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Abstract

To improve the standard crossover operator in genetic programming (GP),
Tackett [19] introduced the brood recombination crossover method. The key pa-
rameter in this method is the brood size. This paper investigates a number of new
developments of brood size in the brood recombination crossover method in GP.
We first investigate the effect of different fixed brood sizes, then construct three
dynamic models for setting the brood size. These developments are examined
and compared with the standard crossover operator on three object classification
problems of increasing difficulty. The results suggest that the brood recombina-
tion methods with all the new developments outperforms the standard crossover
operator for all the problems. As the brood size increases, the system effective
performance can be improved. When it exceeds a certain point, however, the ef-
fective performance will not be improved and the system will become less efficient.
Investigation of three dynamic models for the brood size reveals that a variable
brood size which is dynamically set with the number of generations can further
improve the system performance over the fixed brood size.

Keywords Brood recombination crossover, building blocks, brood size, genetic
programming.
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1 Introduction

Classification tasks arise in a very wide range of applications, such as detecting faces from
video images, recognising words in streams of speech, diagnosing medical conditions from the
output of medical tests, and detecting fraudulent credit card fraud transactions [1, 2, 3, 4].
In many cases, people (possibly highly trained experts) are able to perform the classification
task well, but either there is a shortage of such experts, or the cost of people is too high.
Given the amount of data that needs to be classified, automatic computer based classification
programs/systems are of immense social and economic value.

A classification program must correctly map an input vector describing an instance (e.g.
an object) to one of a small set of class labels. Writing classification programs that have
sufficient accuracy and reliability is usually very difficult and often infeasible: human pro-
grammers often cannot identify all the subtle conditions needed to distinguish between all
instances of different classes.

Derived from genetic algorithms and evolutionary programming [5, 6], Genetic program-
ming (GP) is a relatively recent and fast developing approach to automatic programming [7,
8, 9]. In GP, solutions to a problem can be represented in different forms but are usually
interpreted as computer programs. Darwinian principles of natural selection and recombi-
nation are used to evolve a population of programs towards an effective solution to specific
problems. The flexibility and expressiveness of computer program representation, combined
with the powerful capabilities of evolutionary search, make GP an exciting new method to
solve a great variety of problems. A strength of this approach is that evolved programs
can be much more flexible than the highly constrained, parameterised models used in other
techniques such as neural networks and support vector machines.

Since the early 1990s, there has been a number of reports on applying GP techniques
to a range of object recognition problems such as shape classification, face identification,
and medical diagnosis [10, 11, 12, 13, 14, 15, 16, 17]. While showing promise, current GP
techniques are limited and frequently do not give satisfactory results on difficult classification
tasks. While there are many problems in the current GP techniques that often lead to
unacceptable programs in a reasonable time frame, one main problem is that the crossover
operator is not sufficiently powerful to generate good solutions.

The crossover genetic operator has been considered a centre storm of GP [18]. In the cur-
rent crossover operator, two sub-programs (crossover points) are randomly chosen from two
parent programs, and two new programs are generated by simply swapping them. However,
the totally random choice is clearly unable to guarantee the best choice. Furthermore, this
often destroys the good “building blocks” (sub-programs which are good for that task) in
evolved programs.

To improve the standard crossover operator and preserve potential good building blocks,
Tackett [19] introduced the “brood recombination” method. In this method, a “brood” N
was created for each crossover operation and the operation was repeated N times to produce
2N child programs, but only the best two children were kept and all others were killed. In
this way, better child programs will survive and be put into the next generation while the
population size will remain constant. One disadvantage of this method is that the total
number of evaluations of genetic programs was increased by N times. To deal with this
situation, Tackett used only a small portion of the training fitness cases to replace the whole
training set.
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1.1 Goals

While a brood size of four is commonly used in the method as in [19], a larger size might
result in better performance. This size might be task dependent and is also related to the
evolutionary process parameters such as the number of generations. To further study the
effectiveness of the method, these issues clearly need to be investigated. In addition, the
evolutionary training efficiency should also be considered.

The goal of this paper is to further analyse the brood size for the brood recombination
crossover method in terms of effect of a fixed brood size and a variable size. To do this, the
brood recombination crossover with different brood sizes will be compared with the standard
crossover operator in GP on three object classification problems of increasing difficulty to
measure the effectiveness and efficiency. Specifically, we are interested in the following issues:

• whether increasing the brood size can result in better performance,

• whether there exists a diversity point for the brood size in the situation that a larger
size does not improve the system performance, and

• whether a variable size is better than a fixed size, and

• to find a effective heuristic for setting the brood size.

The remainder of this paper is organised as follows. Section 2 gives a brief overview of the
brood recombination crossover method and describes the experiment configurations. Section
3 investigates the use and effect of fixed brood sizes. Section 4 describes the analysis of a
variable brood size compared with the fixed size and the basic GP approach. Finally, we
draws conclusions in section 5.

2 Brood Recombination and Experiment Configuration

2.1 Brood Recombination Overview

The main objective of the brood recombination crossover method is to reduce the destructive
effect of crossover and preserve good potential building blocks. The rationale behind this
method is that many animal species produce far more offspring than are expected to live.
Although there are many different mechanisms, the excess offspring die. So should GP
crossover. A simple illustration of the method is shown in figure 1.

In this method, a “brood” N was created for each crossover operation. The standard
crossover operation was repeated N times on the two same parent programs selected from the
population and 2N child programs are generated. These child programs are then evaluated
and their fitness ranked. The two programs with the best fitness are considered the “real”
children of the parents and retained, but other children are discarded.

From the effectiveness point of view, this method improves the standard crossover from
two-fold. Firstly, it reduces the effect of disrupting potential building blocks of the standard
crossover operator through multiple trials of searching for good crossover points. Secondly,
it actually adds a kind of hill-climbing search into the genetic beam search in GP.

Clearly, the brood size is a key parameter in this approach. However, Tackett [19] did not
make further investigation and analysis on this parameter, which is the main focus of this
paper.
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Figure 1: The brood recombination crossover method.

2.2 Experiment Configuration

2.2.1 Image Data Sets.

Experiments were conducted on three different image data sets providing object classification
problems of increasing difficulty. Sample images for each data set are shown in figure 2.

(a) (b) (c)

Figure 2: Sample images in datasets: (a) Shape; (b) Coins; (c) Texture.

The first data set (shape, figure 2a) was generated to give well defined objects against
a reasonably noisy background. The pixels of the objects were produced using a Gaussian
generator with different means and variances for each class. Four classes of 600 small objects
(150 for each class) were cut out from the images and used to form the classification data
set. The four classes are: dark circles, grey squares, light circles and noisy background.

The second set of images (coin, figure 2b) contains scanned 10 cent New Zealand coins.
The coins were located in different places with different orientations and appeared in different
sides (head and tail). The background was also cluttered. Three classes of 500 objects were
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cut out from the large images to form the data set. The three classes are: head, tail and
background. Among the 500 cutouts, there are 160 cutouts for head, 160 cutouts for tail and
180 cutouts for background respectively. Compared with the shape data set, the classification
problem in this data set is harder. Although these objects are still regular, the problem is
quite hard due to the noisy background and the low resolution.

The third set of images (figure 2c) contains four different kinds of texture images, which
are taken by a camera under the natural light. The images are taken from a web-based
image database held by SIPI of USC [20]. The four texture classes are named woollen cloth,
wood grain, raffia and herringbone weave respectively. Because they are quite similar in many
aspects, this classification task is expected to be more difficult than that in the coin data set.
There are 900 sample cutouts from four large images, and each class has 225 samples. This
dataset is referred to as texture.

For all the three data sets, the objects were equally split into three separate data sets: one
third for the training set used directly for learning the genetic program classifiers, one third
for the validation set for controlling overfitting, and one third for the test set for measuring
the performance of the learned program classifiers.

2.2.2 Terminal Set and Function Set.

For image recognition tasks, terminals correspond to image features. In this approach, we
use four simple pixel statistics extracted from each data set as terminals. Given an object
cutout image, the four pixel statistics, mean, standard deviation, skewness, and kurtosis,
are calculated as features. Since the ranges of these four feature terminal values are quite
different, we scale them into the range [-1, 1] based on all object image examples to be
classified. While these features are not the best for these particular problems, our goal is to
investigate the brood size rather than finding good features for a particular task, which is
beyond the scope of this paper.

In addition to the feature terminals, we also used a constant terminal for all the three
tasks. To be consistent with the feature terminals, we also set the range of these constant
terminals to [-1, 1].

The function set consists of the four standard arithmetic and a conditional operations:

FuncSet = {+,−, ∗, /, if} (1)

The +, −, and ∗ operators have their usual meanings — addition, subtraction and multi-
plication, while / represents “protected” division which is the usual division operator except
that a divide by zero gives a result of zero. Each of these functions takes two arguments.
The if function takes three arguments. The first argument, which can be any expression,
constitutes the condition. If the first argument is negative, the if function returns its second
argument; otherwise, it returns the third argument.

2.2.3 Fitness Function.

We used classification accuracy on the training set of object images as the fitness function.
The classification accuracy of a genetic program classifier refers to the number of object
images that are correctly classified by the genetic program classifier as a proportion of the
total number of object images in the training set. According to this design, the best fitness
is 100%, meaning that all object images have been correctly recognised. The output of a
genetic program in the GP system is a floating point number. In this approach, we used a
variant version of the program classification map [17] to translate the single output value of
a genetic program into a set of class labels.
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2.2.4 Parameters and Termination Criteria.

The parameter values used in this approach are shown in table 1. These values are deter-
mined based on empirical search. The evolutionary process is terminated when the number
of generations reaches the pre-defined number, max generations, or when the classification
problem has been solved on the training set or the accuracy on the validation set starts falling
down, in which case the evolution was terminated earlier.

Table 1: Main parameter values for the three data sets.

Parameter Shape Coin Texture Parameter Shape Coin Texture

Pop. Size 300 500 500 Crossover rate: 50% 50% 50%
Initial Max. Depth 5 5 5 Mutation rate: 30% 30% 30%
Max. Depth 5 6 8 Reproduction rate 20% 20% 20%
Max generations 50 50 50 Brood size see later

In the approach, we used the tree-structure to represent genetic programs [8]. The ramped
half-and-half method was used for generating programs in the initial population and for the
mutation operator [7]. The proportional selection mechanism and the reproduction, crossover
and mutation operators [9] were used in the learning and evolutionary process.

To compare the results with different brood sizes and the standard crossover operator,
we use the classification accuracy, training time and the number of generations to measure
the performances of these methods. For each experiment, we run 80 times and the average
results are presented in the following sections.

3 Investigation of Fixed Brood Sizes

To investigate the effect of the brood size in the brood recombination crossover method, we
did experiments on the three data sets using different fixed brood sizes with 2, 4, 6, 8, and
10 respectively. The average results on the test set of the GP system with these brood sizes
together with the standard crossover operator (N = 1) are presented in table 2. The first line
of the table shows that for the shape data set on the 80 runs, the GP system with the standard
crossover operator (N = 1) used 8.59 generations and 0.09 second for the evolutionary process
on average and achieved an average classification accuracy of 96.16% on the test set.

As shown in table 2, for all brood sizes investigated here, the brood recombination
crossover method achieved better classification accuracy than the standard crossover operator
for all the data sets. Although the number of generations used in the evolutionary process
for the brood recombination method was smaller than the standard crossover operator, the
actual training time was increased. This is mainly because the number of real evaluations
in each generation in the brood recombination method was increased. These results further
confirmed Tackett’s conclusions [19].

The results also show that different brood sizes resulted in different results. For the object
classification problems investigated here, it seems that a brood size of 4–8 could be a good
starting point.

3.0.5 Further Analysis.

Further inspection of the results reveals that as the brood size increases at a certain number
(4 or 8 for different data sets), the classification accuracy is increased. When the brood size
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Table 2: Results of brood recombination crossover with fixed different brood sizes.

Dataset Brood size N Generation Time(s) Accuracy(%)

1 8.59 0.09 96.16%
2 5.26 0.10 98.25%
3 3.48 0.10 98.25%

Shape 6 3.01 0.11 98.12%
8 2.66 0.12 98.44%
10 2.30 0.13 98.03%

1 28.64 1.78 90.37%
2 21.88 2.50 92.42%
4 19.70 3.07 93.08%

Coin 6 17.59 3.53 92.82%
8 15.85 3.89 93.08%
10 15.94 4.49 92.80%

1 29.99 1.83 72.45%
2 26.01 3.31 76.68%
4 21.82 4.23 76.46%

Texture 6 23.69 6.09 79.82%
8 20.00 6.12 80.71%
10 17.80 6.50 78.13%

exceeds this number, the accuracy achieved starts falling down. These results suggests that
there exists such a brood size that could lead to the best performance for a particular task.
We refer to this number as the brood-diversity point.

In the biological world, the chromosomes for a particular species are usually quite long
and the crossover can occur in multiple genes in different positions. Accordingly, a huge
number of crossover points can be provided, which allows a large size of brood to produce
distinguished child chromosomes.

In most GP systems, however, the program size is limited to the parameter, maximum

program size. In addition, the GP crossover only choose a single point and swap the subtrees
in the parent programs. Accordingly, when the brood size increases to a certain number,
the probability of the crossover operation on the same two parent programs to produce
redundant programs will be extremely high. In other words, when the brood size exceeds the
brood-diversity point, the brood recombination crossover operator will not only be unable to
produce distinguished child programs, but also have to take longer time for more evaluations.
This will result in a longer training time with non-improved even slightly worse performance
in effectiveness due to possibility of pre-mature convergence.

Clearly, the brood-diversity point is related to the maximum program size. In general,
the larger the program size, the bigger the brood size effectively allowed. When setting the
brood size, one should consider the threshold number of crossover points that the two parent
programs with the maximum program size can provide. We expect that this heuristic can
help users to choose the brood size when using the brood recombination method in GP.

4 Investigation of Variable Brood Sizes

Since the genetic programs can have a different size and the program size varies with the
number of generations in the evolutionary process, this section investigate a different approach
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from the last section — a variable brood size with respect to the number of generations.
According to the GP building block analysis [7], the GP crossover operator will generally

preserve small building blocks and construct larger building blocks in the first stage of evolu-
tion, but is very likely to tear the larger building blocks apart in the later stage. Accordingly,
we can allow the brood size to grow as evolution proceeds in order to protect the larger
building blocks.

To meet these requirements, we proposed three ways to dynamically grow the brood size,
as shown in equations 2, 3 and 4, respectively, where N is the brood size and gen is the
number of generations.

N1(gen) = round(0.14 × gen) + 1 (2)

N2(gen) = round(0.0028 × gen2) + 1 (3)

N3(gen) = round(0.98 ×√
gen) + 1 (4)

The main consideration for the three formulas is as follows. In the previous experiment,
the results suggest that the maximum brood-diversity point for the three data set is 8.
Since the maximum number of generations in this approach is 50, we allow the brood size
gradually increases to this number as evolution proceeds closely to generation 50. Notice that
the growing speed of the three methods for the brood size is different.

To investigate whether dynamic variable brood size is better than the fixed size and the
standard crossover approach, we examined them on the three data sets. The average results
are shown in table 3.

Table 3: Results of brood recombination with variable brood sizes and the basic approach.
(A1: the basic approach with standard crossover; A2: the linear variable model — equation
2; A3: the squared variable model — equation 3; A4: the squared root model — equation 4)

Data set Shape Coin Texture

Approach A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

Generation 8.59 4.40 4.54 4.99 28.64 20.59 20.59 15.85 29.99 21.93 21.31 23.24

Time (s) 0.09 0.10 0.11 0.10 0.09 2.50 3.14 3.24 1.83 3.31 4.25 4.12

Accuracy(%) 96.16 98.62 99.03 98.63 90.37 93.08 93.54 93.21 72.45 80.05 81.34 80.16

According to tables 3, the classification accuracies achieved by brood recombination
method with the three variable models for the brood size were better than the standard
crossover. Inspection of table 2 reveals that these results were also better than that with
almost all of the fixed brood sizes. In addition, the evolutionary training times for the vari-
able brood sizes were also shorter than those for the fixed sizes. These results suggest that
in the brood recombination method, a variable brood size which is dynamically set with the
increase of the number of generations can further improve the system performance.

Inspection of the three variable models for the brood size reveals that the squared variable
model (equation 3) achieved the best results for all the three data sets. The other two models
achieved similar results but it is not clear which one is better than the other on these data sets.
This might be because the squared variable model is closer to the building block disruption
trend in evolution, but further investigation is needed in the future.
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5 Conclusions

The goal of this paper was to investigate the effect of brood size in the brood recombination
crossover method in GP for object classification problems. The goal was successfully achieved
by testing five different fixed brood sizes and designing three variable models for the brood
size. The brood recombination methods with these new developments were examined and
compared with the standard crossover operator on three object classification problems of
increasing difficulty. The experiment results suggest that the brood recombination method
with all these new developments achieved better classification performance than the standard
crossover operator while the evolutionary training time was increased.

The results also suggest that different brood sizes usually result in different performances.
As the brood size increases by the brood-diversity point, the system effective performance can
be improved. When the brood size exceeds this point, however, the effective performance will
not be improved and the system will become more inefficient. Our research suggests that the
brood size is related to the number of generations, the program size and specific tasks.

Investigation of three dynamic models for setting the brood size reveals that a variable
brood size which is dynamically set with the number of generations can further improve the
system performance over the use of fixed brood sizes. In particular, the squared variable
model achieved the best performance for the three data sets examined here.

Although developed for object classification problems, this approach could be expected
to be applied to even more general problems.

This work reveals that the brood size is closely related to the maximum program size
parameter. We will investigate the relationship between the brood size and the program size
together with the number of generations in the future.
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