
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a MauiVUW

School of Mathematical and Computing Sciences

Computer Science

VUWLGP — An ANSI C++ Linear

Genetic Programming Package

Christopher Fogelberg and Mengjie Zhang

Technical Report CS-TR-05/8
December 2005

School of Mathematical and Computing Sciences
Victoria University
PO Box 600, Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a MauiVUW

School of Mathematical and Computing Sciences

Computer Science

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341, Fax: +64 4 463 5045
Email: Tech.Reports@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/research

VUWLGP — An ANSI C++ Linear

Genetic Programming Package

Christopher Fogelberg and Mengjie Zhang

Technical Report CS-TR-05/8
December 2005

Abstract

Linear Genetic Programming (LGP) is a recently researched form of genetic
programming, the automatic evolution of computer programs which can solve
problems. Traditionally, genetic programs have been represented as function trees.
However, LGP programs are linear sequences of instructions (e.g. register machine
instructions) and are not best represented as a tree of functions and terminals.
Few publicly available packages designed to support research into LGP exist and
those that do are often incomplete. VUWLGP has been written in C++ and
is available for use under the GPL. It is designed to be easily customised and
tweaked so that slightly different variants of different problems can be researched
easily.

Contents

1 Introduction 2

2 Using VUWLGP 2
2.1 VUWLGP Design . 3

2.1.1 Design Rationale . 4
2.1.2 The Flow of Control . 5

2.2 The Config Class . 5
2.2.1 Constructors and Other Methods . 5
2.2.2 Program Configuration Variables . 6
2.2.3 Instruction Configuration Variables . 6
2.2.4 Population Configuration Variables . 7
2.2.5 Evolutionary Configuration Variables 7
2.2.6 Logging and Rand Configuration Variables 7

2.3 Customising VUWLGP . 8
2.3.1 Implementing a New Kind of Instruction Operation (Function) 8
2.3.2 Implementing a New Kind of Instruction Argument 8
2.3.3 Implementing a New Kind of Instruction 9
2.3.4 Implementing a New Kind of Program 10
2.3.5 Implementing Steady State LGP with Proportional Selection 11
2.3.6 Implementing new types of IFitnessMeasure and IFitnessCase . . . 11
2.3.7 Implementing a Fitness Environment Not Based on Cases 12

3 Linear Genetic Programming — An Overview 12

4 Summary and Future Work 13

5 Acknowledgements 14

6 Bibliography 14

1

1 Introduction

Genetic programming has been formulated by Koza [5], Banzhaf [1] and others. By defining
a numerical measure of how well a program can solve a problem the mechanisms of biological
evolution can be repeatedly applied to a population of programs which was initially randomly
generated. Through the power of natural selection this can lead to extremely good solutions to
a problem being found relatively quickly. Genetic programming is importantly different from
other approaches to evolutionary computation (such as genetic algorithms) in two important
ways:

• The solutions evolved are directly executable or interpretable as executable programs.
There is no translation step used.

• The size and structure of a genetic program is constrained only by the configuration —
it does not need to be specified exactly by the user of genetic programming before any
computational learning is performed.

VUWLGP is written in ANSI C++ and is designed to be highly customisable and easily
modified. Hence research into a variety of forms of LGP can be carried out and each of
these forms can be easily applied to a number of different problems. A general interface is
defined by the classes contained in the baseSrc directory. For some of these classes sensible
and general concrete implementations could not be provided. Therefore a number of spe-
cific implementations have been provided in the implementations directory. Reading and
understanding these classes and the baseSrc classes should be the starting point for users
wishing to create a customised VUWLGP operating environment. These classes are all well
commented.

VUWLGP has been developed at the School of Statistics, Mathematics and Computer
Science, at Victoria, University of Wellington in Wellington, New Zealand. It is a public
tool released under the GPL and is available from http://www.mcs.vuw.ac.nz/~mengjie/

packages/vuwlgp and http://www.syntilect.com/vuwlgp.

2 Using VUWLGP

When using VUWLGP two elements of it will need to be set up so that the runs against a
problem can be attempted.

Firstly, the operating environment must be designed and written. The operating environ-
ment constitutes the algorithmic aspect of the run and is defined by the classes used in the
runs. This process is described in more detail in section 2.3.

Secondly, the configuration must be specified. This typically involves assigning values to
members of an instance of the class Config. This instance is then passed to the other classes
as they are constructed. However, in the implementation of the IPopulation class provided
(GenerationalTournamentPopulation) the weighted likelihood of each evolutionary opera-
tion except elitism must be hard-coded in the method
GenerationalTournamentPopulation::IteratePopulation. The proportion of the popu-
lation selected via elitism is defined by a public static member of
GenerationalTournamentPopulation. In future versions of VUWLGP this may be inte-
grated into the Config class. How to use this class is described in section 2.2.

The code itself is well commented and the readers are referred to this for documentation
on the functions themselves.

2

Users of VUWLGP are assumed to have an at least passing familiarity with genetic
programming. If unfamiliar with genetic programming then [5] or [1] are suggested. Those
unfamiliar with LGP are referred to section 3.

2.1 VUWLGP Design

In this subsection the design and class structure of VUWLGP is briefly discussed and an
overview of how the evolution “flows” from class to class is given.

The class structure of VUWLGP is given in figure 1. Implementations of the abstract
classes (those classes whose name is prefixed with an I) are not shown in this figure. Examples
can be found in the implementations directory.

Utility Classes

Contains/Is composed of
Uses/Interacts with

IPopulation

IFitnessCase

FitnessEnvironment

RegisterCollection IProgram IFitnessMeasure

Instruction

IInstructionArgument

IInstructionOperation

Rand

Config

WeightedCollection

Core Classes

Figure 1: The VUWLGP class structure, showing which classes are composed of which others,
and which classes use each other. None of the classes shown inherit from one another.

The reader is referred to the code itself and its comments for discussion regarding each
function and its role. Many of the classes have a number of template parameters, where pos-
sible constraints are enforced so that bugs cannot occur. The role of each of these parameters
is described in table 1. Users of VUWLGP should ensure that these constraints are met in
all cases, or strange errors may occur during compilation or at run-time.

Table 1: Instruction/argument position to link sign mapping.

Parameter Name Description

T The type of the registers — i.e. what type the features should
be, what type the instruction operations should return, etc.

IProgramSubclass The type of the sub-class of IProgram being used in VUWLGP.
The T of this class should match the T which is also necessary
as a parameter to, for example, the sub-class of IPopulation

being used.

IProgSub A shortened name for IProgramSubclass. It should be the
same class as IProgramSubclass.

3

With this discussion of the class design in mind the reasoning behind the design of
VUWLGP will now be briefly explained. Following that the flow of control from class to
class will be explained. The design and flow are at first counter intuitive but result in a
simpler final code structure.

2.1.1 Design Rationale

The core component of a genetic programming representation must be the program. A num-
ber of elements are associated with a program. These include the pieces out of which it is
made (in LGP, the instructions) and some measurement of its fitness. In many implementa-
tions of genetic programming the measure of fitness is hard-coded into the class as a double
value, however this representation is not suitable for all problems. In some problems, such
as multi-class classification, more fine-grained information on a program’s fitness may be
needed. Thus, in this design the fitness measure of a program has been seperated out from
the program class. Note that a program also caches the final register values it wrote after
it was last executed. This is an implementation detail which makes updating a program’s
fitness based on its performance on some fitness case much easier.

Similarly, the instructions out of which a program is composed can be broken down into
three key components:

1. The function or operation which this instruction applies.

2. The arguments passed to the function or operation.

3. Optionally, the register the instruction writes its output to (not all instructions generate
output — conditionals do not, for example).

In VUWLGP these three elements can be individually specified, changed and added to with-
out altering the core Instruction class. This means that new operations can be added and
trialled without modifying the core code, so long as they can take 0–2 parameters of type T,
the type of the arguments. Similarly, new types of arguments can be added provided they
are of type T. Note that the destination register must be a read-write register — it makes no
sense for it to be a read-only register.

The FitnessEnvironment class stores register values and the fitness cases a population of
programs is being evaluated against. It provides methods for iterating through fitness cases
and for managing them. If a test set is needed in addition to a training set, it should be
loaded into a seperate FitnessEnvironment.

Finally, the sub-class of IPopulation being used determines how a population is evolved
when the fitness of all of its members is accurate. It is important to note that VUWLGP
is structured so that members of the population changed by an evolutionary operation are
marked. Then, only these programs need to be executed to ensure that all members of the
population have an accurate fitness. This means that the full efficiencies of steady state
genetic programming can be realised. In addition, the sub-class of IPopulation defines how
a member of the population is selected for an evolutionary operation based on the (presumed
accurate) fitness of the programs in the population.

This selection algorithm is defined by a sub-class of IPopulation. The method this sub-
class must implement is called SelectProgByFitness. It should select some programs, based
on the fitness of the programs in the population, and return a pointer to it.

The second method which the sub-class of IPopulation must implement is called
IteratePopulation. When called this method replaces some (perhaps all) members of the
population with new programs generated by evolutionary operations which operate on se-
lected programs. The changed programs should be marked as needing their fitness updated.

4

These two methods are not implemented in IPopulation itself because they tend to vary
quite substantially from problem to problem. On the other hand, other elements of the evo-
lutionary are specified in IPopulation as they will not need to be changed except in very
rare circumstances.

For more code-oriented documentation see the HTML documentation (doc/index.html
or http://www.syntilect.com/vuwlgp/doc/index.html).

2.1.2 The Flow of Control

VUWLGP’s flow of control can best be understood by reading the code of one of the simple
example problems. In brief though, a user of VUWLGP calls Evolve on an IPopulation,
passing it a FitnessEnvironment which the population of programs will be evolved against.

In IPopulation::Evolve the population is iterated up to maxGenerations times and
the flagged programs have their fitness evaluated after each iteration of the population.
EvaluateFlaggedPrograms in turn calls UpdateFitness on each flagged program, passing it
the FitnessEnvironment passed to Evolve. In IProgram::UpdateFitness the set of fitness
cases in the fitness environment is iterated over and the program’s fitness is updated after
each case.

2.2 The Config Class

The Config class defines the configuration of a VUWLGP run, e.g. the data set specific
elements of a problem. Users of VUWLGP can inherit from Config and add more members,
however almost all VUWLGP classes require an instance of Config or a subclass of it to be
passed into their constructors. The same instance of Config should probably be passed to
every constructor in a run which needs one, else strange bugs might occur.

2.2.1 Constructors and Other Methods

Config() This method sets up a Config object for its member variables (specified below) to
be initialised by direct assignments in code in which the instance of Config is in scope.

Config(int argc, char** argv, bool printAsParses) If all or a known sub-set of the con-
figuration variables are going to be provided on the command line then the command
line arguments can just be passed to this constructor (although the Instruction con-
figuration variables will still have to be manually initialised). This constructor uses the
Init method, below. Read there for more information.

void Init(int argc, char** argv, bool printAsParses) This method takes what are as-
sumed to be the command line arguments passed to the application — therefore, the
0’th is not considered as it is expected to be the name of the executable. All config-
uration variables excluding the Instruction configuration variables can be specified
on the command line and then parsed by this method. The format the variables are
expected to be in is nameOfVariableAsGivenBelow:value. If printAsParses is true
then the configuration variables which are parsed by it will be printed out.

Copy Constructor, Destructor The copy constructor is made private, because instances
of a Config class do not need to be copied and because doing so introduces complications.
The destructor is defined as would be expected.

5

2.2.2 Program Configuration Variables

These variables are used to configure programs-level elements of the configuration. Some of
these also have a bearing on the instruction-level elements of the configuration as well, as
programs and instructions are tightly interrelated.

unsigned int numRegisters This variable defines the number of read-write registers avail-
able.

unsigned int numFeatures This variable defines the number of read-only feature registers
which describe the problem. VUWLGP is currently structured to be most easily used for
feature-based problems such as multi-class classification, which is what it was originally
designed for. If using VUWLGP for a non-feature based problem then this configuration
variable can ignored.

unsigned int initialMinLength This variable defines the minimum length programs can
be initially generated at. Programs are created uniformly across the range specified by
this configuration variable and by initialMaxLength.

unsigned int initialMaxLength This variable defines the maximum length programs can
be initially generated at. Programs are created uniformly across the range specified by
this configuration variable and by initialMinLength.

unsigned int maxLength This variable defines the maximum length a program can have
during the evolutionary process. No minimum is specified in the current implementation
of VUWLGP although if one was needed it could be trivially added by modifying the
Config class and altering the evolutionary operations in IPopulation to ensure that
it was respected.

2.2.3 Instruction Configuration Variables

These variables are used to configure the instructions which get created, including the oper-
ations (functions) available and the kinds of arguments (registers) which can be created and
applied to them. An instruction (at least in the current implementation of VUWLGP, future
implementations and extensions are not constrained in this way) consists of one destination
register, which must always be a read-write register, two arguments and an operation. Note
that some or all of the arguments may not be used by the operation. The kinds of arguments
and operations which can be generated are set by these configuration variables.

WeightedCollection<ArgumentGeneratorFunc>* argumentGenerators This defini-
tion declares a WeightedCollection which stores pointers to functions which return
arguments to instructions — for example, one such generator function may return a
feature register, another might return an ephemeral constant. By changing the func-
tion pointers stored in this collection and the weights assigned to them the instructions
generated randomly will be changed.

WeightedCollection<OperationGeneratorFunc>* instructionOperations As with the
argumentGenerator, this configuration variable is a WeightedCollection of functions
which generate the operations of an instruction, such as a plus-operation, a sine-
operation or an if-less-than-operation.

6

2.2.4 Population Configuration Variables

unsigned int populationSize This variable specifies the number of programs which make
up the population. If a deme-based IPopulation sub-class was being used then this
variable would need to be extended, changed or ignored.

2.2.5 Evolutionary Configuration Variables

double epsilon For a solution to be considered good enough (and thus for evolution to
be terminated early) a program must have fitness less than or equal to this. Note
that VUWLGP currently only supports lower-is-fitter evolutionary structures. This
constraint is not considered a significant problem1 but may be addressed in future
versions of VUWLGP.

unsigned int maxGenerations The maximum number of generations, after which evolu-
tion is forcibly terminated. The exact semantic meaning of this configuration variable
depends on how the sub-class of IPopulation which is being used iterates the popula-
tion, as the “generation count” is incremented after each call to EvaluateFlaggedPrograms
and IteratePopulation in IPopulation::Evolve. In a generational model it would
presumably be the number of generations. Alternately, if steady-state evolution was
being used it would count the number of programs replaced.

2.2.6 Logging and Rand Configuration Variables

unsigned int popLogInterval The initial, final and every popLogInterval’th population
of programs will be logged to file.

std::string popLogFilePath Every popLogInterval iterations (as specified and defined
by the implementation of IPopulation which is being used) the entire population will
be logged to a file. The filepath as specified does not need to include any extension —
the generation and then .txt will be automatically appended.

std::string statsLogFilePath Generation-by-generation statistics about the evolutionary
run (the best program, it’s fitness, the number of genetically unique programs in the
population, the average fitness, size etc.) are appended to this file. The filepath as
specified does not need to include any extension — .txt will be automatically appended.

std::string runLogFilePath The overall statistics of the run (the number of generations
and length of time used, the training fitness of the fittest program and its test fitness)
are appended in csv format and in that order to the file specified by this configuration
variable.

unsigned int randSeed This variable specifies the seed to be used for the random number
generator. If it is not set (see seedSpecified) then a time-dependent seed is used.

bool seedSpecified This variable is special and does not need to be specified on the com-
mand line — only the randSeed needs to be specified there. If that is encountered Init

will set seedSpecified to true. However, if the seed is specified manually or through
some other method then this will need to be manually set to true. This is because
there is no value of an unsigned int which can be used to signify ”not set to a specific
seed”. The Rand::Init() method checks whether or not the seed has been specified
by checking the value of this variable and if it has not been uses a time-dependent seed.

1If there is no other way to achieve a lower-is-better fitness then they all fitnesses can just be multiplied

by −1 for calculation purposes. This effectively eliminates the “lower-is-better” constraint.

7

2.3 Customising VUWLGP

A user who wishes to customise VUWLGP may wish to customise a number of facets of it.
In this subsection of the technical report a description of how this can be done for a number
of specific modifications will be given.

2.3.1 Implementing a New Kind of Instruction Operation (Function)

To implement a new kind of instruction operation, two key tasks must be completed:

1. A sub-class of IInstructionOperation must be created and included in the source of
VUWLGP being used.

2. The generator function for the new operation must be added to
Config::instructionOperations in the instance of Config used, described below.

The second of these tasks is relatively easily achieved. instructionOperations is a
WeightedCollection — simply pass a pointer to the generator function to
WeightedCollection::AddElement(T elem, double weight = 1). Note that the weight
must be >= 0 (although a zero weight element of the collection can never get randomly
selected).

To complete the first task, IInstructionOperation must be sub-classed. If the opera-
tion is a conditional instruction operation though then IInstructionOperationConditional

must be sub-classed instead. IInstructionOperationConditional is itself a sub-class of
IInstructionOperation.

The sub-class must implement the following methods:

Execute This method takes three registers as arguments, and should write the result of the
operation (if any) to the dest register. This method also takes a FitnessEnvironment,
as this is necessary to provide feature or case-specific values to the arguments (it is taken
as a parameter in their Value method). The method should return true if the next non-
conditional instruction should be executed, false otherwise. This allows conditional
instructions to be integrated easily.

Clone Clone is basically a virtual copy-constructor which allows copies of an instruction
operation to be made without knowing the exact sub-class of IInstructionOperation
an instance is. It can probably just use the sub-classes’ copy constructor, as in the
body of the Clone method the type is known.

Generate This static method works similarly to Clone but instead returns a new instance
of this class.

ToString As every operation will have a different string representation (e.g. “+”, “<” etc.)
each sub-class of IInstructionOperation must implement this method. Note that in
the current implementation of VUWLGP the operation will always be placed between
the arguments (which makes, e.g., sine confusing when converted to string format) but
if the instruction operation is a conditional then if(and) will be wrapped around the
string representation of the instruction.

2.3.2 Implementing a New Kind of Instruction Argument

Implementing a new kind of instruction argument is very similar to implementing a new kind
of instruction operation. Three key tasks need to be completed to implement a new kind of
instruction argument:

8

1. A sub-class of IInstructionArgument needs to be created.

2. The ArgumentType enum in baseSrc/IInstructionArgument.h should be updated
to include the value returned by the just-created sub-classes’ ArgumentType method.
IProgram::MarkIntrons may also need to be modified or extended (although unless
the new type of argument is very similar to a standard read/write register it probably
will not need to be).

3. A pointer to the generator method should be added to the argumentGenerators mem-
ber of the instance of Config being used.

Extending the ArgumentType enum is fairly simple. It is important each argument or
type of argument have a unique ArgumentType though.

Similarly, there should be a method which returns a pointer to a new instance of the class
for every IInstructionArgument sub-class. Ideally this requirement would be enforced by
having a pure-virtual static method in IInstructionArgument which each sub-class must
implement but unfortunately this is not possible in C++. Regardless, for the new kind of
instruction argument to appear in instructions in a program a pointer to the generation
function must be added to the weighted collection argumentGenerators in the instance of
Config being used.

Finally, the sub-class of IInstructionArgument should implement 6 methods:

Value This method returns the value of the argument for this case, position in the code and
type or index. This method takes a FitnessEnvironment so that — if needed — the
current case or general characteristics of the FitnessEnvironment can be referenced
when determining the value of the argument.

Clone This method acts as a virtual copy constructor and creates a copy of this
IInstructionArgument

ToString This method returns a string representation to the argument, e.g. register 3 might
be represented as an index into an array — “r[2]”.

ArgumentType and ArgumentIndex These methods are used in MarkIntron. In the
current implementation of the method the index of read-write registers needs to be
tracked, and these methods are used to check wheck a particular argument to an in-
struction is for a read-write register and if it is, which specific register it is. If another
form of read-write register is created (i.e. one which might not be just an entry point to
the directed acyclic graph an LGP program forms) then IProgram::MarkIntron will
need to be overridden and updated.

Generate The creation of this method cannot be enforced by the compiler, but some method
which returns a pointer to a new instance of the class should be created somewhere.
Making it a public static member of the new class is suggested.

2.3.3 Implementing a New Kind of Instruction

More substantial changes are necessary to implement a new kind of instruction. A new
sub-class of Instruction which represents the new sort of instruction needs to be created,
Depending on the extent of the changes this sub-class may need to override any of the
following methods:

Execute If the underlying core of the class is changing — i.e. if the instruction no longer
always has an operator and two arguments — this method will need to be updated. If

9

the core is augmented — for example if a weight is added to an instruction so that hill
climbing can be used alongside the evolutionary search — then this method may need
to be overridden as well.

Clone This method will need to be overridden so that the copy constructor of the right kind
of Instruction is called.

Mutate If the underlying core of the class is changing — i.e. if the instruction no longer
always has an operator and two arguments — this method will need to be updated. If
the core is augmented — for example if a weight is added to an instruction so that hill
climbing can be used alongside the evolutionary search — then this method may need
to be overridden as well.

ToString If the underlying core of the class is changing — i.e. if the instruction no longer
always has an operator and two arguments — this method will need to be updated. If
the core is augmented — for example if a weight is added to an instruction so that hill
climbing can be used alongside the evolutionary search — then this method may need
to be overridden as well.

DestinationIndex, DestinationType etc. If the underlying core of the class is changing
— i.e. if the instruction no longer always has an operator and two arguments — these
methods will need to be updated. Similarly IProgram::MarkIntrons may also need to
be updated.

See the code for more details on these methods. As well as sub-classing Instruction, a
new sub-class of IProgram must be created. This is discussed in the next sub-subsection.

2.3.4 Implementing a New Kind of Program

Note that in the current design of VUWLGP a new kind of program will need to be imple-
mented whenever a new sub-class of Instruction is being used. Similarly, if a new kind of
fitness measure is being used a new sub-class of IProgram will be necessary in the current
design of VUWLGP. It is likely both of these will become template parameters in future
versions of VUWLGP.

To implement a new kind of program a class which is a sub-class of IProgram must be
created with 4 methods. This class should probably be a template on T, as IProgram is,
unless this type of program is only compatible with some specific kind of register.

The four methods which must be created in this sub-class are as follows:

Constructor Every sub-class of IProgram is expected by IPopulation to have a constructor
which takes two arguments. The first argument should be an unsigned int and should
specify the size of the program which should be constructed. The second argument
should be the Config object being used.

Copy Constructor Your sub-class of IProgram should implement a copy constructor. This
copy constructor does not need to be very complex as most of the work is done in the
copy constructor of IProgram, however the fitness measure (and not just the pointer
to it) does need to be deep-copied.

static Instruction<T>* InstructionFactory(Config<T>* c) All sub-classes of IProgram
should implement a method with this name and signature as it is used in IPopulation

(on the template parameter it takes and which is assumed to be a sub-class of IProgram)
and your code will not compile if it is not present. This method is used to create pointers
to new instances of whatever type of Instruction this type of program uses.

10

MakeAbstract This method is never called, however it is set as pure virtual in IProgram

to force that class to be abstract. Sub-classes of IProgram must implement it so that
they are not. The suggested implementation is as an inline method which does nothing
(...{ })

2.3.5 Implementing Steady State LGP with Proportional Selection

One kind of new sub-class of IPopulation which might be usefully implemented is a popu-
lation class which performs proportional-selection and steady-state evolution.

When implementing a new sub-class of of IPopulation two methods must be implemented
— one for each of these elements of functionality.

IteratePopulation This method is called by IPopulation::Evolve whenever all programs
in the population have updated and correct fitnesses and the evolution can be performed
(it is assumed the evolutionary operations should happen as soon as possible). The
method is void and should work by altering programs stored in the current population
or by replacing the member which stores the population (IPopulation::programs)
with the new population.

SelectProgByFitness This method returns a const pointer to one program in this popu-
lation. It is assumed that all evolutionary operations return only one program, as this
makes the most sense. Having crossover return two is confusing and atypical. The
program returned should be selected based on its fitness.

2.3.6 Implementing new types of IFitnessMeasure and IFitnessCase

A fitness case has two key roles which any implementation of IFitnessCase must meet.
Firstly, it must return the values of the various features for this specific fitness case.

Secondly, and crucially, in a class-dependent manner, an instance of a sub-class of
IFitnessCase must make available to a type of IFitnessMeasure the correct register values.
This need not literally be the correct value of all of the registers — for example, if a winners-
take-all algorithm is used then the information which is needed by the fitness measure is the
register which should be the largest for this case. In addition to meeting these two roles a
sub-class of IFitnessCase should probably implement a static generation method which can
parse a string representation of a fitness case.

The role of a fitness measure is two-fold. Firstly it must track the fitness of some program.
This is typically a double value, representing the program’s overall fitness and a part of the
abstract base class, IFitnessMeasure, but may also include augmentary information used
when logging or when calculating the overall fitness.

In addition, a fitness measure is responsible for implementing the function
IFitnessMeasure::UpdateError which takes a RegisterCollection (of the final values of
the registers after execution of the program was terminated) and the fitness case the program
was executed against. Using the problem-dependent functions and case-specific features of
the fitness case, the fitness measure’s measure of fitness should be updated when this method
is called.

Note that the class trees rooted at IFitnessCase and IFitnessMeasure are some of the
most tightly coupled code in VUWLGP. The two classes must really be developed in parallel
and the reader is strongly urged to examine existing code and also read the code-oriented
documentation.

11

2.3.7 Implementing a Fitness Environment Not Based on Cases

This kind of modification is a more substantial modification and is mentioned here as an
example of the kinds of changes that might be necessary for such a modification.

It is important to note that most problems which don’t appear to be fitness-case based can
in fact be represented as a single fitness case, and so the existing structure can be altered quite
easily by changing the implementation of IProgram::Execute. For example, the San Mateo
trail problem [5] could be represented as a single case, and the features (the ant’s sensory
capacities) would obviously return different values depending on where the ant currently was.
There is no reason a feature must be constant throughout an entire run of an LGP program.
Similarly there is no reason that the program must be run through only once in
IProgram::Execute.

Regardless, if a truly non-fitness case-based problem must be addressed a number of tasks
would need to be completed.

1. IProgram::UpdateFitness would need to be altered, as it can (presumably) no longer
iterate through the fitness cases in the FitnessEnvironment. Note that UpdateFitness
is called from IPopulation::EvaluateFlaggedPrograms, which is in turn called from
IPopulation::Evolve. Neither of these two methods should need to be updated.

2. The FitnessEnvironment class would also need to be changed. The methods related to
fitness case iteration might be removed, and how the value of a feature was determined
(it currently depends on the current fitness case) would also need modification. Sim-
ilarly, the fitness environment can probably no longer be initialised by adding fitness
cases individually or from a file and so new initialisation methods need to be created.

3. The fitness measure class used might need to be changed, perhaps so that the imple-
mentation of IFitnessMeasure::UpdateError takes a FitnessEnvironment instead
of an IFitnessCase.

3 Linear Genetic Programming — An Overview

In this section LGP is briefly described. Only register-machine LGP [1] (hereafter just LGP)
is considered, although VUWLGP could be customised so that other variants could be im-
plemented. Readers are referred to [1] for discussion on other forms of LGP, and to [5] and
[1] if unfamiliar with genetic programming.

In this form of LGP each program is a sequence of register machine instructions. This is
typically expressed in human-readable form as C-style code. Other variants of linear genetic
programming are discussed in [4], but they have not been explicitly considered in the design
of VUWLGP.

Prior to the execution of an LGP program, the registers which it can read from or write
to are zeroed. The features representing the objects to be classified are loaded into predefined
registers. The program is executed in an imperative manner and represents a directed acyclic

graph (DAG, see figure 2 for a simple example). This is different from tree-based GP which
represents a program as a tree. Any register’s value may be used in multiple instructions
during the execution of the program.

Instructions in an LGP program may also be introns — i.e. code whose execution has
no impact on the output of the program. The existence of introns can significantly improve
the evolvability of a solution by allowing good building blocks to exist non-destructively
in a distributed manner across several individuals, each of which has a small part of the
building block. A partial building block may have a negative impact on fitness. This impact

12

is eliminated when it is present as an intron. As with biological evolution, introns also
reduce the frequency of destructive evolutionary operations which slow the evolution of fit
individuals, as defined and discussed in [7] and [6]. After the final instruction in the program
has been executed the values of the registers are interpreted as the output.

//r[1] = r[1] / r[1];

//r[3] = cf[0] + cf[5];

//if(r[3] < 0.86539)

//r[3] = r[3] --- r[1];

r[0] = 0.453012 --- cf[1];

//r[3] = r[2] * cf[5];

r[1] = r[0] * 0.89811;

if(cf[6] < cf[1])

r[2] = 0.453012 --- cf[3];

r[3] = cf[4] --- 0.86539;

4

0.453

0.87
F F

F

F

7
42

5

0.9

* if

1C C2 C3
C

Figure 2: A very simple sample program evolved by LGP and a DAG representation of it.
Structural introns are commented out with // and do not need to be represented in the DAG
representation.

4 Summary and Future Work

VUWLGP is an ANSI C++ implementation of register-machine based linear genetic pro-
gramming. In this report the design of VUWLGP and how it might be customised has been
described. In addition, linear genetic programming has been briefly explained.

The most significant features and benefits of VUWLGP can be summarised as follows:

• The registers, operations (functions), program structure, fitness measurement and in-
structure structure are all easily modified.

• The population class can be easily augmented so that it is steady state or generational,
and deme-based or monolithic.

• The type or types of the registers is generic.

• Different variants of the above elements of an operating environment are “pluggable”,
and can be easily mixed and matched.

• Once the operating environment (described in the four previous bullets) has been de-
fined it is easily modified slightly for different variants of a problem being researched.

The class structure of VUWLGP allows the operating environment to be easily cus-
tomised. Future versions of VUWLGP could include more implementations of the base
classes, including steady state-style Population classes and state-based fitness classes (such
as the San Mateo trail [5]). Similarly, different kinds of programs and instruction could be
implemented and VUWLGP made more general. Finally, the generic structure is designed so
that strongly-typed LGP should be implementable in an extension of VUWLGP. This might
be achieved by setting the generic type of the registers to be some new user-defined abstract
class which is the super class of all other types of register.

13

5 Acknowledgements

This research was supported by the University Research Fund (URF 6/9, Grants ID 10650)
and built on research carried out by the authors while researching the Honours project [2]
[3].

6 Bibliography

References

[1] Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. Genetic Program-

ming: An Introduction on the Automatic Evolution of computer programs and its Applica-

tions. San Francisco, Calif. : Morgan Kaufmann Publishers; Heidelburg : Dpunkt-verlag,
1998. Subject: Genetic programming (Computer science); ISBN: 1-55860-510-X.

[2] Fogelberg, C. Linear genetic programming for multi-class classification problems. BSc
(Honours) Research Project Report, School of Mathematics, Statistics and Computer
Science, Victoria University of Wellington, New Zealand., November 2005.

[3] Fogelberg, C., and Zhang, M. Linear genetic programming for multi-class object
classification. In AI 2005: Advances in Artificial Intelligence: Proceedings of the 18th

Australian Joint Conference on Artificial Intelligence, Lecture Notes in Computer Science,

Vol. 3809. (Sydney, Australia, December 2005), S. Zhang and R. Jarvis, Eds., Springer,
pp. 369–379.

[4] Kantschik, W., and Banzhaf, W. Linear-tree GP and its comparison with other GP
structures. In Genetic Programming, Proceedings of EuroGP’2001 (Lake Como, Italy,
18-20 Apr. 2001), J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi,
and W. B. Langdon, Eds., vol. 2038 of LNCS, Springer-Verlag, pp. 302–312.

[5] Koza, J. R. Genetic programming : on the programming of computers by means of

natural selection. Cambridge, Mass. : MIT Press, London, England, 1992.

[6] Nordin, P., Banzhaf, W., and Francone, F. D. Introns in nature and in simulated
structure evolution. In Bio-Computation and Emergent Computation (Skovde, Sweden, 1-
2 Sept. 1997), D. Lundh, B. Olsson, and A. Narayanan, Eds., World Scientific Publishing.

[7] Nordin, P., Francone, F., and Banzhaf, W. Explicitly defined introns and de-
structive crossover in genetic programming. In Proceedings of the Workshop on Genetic

Programming: From Theory to Real-World Applications (Tahoe City, California, USA, 9
July 1995), J. P. Rosca, Ed., pp. 6–22.

14

