as class background and class heads.

We found three major possible reasons for producing those false alarms. The
first is that the classification strategy used in this approach was not powerful
enough. The second is that the fitness parameters particularly K2 and K3 were
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(a) (b) (c)

Fig. 5. Example detected objects. (a) class background; (b) false alarm for tails; (c)
class heads.

too small compared with K1. The third is that the terminals and functions
were not sufficient and powerful. In the future, we will further investigate these
factors.

5 Conclusions

The goal of this paper was to investigate the effectiveness of different local region
pixel statistics and effect of the program size in fitness functions for object
detection using genetic programming. The approach was tested on three object
detection problems of increasing difficulty and achieved good results.

We developed three different terminal sets based on domain independent,
statistical image features. Our results suggest that, in genetic programming for
object detection problems, input terminals should include sufficient local region
pixel statistics, and that the pixel statistics computed from local circular regions
are more effective than square regions for these object detection problems.

We modified the fitness function by including two measures called false alarm
position and program size. The inclusion of false alarm position made the fitness
function smoother to reflect both large and small improvements of genetic pro-
grams. The inclusion of program size in the fitness function resulted in shorter
and better genetic program detectors. This not only reduced the search space
and accordingly saved computation time, but also made the genetic program
much easier to interpret and accordingly improved the comprehensibility of the
evolved programs.

For future work, we will investigate whether the performance on the highly
cluttered coin data sets can be improved if more features are added to the ter-
minal set, if the fitness parameters K2 and K3 are increased, and if a better
classification strategy is applied. We will also investigate whether the approach
can perform well on more difficult object detection problems and compare this
approach with other long term established methods such as neural networks and
decision trees.
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