Skip to main content

Niching-Assisted Genetic Programming forĀ Finding Multiple High-Quality Classifiers

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

Explainable artificial intelligence (XAI) is a recent research focus, aiming to gain trust in machine learning models with clear insights into how the models make certain predictions. Due to its ability to evolve potentially interpretable classifiers, genetic programming (GP) is generally well-suited to XAI. However, many learning algorithms including GP usually learn a single best model. In practice, the best model in terms of training classification accuracy/error rate may not be the most appropriate one from the perspective of a domain expert due to overfitting and limited data. Multiple explicit and high-quality classifiers with the same training performance are therefore needed to increase the chances that the generated models will be considered more reasonable to experts. Therefore, this study designs a niching-assisted GP approach for classification. The results show that the proposed method can significantly increase the classification accuracy on most of the tested datasets. Further analysis shows that the designed algorithm can find different GP programs with the same classification performance, providing good interpretability for classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each individual or solution in GP is a classifier or a program with a tree representation. Therefore, this work treats individual, solution, classifier, tree, program in GP as the same.

References

  1. Ahmed, S., Zhang, M., Peng, L.: Enhanced feature selection for biomarker discovery in LC-MS data using gp. In: IEEE Congress on Evolutionary Computation, pp. 584ā€“591 (2013)

    Google ScholarĀ 

  2. Ahmed, S., Zhang, M., Peng, L., Xue, B.: Multiple feature construction for effective biomarker identification and classification using genetic programming. In: Annual Conference on Genetic and Evolutionary Computation, pp. 249ā€“256 (2014)

    Google ScholarĀ 

  3. Bi, Y., Xue, B., Zhang, M.: Genetic Programming for Image Classification: An Automated approach to Feature Learning, vol. 24. Springer, Heidleberg (2021). https://doi.org/10.1007/978-3-030-65927-1

    BookĀ  Google ScholarĀ 

  4. De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., GagnĆ©, C.: Deap: a python framework for evolutionary algorithms. In: Annual Conference Companion on Genetic and Evolutionary Computation, pp. 85ā€“92 (2012)

    Google ScholarĀ 

  5. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  6. Harada, T., Murano, K., Thawonmas, R.: Proposal of multimodal program optimization benchmark and its application to multimodal genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1ā€“8. IEEE (2020)

    Google ScholarĀ 

  7. Kamyab, S., Eftekhari, M.: Feature selection using multimodal optimization techniques. Neurocomputing 171, 586ā€“597 (2016)

    ArticleĀ  Google ScholarĀ 

  8. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

    MATHĀ  Google ScholarĀ 

  9. Lensen, A.: Mining feature relationships in data. In: Hu, T., LourenƧo, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 247ā€“262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_16

    ChapterĀ  Google ScholarĀ 

  10. Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving similarity functions for clustering: representations and analysis. Evol. Comput. 28(4), 531ā€“561 (2020)

    ArticleĀ  Google ScholarĀ 

  11. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284ā€“302 (2008)

    ArticleĀ  Google ScholarĀ 

  12. Liu, J., Xu, C., Yang, W., Shu, Y., Zheng, W., Zhou, F.: Multiple similarly effective solutions exist for biomedical feature selection and classification problems. Sci. Rep. 7(1), 1ā€“10 (2017)

    Google ScholarĀ 

  13. Muni, D.P., Pal, N.R., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 106ā€“117 (2006)

    Google ScholarĀ 

  14. Nag, K., Pal, N.R.: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification. IEEE Trans. Cybern. 46(2), 499ā€“510 (2015)

    ArticleĀ  Google ScholarĀ 

  15. Nag, K., Pal, N.R.: Feature extraction and selection for parsimonious classifiers with multiobjective genetic programming. IEEE Trans. Evol. Comput. 24, 454ā€“466 (2019)

    Google ScholarĀ 

  16. Neshatian, K., Zhang, M.: Genetic programming for feature subset ranking in binary classification problems. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 121ā€“132. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01181-8_11

    ChapterĀ  Google ScholarĀ 

  17. Neshatian, K., Zhang, M.: Pareto front feature selection: using genetic programming to explore feature space. In: Annual Conference on Genetic and Evolutionary Computation, pp. 1027ā€“1034 (2009)

    Google ScholarĀ 

  18. Pei, W., Xue, B., Shang, L., Zhang, M.: High-dimensional unbalanced binary classification by genetic programming with multi-criterion fitness evaluation and selection. Evol. Comput. 30(1), 99ā€“129 (2022)

    ArticleĀ  Google ScholarĀ 

  19. Pletzer, A., Hayek, W., Scott, C., Corrie, B., Rae, G.: How NeSI helps users run better and faster on New Zealandā€™s supercomputing platforms. In: IEEE International Conference on e-Science (e-Science), pp. 465ā€“466 (2017)

    Google ScholarĀ 

  20. Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Vaughan, J.W., Wallach, H.: Manipulating and measuring model interpretability. arXiv preprint arXiv:1802.07810 (2018)

  21. Sijben, E., Alderliesten, T., Bosman, P.A.: Multi-modal multi-objective model-based genetic programming to find multiple diverse high-quality models. In: Genetic and Evolutionary Computation Conference, pp. 440ā€“448 (2022)

    Google ScholarĀ 

  22. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: Biomedical Image Processing and Biomedical Visualization, vol. 1905, pp. 861ā€“870. SPIE (1993)

    Google ScholarĀ 

  23. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Comput. 8(1), 3ā€“15 (2016)

    ArticleĀ  Google ScholarĀ 

  24. Uy, N.Q., Hien, N.T., Hoai, N.X., Oā€™Neill, M.: Improving the generalisation ability of genetic programming with semantic similarity based crossover. In: Esparcia-AlcĆ”zar, A.I., EkĆ”rt, A., Silva, S., Dignum, S., Uyar, A.Ş (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 184ā€“195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12148-7_16

    ChapterĀ  Google ScholarĀ 

  25. Vanneschi, L., Tomassini, M., Clergue, M., Collard, P.: Difficulty of unimodal and multimodal landscapes in genetic programming. In: CantĆŗ-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1788ā€“1799. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2_70

    ChapterĀ  MATHĀ  Google ScholarĀ 

  26. Wang, P., Xue, B., Liang, J., Zhang, M.: Multiobjective differential evolution for feature selection in classification. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3128540

  27. Wang, P., Xue, B., Liang, J., Zhang, M.: Differential evolution based feature selection: a niching-based multi-objective approach. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3168052

  28. Xu, H., Xue, B., Zhang, M.: A duplication analysis-based evolutionary algorithm for biobjective feature selection. IEEE Trans. Evol. Comput. 25(2), 205ā€“218 (2020)

    ArticleĀ  Google ScholarĀ 

  29. Yoshida, S., Harada, T., Thawonmas, R.: Multimodal genetic programming by using tree structure similarity clustering. In: International Workshop on Computational Intelligence and Applications, pp. 85ā€“90 (2017)

    Google ScholarĀ 

  30. Yue, C., Liang, J., Qu, B., Yu, K., Song, H.: Multimodal multiobjective optimization in feature selection. In: IEEE Congress on Evolutionary Computation, pp. 302ā€“309 (2019)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Xue, B., Liang, J., Zhang, M. (2022). Niching-Assisted Genetic Programming forĀ Finding Multiple High-Quality Classifiers. In: Aziz, H., CorrĆŖa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics