
Behavioral Selection Using the Utility

Function Method: A Case Study Involving a

Simple Guard Robot

Mattias Wahde1, Jimmy Pettersson1, Hans Sandholt1, and Krister Wolff1,2

1 Department of Applied Mechanics, Chalmers University of Technology, 412 96
Göteborg, Sweden
{mattias.wahde, hans.sandholt, jimmy.pettersson}@chalmers.se

2 Department of Microtechnology and Nanoscience, Chalmers University of
Technology, 412 96 Göteborg, Sweden
krister.wolff@mc2.chalmers.se

Summary. In this paper, the performance of the utility function method for behav-
ioral organization is investigated in the framework of a simple guard robot. In order
to achieve the best possible results, it was found that high-order polynomials should
be used for the utility functions, even though the use of such polynomials, involving
many terms, increases the running time needed for the evolutionary algorithm to
find good solutions.

1 Introduction

In behavior-based robotics (BBR) [1], the artificial brain of a robot is built
in a bottom-up fashion, starting from simple low-level behaviors. An obstacle
facing the behavior-based approach is the problem of behavioral selection, i.e.
the problem of activating appropriate behaviors at all times. In simple robots,
with small behavioral repertoires, the selection of behaviors (for activation)
can be generated manually, which indeed is what is done in most methods for
behavioral selection [4, 5, 6].

However, in robots with larger behavioral repertoires, specifying behavioral
selection by hand is a daunting task, not least because of the difficulty in
comparing, at all times and in all situations, the relative merits of several
behaviors. Such comparison requries a common currency which, in economic
theory and game theory, goes under the name utility, a concept that has also
been introduced in ethology and, more recently, in robotics [3, 4].

In order to overcome the difficulties associated with behavioral selection,
a method known as the utility function (UF) method has been developed [4].
In this method, behavioral selection is based on the value of utility functions



2 Behavioral Selection Using The Utility Function Method

that are evolved rather than hand-coded, thus minimizing the bias introduced
by the user of the method.

In this paper, the UF method will be illustrated by means of an exam-
ple, namely a simple simulated guard robot. In addition, the performance for
various utility function specifications will be studied.

2 The Utility Function Method

Due to space limitations, only a brief description of the UF method will be
given here. A more complete discussion of the method is available in [4]. In
the UF method, each behavior Bj, j = 1, . . . , N , where N is the number of
behaviors, is associated with a utility function, whose variables are (a subset
of) the state variables of the robot. The state variables are of three kinds:
External variables, denoted si (e.g. the readings of IR sensors on the robot),
internal physical variables, denoted pi (e.g the readings of a battery sensor),
and internal abstract variables, denoted xi. The latter correspond to the read-
ings of internal variables known as hormones in the UF method. In general,
each utility function is given by a polynomial ansatz. For example, the ansatz
for a second-degree polynomial utility function of two variables s1 and x1 is
given by

U(s1, x1) = a00 + a10s1 + a01x1 + a20s
2
1 + a11s1x1 + a02x

2
1. (1)

The UF method is an arbitration method, i.e. a method in which one and
only one behavior is active at any given time. Behavioral selection is simple
in the UF method: at all times, the behavior whose utility function takes the
highest value is activated. The problem, of course, is to specify the utility
functions so as to generate purposeful and reliable behavioral selection. In the
UF method, this is done using an evolutionary algorithm (EA). As in any EA,
a fitness function must be specified. In the UF method, the fitness is often
associated with the execution of a given task behavior, the other behaviors
being considered as auxiliary behaviors, i.e. behaviors which are needed (such
as battery charging), but which do not increase the fitness of the robot. Once
the fitness function has been specified, the task of the EA is thus to set the
coefficients of the N polynomial utility functions.

An interesting question in this regard concerns the number of such coef-
ficients, which, in turn, determines the complexity of the problem that the
EA must solve. In general, it can be shown that a polynomial function of n
variables and of degree p contains

(

n + p

p

)

=

(

n + p

n

)

(2)

distinct terms. (For example, in Eq. (1), n = 2 and p = 2, so that the number
of terms, according to Eq. (2), equals

(

4

2

)

= 6).



Behavioral Selection Using The Utility Function Method 3

3 Case Study: A Simple Guard Robot

As a case study, consider a simple simulated guard robot whose task it is
to patrol the arena shown in the left panel of Fig. 1. The arena contains
numerous obstacles in the form of pillars, as well as three battery charging
stations, located at corners in the arena. The simulated robot is a differentially
steered, two-wheeled robot, with two DC motors. The robot will be equipped

Fig. 1. Left panel: The arena patrolled by the guard robot. Right panel: Behavioral
hierarchy of the robotic brain.

with five behaviors, namely straight-line navigation (B1), obstacle avoidance

(B2), energy maintenance (B3), corner seeking (B3.1), and battery charging

(B3.2). In the UF method, as implemented in the UFLibrary software library
currently under development at Chalmers University of Technology, behaviors
are organized in hierarchies, as indicated in the right panel of Fig. 1. Utility
functions are compared on a level-by-level basis. Thus, for each time step, it
is determined which of the three functions U1, U2, and U3 takes the highest
value. If it happens to be U3, the comparison of U3.1 and U3.2 will determine
which of these two behaviors is active.

In B1, the robot simply moves in a straight line, by setting its motor
outputs to equal values. In B2 the robot turns until no obstacle is visible
in front of it, and then stops. If B3.1 is active, the robot will rotate in an
attempt to find a charging station (each of which is associated with an IR
beacon detectable by a sensor on the robot). In B3.2 the robot remains at a
standstill, charging the batteries if it happens to be at a charging station.

Since the task of the robot is to cover as much of the arena as possible, a
suitable fitness measure is simply the time spent in the navigation behavior
B1. In order to avoid rapid swapping between behaviors, a slightly modified
fitness function was used, however, in which the robot only obtains a fitness
increase if it spends at least one full second executing B1.

Due to space limitations, the full ansatz for each utility function will not
be given here. Suffice it to say that the number of variables in U1, U2, U3, U3.1,
and U3.2 were 4, 3, 3, 2, and 1, respectively. Thus, for degree p, the number
of polynomial coefficients that must be determined by the EA equals



4 Behavioral Selection Using The Utility Function Method

nc =

(

4 + p

4

)

+ 2

(

3 + p

3

)

+

(

2 + p

2

)

+

(

1 + p

1

)

. (3)

4 Simulation program

A simulation program was written in Delphi object-oriented Pascal [2] using
the UFLibrary software package. The UFLibrary provides a general imple-
mentation of the UF method, handling all issues involving the evolution of
polynomial utility functions for behavioral selection. The task of the user is
to provide (1) the constituent behaviors for the behavioral repertoire, (2) the
polynomial degree p of the utility functions, (3) a fitness function, (4) the
arena, in the form of a text file readable by the UFLibrary, (5) the definition
of the robot body and the general structure of its brain (as shown in the
right panel of Fig. 1), also in the form of a text file in a given format. The
specification of the robotic brain also involves specifying the state variables
included in each utility function polynomial.

5 Results

For simplicity, the simulations were performed without any sources of noise.
Each evaluated individual was allowed a maximum simulation time of 100s.
However, the evaluation of a simulated robot was terminated directly in case
of collisions with obstacles or if the on-board battery became fully discharged.
In each run, 10,000 individuals were normally evaluated, even though some
extended runs were carried out as well (see below).

Four different polynomial degrees were investigated, namely p = 1, 2, 3,
and 4, for which the number of polynomial coefficients (nc) equals 18, 44,
89, and 160, respectively. In order to allow a fair comparison between the
performance of the EA for different values of p, mutation rates (pm) were set
to 1/nc or 3/nc. The population sizes np were set to 20 or 100 individuals.
In the UFLibrary, the crossover procedure swaps entire polynomials between
chromosomes. Here, the crossover probability pc was set to 0.2 or 0.8. Fur-
thermore, tournament selection was used, with the tournament size nt set to
10% of the population size. Thus, a total of 4 × 2 × 2 × 2 = 32 parameter
combinations were investigated. Furthermore, because of the stochasticity of
EAs, several (NR) runs had to be performed for each setting, in order to form
a reliable average. Since a typical run lasted for a few hours, NR was limited
to 5-7, resulting in a total of around 200 runs.

Due to the richer dynamical structure accessible in runs with large p, it
could perhaps be expected that these runs would outperform those with lower
p values. However, no such simple trend was found: The averages (over all runs
with a given value of p) of the best fitness values found after 10,000 evaluated
individuals, were found to be 10.36, 9.33, 10.31, and 9.43, for p = 1, 2, 3, and



Behavioral Selection Using The Utility Function Method 5

Table 1. Averages of the best fitness values found after 10,000 individuals, for runs
with different values of the polynomial degree p and the mutation rate pm.

Polynomial degree

pm 1 2 3 4

1/nc 8.973 6.396 7.255 5.291
3/nc 11.76 11.73 13.35 13.59

4, respectively. As can be seen in Table 1 there is, on the other hand, a strong
trend in favor of the larger of the two mutation rates. A similar, albeit weaker,
trend (not shown) was also found in favor of large population sizes, whereas
no discernible trend was encountered for the crossover probability. Note also
that, within the categories shown in Table 1, the spread between different runs
was quite large, with the majority of runs reaching rather low fitness values.

6 Discussion and conclusion

While the average results obtained from the runs performed here show only
very little variation with the polynomial degree p, this does not necessarily
imply that the choice of p does not matter. Two possible interpretations of
the results are that (1) perhaps larger values of p do indeed make it possible
to achieve better results but that finding such solutions becomes progressively
more difficult as p is increased (due to the large increase in the size of the
search space), or (2) maybe p = 1 or 2 is sufficient for the problem at hand
and that, in the runs with larger p, the coefficients in front of the third and
fourth-order terms are simply eliminated by the EA. However, an inspection
of those coefficients showed the latter not to be the case.

Table 2. Averages of the three best fitness values found for each polynomial degree
p in the extended runs.

Polynomial degree

1 2 3 4

23.24 37.23 47.91 49.33

Evidence in favor of the first interpretation can be found, on the other
hand: As shown in Table 1, the increase in performance as the mutation
rate is raised is stronger for large p values than for small ones, indicating
that the larger p values require a more thorough inspection of the search
space before the best solutions can be found. In order to test this tentative
conclusion further, several extended runs were performed, the results of which
are summarized in Table 2. Note that the extended runs differed somewhat
in length: The number of evaluated individuals was on the order of 50,000



6 Behavioral Selection Using The Utility Function Method

to 100,000. For this reason, the table shows an average of the three best
results obtained for each p. In Table 2, the results clearly show an increase
in performance as p is raised. Thus, it may be concluded that the choice of p
strongly influences the quality of the results that can be achieved, but that
the benefits of larger p values only become evident after the evaluation of a
large number of individuals.

Finally, note that the chosen fitness measure (time spent in behavior B1)
does not lead to an incentive for the robot to explore the whole area. However,
such solutions were indeed found by the EA in some runs. One example is
shown in Fig. 2, with a fitness value equal to 44.57 found after the evaluation
of 41,400 individuals.

Fig. 2. The motion of one of the best robots found by the EA. The squares in the
upper right, lower left, and lower right corners represent the charging stations.

Acknowledgments

The authors wish to thank the Carl Trygger foundation for financial support
for this project.

References

1. Arkin, R.C., Behavior-based robotics, MIT Press, 1998
2. http://www.borland.com/delphi
3. McFarland, D. and Bösser, T. Intelligent behavior in animals and robots, MIT

Press, 1993
4. Wahde, M., A method for behavioural organization for autonomous robots based

on evolutionary optimization of utility functions, Journal of Systems and Control
Engineering, 217, pp. 249–258, 2003

5. Maes, P., How to do the right thing, Journal of Connection Science, 1, No.3,
pp. 291–323, 1989

6. Blumberg, B.M., Action selection in Hamsterdam: Lessons from ethology, In:

From Animals to animats 3, Proc. of the 3rd Int. conf. on simulation of adaptive
behavior (SAB94), MIT Press, 1994


