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Abstract

This paper describes two innovations that improve the efficiency and effec-
tiveness of a genetic programming approach to object detection problems. The
approach uses genetic programming to construct object detection programs that
are applied, in a moving window fashion, to the large images to locate the objects
of interest. The first innovation is to break the GP search into two phases with
the first phase applied to a selected subset of the training data, and a simpli-
fied fitness function. The second phase is initialised with the programs from the
first phase, and uses the full set of training data with a complete fitness function
to construct the final detection programs. The second innovation is to add a
program size component to the fitness function. This approach was applied to
three object detection problems of increasing difficulty. The results indicate that
the innovations increased both the effectiveness and the efficiency of the genetic
programming search, and also that the genetic programming approach was more
effective than a neural network approach.

Keywords Genetic programming, pixel statistics, false alarm area, program
size, two-phase approach, multiclass object detection.
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Abstract. This paper describes two innovations that improve the ef-
ficiency and effectiveness of a genetic programming approach to object
detection problems. The approach uses genetic programming to construct
object detection programs that are applied, in a moving window fashion,
to the large images to locate the objects of interest. The first innovation
is to break the GP search into two phases with the first phase applied to
a selected subset of the training data, and a simplified fitness function.
The second phase is initialised with the programs from the first phase,
and uses the full set of training data with a complete fitness function
to construct the final detection programs. The second innovation is to
add a program size component to the fitness function. This approach
was applied to three object detection problems of increasing difficulty.
The results indicate that the innovations increased both the effectiveness
and the efficiency of the genetic programming search, and also that the
genetic programming approach was more effective than a neural network
approach.

1 Introduction

Object detection tasks arise in a very wide range of applications, such as de-
tecting faces from video images, finding tumours in a database of x-ray images,
and detecting cyclones in a database of satellite images. In many cases, people
(possibly highly trained experts) are able to perform the classification task well,
but there is either a shortage of such experts, or the cost of people is too high.
Given the amount of data that needs to be detected, automated object detec-
tion systems are highly desirable. However, creating such automated systems
that have sufficient accuracy and reliability turns out to be very difficult.
Genetic programming (GP) is a relatively recent and fast developing ap-
proach to automatic programming [1,2]. In GP, solutions to a problem are rep-
resented as computer programs. Darwinian principles of natural selection and
recombination are used to evolve a population of programs towards an effec-
tive solution to specific problems. The flexibility and expressiveness of computer
program representation, combined with the powerful capabilities of evolutionary
search, makes GP an exciting new method to solve a great variety of problems.



There have been a number of reports on the use of genetic programming in
object detection [3-9]. The approach we have used in previous work [8,9] is to
use a single stage approach (referred to as the basic GP approach here), where
the GP is directly applied to the large images in a moving window fashion to
locate the objects of interest. Past work has demonstrated the effectiveness of
this approach on several object detection tasks.

However, this genetic programming approach is not without problems. One
problem is that the training time was often very long, even for relatively simple
object detection problems. A second problem is that the evolved programs are
often hard to understand or interpret. We have identified two causes of these
problems: the programs are usually quite large and contain much redundancy,
and the cost of the fitness function is high. We believe that the size and re-
dundancy of the programs contributes to the long training times and may also
reduce the quality of the resulting detectors by unnecessarily increasing the size
of the search space and reducing the probability of finding an optimal detector
program. Evaluating the fitness of a candidate detector program in the basic GP
approach involves applying the program to each possible position of a window
on all the training images, which is quite expensive. An obvious solution is to
apply the program to only a small subset of the possible window positions, but it
is not obvious how to choose the subset. A poor choice could bias the evolution
towards programs that are sub-optimal on the real data.

This paper describes two innovations on the basic GP approach to address
these problems. The first is to split the GP evolution into two phases, using
a different fitness function and just a subset of the training data in the first
phase. The second is to augment the fitness function in the second phase by a
component that biases the evolution towards smaller, less redundant programs.
We consider the effectiveness and efficiency of this approach by comparing it
with the basic GP approach and a neural network approach. We also examine
the comprehensibility of the evolved genetic programs.

The rest of the paper is organised as follows. Section 2 describes the main
aspects of this approach. Section 3 describes the three image data sets and section
4 presents the experimental results. Section 5 draws the conclusions and gives
future directions.

2 The Approach

2.1 Overview of the Approach

Figure 1 shows an overview of this approach, which has two phases of learning
and a testing procedure. In the first learning phase, the evolved genetic programs
were initialised randomly and trained on object examples cut out from the large
images in the training set. This is just an object classification task, which is
simpler than the full object detection task. This phase therefore uses a fitness
function which maximises classification accuracy on the object cutouts.

In the second phase, a second GP process is initialised with the programs
generated by the first phase, and trained on the full images in the training set by
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Fig. 1. An overview of the two phase GP approach.

applying the programs to a square input field (“window”) that was moved across
the images to detect the objects of interest. This phase uses a fitness function
that maximises detection performance on the large images in the training set. In
the test procedure, the best refined genetic program is then applied to the entire
images in the test set to measure object detection performance.

Because the object classification task is simpler than the object detection
task, we expect the first phase to be able to find good genetic programs much
more rapidly and effectively than the second phase. Also, the fitness function is
much easier to evaluate, so that a more extensive evolution can be performed in
the same time. Although simpler, the object classification task is closely related
to the detection task, so we believe that the genetic programs generated by
the first phase are likely to be very good starting points for the second phase,
allowing the more expensive evolutionary process to concentrate its effort in the
more optimal part of the search space.

Since the number of possible programs increases exponentially with the size
of the programs, the difficulty of finding an optimal program also increases with
the size of the programs. In the second phase, we added a program size compo-
nent to the fitness function to bias the search towards simpler functions, which
we expected would increase both the efficiency and the effectiveness of the evo-
lutionary search. It will also have a tendency to remove redundancy (since a
program with redundancy will be less fit than an equivalent program with the
redundancy removed), making the programs more comprehensible.

2.2 Program Structure, Terminal Set, and Function Set

In this system, we used tree structures to represent genetic programs.

For object detection problems, terminals generally correspond to image fea-
tures. Instead of using global features of an entire input image window, we used
a number of statistical properties of local square and circular region features as
terminals, as shown in figure 2. The first terminal set consists of the means
and standard deviations of a series of concentric square regions centred in the
input image window, which was used in the shape data set (see section 3). The



second terminal set consists of the means and standard deviations of a series of
concentric circular regions, which was used in the two coin data sets. For each
terminal set, we also used a random constant as an additional terminal.
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Fig. 2. Local square and circular features as terminals.
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In the function set, the four standard arithmetic operators and a conditional
operator were used to form the non-terminal nodes:

FuncSet = {+,—,x,/,if}

The +, —, and * operators have their usual meanings — addition, subtraction
and multiplication, while / represents “protected” division which is the usual di-
vision operator except that a divide by zero gives a result of zero. Each of these
functions takes two arguments. The if function takes three arguments. The first
argument, which can be any expression, constitutes the condition. If the first
argument is positive, the if function returns its second argument; otherwise, it
returns its third argument. The if function allows a program to contain a differ-
ent expression in different regions of the feature space, and allows discontinuous
programs, rather than insisting on smooth functions.

2.3 Object Classification Strategy

The output of a genetic program is a floating point number. Generally genetic
programs can perform one class object detection tasks quite well where the
division between positive and negative numbers of a genetic program output
corresponds to the separation of the objects of interest (of a single class) from the
background (non-objects). However, for multiple class object detection problems,
where two or more classes of objects of interest are involved, the standard genetic
programming classification strategy mentioned above cannot be applied.

In this approach, we used a different strategy called program classification
map, as shown in equation 1, for the multiple class object detection problems
[10]. Based on the output of an evolved genetic program, this map can identify
which class of the object located in the current input field belongs to. In this
map, m refers to the number of object classes of interest, v is the output value
of the evolved program and 7' is a constant defined by the user, which plays a
role of a threshold.
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2.4 Fitness Function

We used two fitness functions for the two learning phases. In the first phase,
we used the classification accuracy directly as the fitness function to maximise
object classification accuracy. In the second phase, we used a multi-objective
fitness function.

The goal of object detection is to achieve both a high detection rate and a low
false alarm rate. In genetic programming, this typically needs a multi-objective
fitness function. A fitness function we used in previous work [9] is:

fitness(DR, FAR) = K1 x (1 — DR) + Ko x FAR+ K3« FAA (2)

where DR is the Detection Rate (the number of small objects correctly reported
by a detection system as a percentage of the total number of actual objects in
the images), FAR is the False Alarm Rate (also called false alarms per object, the
number of non-objects incorrectly reported as objects by a detection system as a
percentage of the total number of actual objects in the images), and FAA is the
False Alarm Area (the number of false alarm pixels which are not object centres
but are incorrectly reported as object centres before clustering). The parameters
K1, K5 and K3 reflect the relative weighting of DR, FAR, and FAA.

A problem with this fitness function is that it has no bias towards smaller
programs. When a short program and a long program produce the same detection
rate and the same false alarm rate (perhaps because one is the same as the other
but with additional, redundant elements), the GP system will randomly choose
one for reproduction, mutation or crossover during the evolutionary process. If
the longer programs are selected, the evolutionary process will tend to continue
to produce long programs, which will slow the evolution down and decrease
the chance of finding a good program. Also, the longer programs are usually
very difficult to interpret. Therefore, for the experiments in this paper, we have
augmented above fitness function with a program size component:

fitness = K1 -(1— DR)+ K2 FAR+ K3 - FAA+ K4 - ProgSize 3)

where progSize is the number of terminals and non-terminals in the program.

Evaluating the fitness of a program requires several steps. The first is to
apply the program as a moving nxn window template (where n is the size of
the input image window) to each of the training images and label each possible
window position with the class of object determined by the program (includ-
ing “background”). We refer to the data structure containing these labels as a
“detection map”.



The detection map will typically contain a cluster of pixels labelled by a
class name at places that the program could detect an object. Since the pixels
in a cluster typically are part of the same object, the second step clusters the
pixels with a simple scanning algorithm to identify the clusters corresponding to
distinct objects. The third step matches the locations of these detected objects
against the locations of the true objects in the images to determine the number
of objects that were correctly identified, and the number of false alarms. The
final step uses these numbers and the size of the program to compute the value
of the fitness function.

Notice that adding the program size constrain to the fitness function is a kind
of parsimony pressure technique [11-13]. Early work on this issue resulted in di-
verse opinions: some researchers think using parsimony pressure could improve
performance [12], while some others thinks this could lead to premature conver-
gence [13]. Although our approach is different from the early work, it might still
face a risk of early convergence. Therefore, we used a very small weight (K4) for
the program size in our fitness function relative to K7 and K (see table 1).

2.5 Parameters and Termination Criteria

The ramped half-and-half method [1, 2] was used for generating the programs in
the initial population and for the mutation operator. The proportional selection
mechanism and the reproduction [10], crossover and mutation operators [1] were
used in the learning process.

Important parameter values used in the experiments are shown in table 1.

Table 1. Parameters used for GP training for the three databases.

|Parameter Kind] Parameter Name |Shape| Coins |Heads/tails|

population-size 800 | 1000 1600
Search initial-max-depth| 2 2 5
max-depth 6 7 8
Parameters |max-generations 50 150 200
input-size 20%x20|72x72| 62x62
reproduction-rate| 2% | 2% 2%
Genetic cross-rate 70% | 70% 70%
Parameters |mutation-rate 28% | 28% 28%
T 100 80 80
Fitness K1 5000 | 5000 5000
K2 100 | 100 100
Parameters |K3 10 10 10
K4 1 1 1

The learning/evolutionary process is run for a fixed number (max-generations)
of generations, unless it finds a program that solves the problem perfectly (100%
detection rate and no false alarms), or there is no increase in the fitness for 10
generations, at which point the evolution is terminated early.



3 Image Data Sets

No. of images: 10 No. of images: 20 No. of images: 20

Object size:18x18 Object size:70x 70 Object size:60x60
(Shape) (Coins) (Heads/tails)

Fig. 3. Object Detection Problems

We used three data sets in the experiments. Example images are given in
figure 3. These data sets provide object detection problems of increasing diffi-
culty. Data set 1 (Shape) was generated to give well defined objects against a
uniform background. The pixels of the objects were generated using a Gaussian
generator with different means and variances for different classes. There are two
classes of small objects of interest in this database: circles and squares. Data set
2 (Coins) was intended to be somewhat harder and consists of scanned images of
New Zealand coins. There are two object classes of interest: the 5 cent coins and
10 cent coins. These coins are a mixture of head up or tail up and accordingly
has a greater variance than data set 1. The objects in each class have a similar
size but are located at arbitrary positions and with different rotations. Data set
3 (Heads/tails) also contains two object classes of interest, but the detection task
is significantly more difficult. The task is detecting the head side and the tail
side of New Zealand 5 cent coins with various orientations from a non-uniform
background. Given the low resolution of the images, this detection task is very
difficult — even humans cannot distinguish the classes perfectly.

In the experiments, we used one, three, and five images as the training set
and used five, ten and ten images as the test set for the Shape, Coins, and
Heads/tails data sets, respectively.

4 Results and Discussion

4.1 Object Detection Results

The detection results of the two phase GP approach for the three image data sets
are shown in table 2. These results are compared with the basic GP approach
[8,14] and a neural network approach [15] using the same set of features. For



Table 2. Object detection results achieved by different approaches.

Image Data Set Shape|Coins|Heads/tails
heads] tails

Best Detection Rate(%) 100 | 100 | 100 | 100

Best Two-phase GP Approach| 0 0 0 55
False Alarm| Basic GP Approach 0 0 0 | 100
Rate (%) Neural Networks 0 0 | 94 |134.1

all cases, the experiments were repeated 10 times and the average results on the
test set were presented.

As can be seen from table 2, all the three approaches achieved ideal results
for the shape and the Coins data sets, reflecting the fact that the detection prob-
lems in the two data sets are relatively easy and that the two terminal sets are
appropriate for the two data sets (note that other terminal sets did not achieve
ideal results [14], but this is beyond the scope of this paper). For the difficult
Heads/tails data set, none of the three methods resulted in ideal performance.
However, the two phase GP approach described in this paper achieved the best
performance. Notice also that both GP approaches achieved better results than
the neural network approach using the same set of features.

4.2 Training Time and Program Size

Although both of the GP approaches achieved better results than the neural
networks overall, the time spent on the training/refining process are quite differ-
ent. For the Coins data set, for example, the basic GP approach used 17 hours
on average to find a good genetic program, whereas the two phase GP approach
used only 11 hours on average. For the Heads/tails data set, the two phase GP
approach found good programs after 23 hours on average (of which the first
phase only took only two to three minutes). The basic GP approach, on the
other hand, took an average of 45 hours. The first phase is so fast because the
size of the training data set is small, and the task of discriminating the classes
of objects (when centered in the input window) is quite simple. However, the
programs it finds appear to be very good starting points for the more expensive
second phase, which enables the evolution in the second phase to concentrate its
search in a much more promising part of the search space.

In addition, the sizes of the programs (the number of terminals plus the
number of functions in a program) evolved by the two phase GP approach were
also found to be shorter than those evolved by the basic GP approach. For the
Coins data set, for example, the program size in the two phase GP approach
averages 56 nodes, in contrast to 107 nodes for the basic GP approach. Both the
good initial programs and the bias towards smaller programs would contribute to
this result; we have not yet identified which of the factors is the most important.



4.3 Comprehensibility of Genetic Programs

To check the effectiveness of the new fitness function at improving the compre-
hensibility of the programs, an evolved genetic program in the shape data set is
shown below:

(/ Gf (/ (= Fu T) Fup) Fzu (x (= Fup Fou) Fi5)) (/ Fap Fup))
This program detector can be simplified as follows:
Gf (- Fyu T) F3, (x (= Fyy Fop) Fio))

where Fj, and Fj, are the mean and standard deviation of region i (see figure 2,
left) of the window, respectively, and T is a predefined threshold. This program
can be translated into the following rule:

if (Fy, > T) then
value = F3,;
else
value = (Fu, - Fou) * Fio;

If the sweeping window is over the background only, Fy,, would be smaller
than the threshold (100 here), the program would execute the “else” part. Since
Fy, is equal to Fy, in this case, the program output will be zero. According
to the classification strategy — object classification map, this case would be
correctly classified as background. If the input window contains a portion of an
object of interest and some background, F}, would be smaller than F5,, which
results in a negative program output, corresponding to class background. If Fy,,
is greater than the threshold T, then the input window must contain an object
of interest, either for class! or for class2, depending the value of F3,,.

While this program detector can be relatively easily interpreted and under-
stood, the programs obtained using the old fitness function are generally hard
to interpret due to the length of the programs and the redundancy. By carefully
designing the fitness function to constrain the program size, the evolved genetic
programs appear to be more comprehensible.

5 Conclusions

The goal of this paper was to investigate the effectiveness and efficiency of the two
phase GP approach and the comprehensibility of genetic programs evolved using
the new fitness function with the constraints on program size. The approach was
tested on three object detection problems of increasing difficulty and achieved
good results.

We developed a two phase approach to object detection using genetic pro-
gramming. Our results suggest that the two phase approach is more effective
and more efficient than the basic GP approach and more effective than a neural
network approach using the same set of features.
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We modified the fitness function by including a measure of program size.
This resulted in genetic program detectors that were better quality and more
comprehensible. It also reduced the search computation time.

Although this approach considerably shortens the training times, the training
process is still relatively long. We intend to explore better classification strategies
and add more heuristics to the genetic beam search to the evolutionary process.

While the programs evolved by the two phase GP approach with the new
fitness function are considerably shorter than the basic GP approach, they usu-
ally still contain some redundancy. Although we suspect that this redundancy
reduces the efficiency and the effectiveness of the evolutionary search, it is also
possible that redundancy plays an important role in the search. We are experi-
menting with simplification of the programs during the evolutionary process to
remove the redundancy, and will be exploring whether it reduces training speed
and improves program quality.
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