Cellular Encoding Applied to Neurocontrol

Darrell Whitley, Frederic Gruau and Larry Pyeatt
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
whitley,gruau,pyeatt@cs.colostate.edu

Abstract

Neural networks are trained for balancing 1
and 2 poles attached to a cart on a fixed
track. For one variant of the single pole sys-
tem, only pole angle and cart position vari-
ables are supplied as inputs; the network
must learn to compute velocities. All of the
problems are solved using a fixed architecture
and using a new version of cellular encod-
ing that evolves an application specific archi-
tecture with real-valued weights. The learn-
ing times and generalization capabilities are
compared for neural networks developed us-
ing both methods. After a post processing
simplification, topologies produced by cellu-
lar encoding were very simple and could be
analyzed. Architectures with no hidden units
were produced for the single pole and the two
pole problem when velocity information is
supplied as an input. Moreover, these linear
solutions display good generalization. For all
the control problems, cellular encoding can
automatically generate architectures whose
complexity and structure reflect the features
of the problem to solve.

1 Introduction

One area where genetic algorithms have been used for
training neural networks is reinforcement learning. For
these types of applications, a training set of input-
output pairs does not exist. Rather, the neural net-
work is applied to a problem and the performance of
the network is used to supply a reinforcement signal.

One particularly interesting example of this kind of
work is the neurocontrol pole balancing experiments
of Alexis Wieland (1990;1991). Using a genetic algo-

rithm Wieland trained fully recurrent neural networks
to balance a pole fixed to a cart moving on a finite
track using only the pole angle and cart position as
inputs. Typically, velocity information is provided for
this problem, but in one variant of this problem a fully
recurrent network had to learn to estimate velocities.
Wieland also trained networks to balance 2 poles and
a jointed pole. In this paper we reproduce results sim-
ilar to Wieland’s for 1 and 2 poles and also evolve
cellular encodings for neural networks to solve these
same problems. Cellular encoding is a language for
local graph transformations that controls the division
of cells that grow an artificial neural network (ANN)
(Gruau and Whitley, 1993; Gruau 1994). Earlier ver-
sions of the cellular encoding language described only
Boolean neural networks. In the current version of
cellular encoding, real-valued weights are evolved. In
addition, some constraints are imposed on the size of
networks during the development process.

Our results indicate that Wieland’s approach to train-
ing neural networks using genetic algorithms works
best with small populations (i.e., 100 strings) and with
higher than usual mutation rates (e.g. 30%). Our re-
sults also indicate that during the evolution of cellular
encoded neural networks, the most compact network
is not found. Rather, larger networks are typically
evolved where some subsets of hidden nodes in the
network can be replaced by a single connection or by
some smaller, more concise subset of neurons. As a re-
sult, simple networks were obtained for solving these
same neurocontrol applications. In particular, when
velocity information is supplied as an input, good lin-
ear solutions to both the one-pole and the two-pole
problems were produced. The linear solutions repre-
sent a somewhat unexpected result for the problem
of simultaneously balancing two poles. As expected,
when velocity information is not supplied as an input
these problems are much more difficult to solve.



1.1 Variants on the Pole Balancing Problem

Wieland (1990) used a genetic algorithm to solve sev-
eral variants of the classic problem of balancing a pole
attached to a cart that moves on a finite track. In the
most common version of this problem the pole angle
is restricted to £12 degrees and the pole angular ve-
locity and cart velocity are supplied as inputs along
with the pole angle and cart position. Given the +12
degree restriction, this problem is known to have a lin-
ear solution that provides a good approximation to an
optimal control strategy.

The variants of this problem solved by Wieland in-
clude one version where only the pole angle and cart
position are given as inputs and a fully recurrent net-
work is used that must learn to estimate the velocity
information. In Wieland’s experiments, the set of in-
puts fans into each unit of a fully recurrent network.
One of the units of the recurrent network is chosen as
an output unit.

One variant of this problem involves balancing a
jointed pole and another involves balancing two poles
of different length and mass, where the length and
mass of the small pole are ten percent of those of the
big pole. The big pole length and mass are 1 meter
and 1 kilogram. The cart track is 4.8 meters. Cart po-
sition is scaled from 42.4 meters to an input range of
+1. Pole angles ranging from £36 degrees are scaled
to £1. Pole angles outside this range produce a failure
signal. Cart velocity ranging from +1.5 meters per sec-
ond and pole angular velocity ranging from +115 de-
grees per second are scaled to £1. Velocities outside of
these ranges are allowed, but the resulting inputs will
also be scaled accordingly and produce inputs that are
outside the +1 range.

We attempted to reproduce Wieland’s results for 1
and 2 poles. A population size of 100 was used in
all experiments, and the mutation rate was 30%. In-
stead of using exactly the same genetic algorithm as
Wieland, we used the Genitor algorithm; this is a
steady state genetic algorithm using linear ranking for
selection purposes. We used both a fixed mutation
rate as well as an adaptive mutation strategy (Stark-
weather et al., 1990). . The results reported in this
paper used the adaptive mutation strategy. The se-
lection bias was 2.0. For the fixed architecture ex-
periments, each weight was encoded using 8 bits with
values distributed between —1, —%, —%, e %, 1
with no representation for zero. This distribution,
which was used by Wieland, keeps weight contribu-
tions in a range to which the transfer function is sensi-
tive. Also Wieland notes that since there is no repre-

sentation for zero, it should be difficult for the system

to exploit unstable fixed points. (In other words, it
would be difficult for the cart to remain motionless
with the pole perfectly vertical.)

This raises another critical issue: What evaluation
function was used by Wieland? Wieland (1990:95)
states, “The basic fitness of any network controller is
defined simply as the time that it was able to keep the
pole(s) from falling down or the cart from hitting an
end of the track.” Wieland’s statements suggest that
the system is tested once from a single start state; one
would assume this would be with the cart centered and
the pole in a vertical position. Wieland also does not
address the question of generalization. We explore the
generalization capabilities of the neural networks de-
veloped in this paper as well as the use of incremental
evaluation functions that utilize multiple start states.

2 Cellular Encoding with real weights

Cellular encoding is a language for local graph trans-
formations that controls the division of cells which
grow into an artificial neural network (Gruau and
Whitley, 1993; Gruau, 1994). Each cell has an input
site and an output site and can be linked to other cells.
A cell also possesses a list of internal registers that
represent local memory. The registers contain neuron
attributes such as weights or the threshold. The graph
transformations can be classified into cell divisions, lo-
cal topology transformations and modifications of cell
registers.

A cell division replaces one cell called the parent cell
by two cells called child cells. A cell division must
specify how the two child cells will be linked. For prac-
tical purposes, we give a name to each graph transfor-
mation; these names in turn are manipulated by the
genetic algorithm. In the sequential division SEQ the
first child cell inherits the input links, the second child
cell inherits the output links and the first child cell is
connected to the second child cell. In the parallel di-
vision PAR both child cells inherit both the input and
output links from the parent cell. Hence, each link is
duplicated and the child cells are not connected. Ex-
amples of cell division are given by Gruau and Whitley
(1993). In general, a particular cell division is specified
by listing for each child cell, which link is inherited
from the mother cell. In this paper, we used two other
divisions. Division CPI (resp. CPO) is like a sequential
division, except that the input links are duplicated (for
CPO the output links are duplicated) in both child cells.

Local topology transformations remove or add links
without changing the number of cells. We used the
transformation CYC that adds a recurrent link from the



output site to the input site of the cell to which CYC is
applied. This simple transformation makes it possible
to generate any kind of recurrent neural network be-
cause the recurrent link can be duplicated many times.

The WEIGHT instruction is used to modify cell regis-
ters. It has k integer parameters, each one specifying
a real number in floating point notation: the real is
equal to the integer between -255 and 256 divided by
256. (The resulting weight distributions are similar,
but not identical to those used by Wieland.) The first
parameter sets the threshold, and the last k—1 param-
eters set the & — 1 weights of the first input links. If a
neuron happens to have more than £ — 1 input links,
the weights of the supernumerary input links will be
set by default to the value 256 (i.e., % =1). Al
cells eventually will read a WEIGHT program symbol,;
this terminates the development of the cell. Consis-
tent with Wieland’s work, the transfer function of the
neuron is a clipped linear function between —1 and 1.

The cellular code is a tree called a grammar-tree, la-
beled by names of graph transformations. Each cell
carries a duplicate copy of the grammar tree and has
an internal register called a reading head that points to
a particular position of the grammar tree. At each step
of development, each cell executes the graph transfor-
mation pointed to by its reading head and then ad-
vances the reading head. After cells terminate devel-
opment they lose their reading-head and become neu-
rons.

The order in which cells execute graph transformation
is determined as follows: once a cell has executed its
graph transformation, it enters a First In First Out
(FIFO) queue. The next cell to execute is the head
of the FIFO queue. If the cell divides, the child which
reads the left subtree enters the FIFO queue first. This
order of execution tries to model what would happen
if cells were active in parallel. It ensures that a cell
cannot be active twice while another cell has not been
active at all.

We use three control program symbols: PROGN, CONT
and WAIT. The program symbol PROGN has an arbitrary
number of subtrees, and all the subtrees are executed
one after the other, starting from the subtree num-
ber one. A CONT program symbol is used to move a
reading head reading the subtree number ¢ to the root
of subtree number 7 + 1. CONT has 0 subtrees. The
WAIT program symbol is used to delay the setting of
the weights by a certain number of time steps specified
in a second subtree. An example of how a WAIT op-
eration can impact cellular developement is given by
Gruau and Whitley (1993).

2.1 Syntactic Constraints and Genetic
Operators

We used a BNF grammar to specify both a subset of
syntactically correct grammar-trees and the underly-
ing data structure. The data structure is a tree by
default. When the data structure is not a tree, it can
be a 1list, set or integer. By using syntactic con-
straints on the trees produced by the BNF grammar,
a recursive nonterminal of the type tree can be as-
sociated with a range that specifies a lower and up-
per bound on the number of recursive rewritings. In
our experiments, this is used to set a lower bound m
and an upper bound M on the number of neurons of
the final neural network. For the 1ist and set data
structure we set a range for the number of elements.
For the integer data structure we set a lower bound
and an upper bound of a random integer value. The
list and set data structures are described by a set of
subtrees called the “elements.” The list data struc-
ture is used to store a vector of subtrees. Each of the
subtrees is derived using one of the elements.
subtrees may be derived using the same element. The
set data structure is like the 1ist data structure, ex-
cept that each of the subtrees must be derived using a
different element.

Two

Recombination. Recombination must be imple-
mented so that two cellular codes that are syntacti-
cally correct produce an offspring that is also syntac-
tically correct (i.e., that can be parsed by the BNF
grammar). Each terminal of a grammar tree has a
primary label. The primary label of a terminal is the
name of the nonterminal that generated it. Crossover
with another tree may occur only if the two root sym-
bols of the subtrees being exchanged have the same
primary label. This mechanism ensures the closure of
the crossover operator with respect to the syntactic
constraints.

Recombination between two trees is the classic
crossover used in Genetic Programming (Koza, 1992),
where two subtrees are exchanged. Crossover between
two integers is disabled. Crossover between two
lists, two sets or two arrays is implemented like
crossover between bit strings, since the underlying ar-
rangement of all these data structures is a string.

Mutation. To mutate one node of a tree labeled
by a terminal ¢, we replace the subtree beginning at
this node by a single node labeled with the nonter-
minal parent of ¢. Then we rewrite the tree using
the BNF grammar. To mutate a 1ist, set or array
data structure, we randomly add or suppress an ele-
ment. To mutate an integer, we add a random value

uniformly distributed between £32.



Each time an offspring is created, all the nodes are
mutated with a small probability. For the single pole
problem the mutation probability for the tree nodes
15 0.005, for the 1ist node and the set node it is 0.05,
while for the integer node it is 0.25. For the prob-
lem of balancing two poles, we increased the mutation
probability of the tree node to 0.05.

3 The Genetic Algorithm and
Evaluation Function

For the cellular encoding experiments we used a par-
allel Genetic Algorithm (GA) with 32 subpopulations.
A more complete description of this algorithm is given
by Gruau (1995). The parallel genetic algorithm com-
bines the advantages of the massively parallel model
(Collins and Jefferson, 1991) and the island model
(Muhlenbien et al., 1991). Individuals are distributed
on islands where each island is a grid forming a 2-D
torus. Islands are also arranged as a grid and individu-
als can migrate only to the four neighbor islands. Not
all the sites of a 2-D grid are occupied. The density
of population is kept around 0.5. During mating, a
site s is randomly chosen on the grid. Two successive
random walks are performed and the best individuals
found on the 2 random walks are mated. The offspring
is placed on site s.

The migration rate is 1%. An individual is exchanged
between two adjacent processors after 100 individuals
have been created with crossover. The MIMD parallel
machine used is an IPSC860, with 32 processors. The
subpopulation on each processor is 64 individuals, so
the total population is 2048.

3.1 The Evaluation Function

The fitness of a given neural network for the problem
of balancing one or two poles is the number of time
steps the poles can be balanced over different initial
conditions of the system.

We tested each neural net using a set of eleven
parametrized initial states reported in table 1. We
choose the three parameters in a different way for each
problem, so as to match parameters to the specific fea-
tures of the problem. For example, the initial value for
the big pole in the two pole problem was chosen very
small compared to the single pole. This is because it
is impossible to recover from a situation were the big
pole is bent more than a few degrees.

3.2 Incremental Evaluation

For each evaluation, we pick an initial start state from
among the eleven possible start states; each start state
is tested for up to 1000 time steps. Before the neural
network is evaluated on the next start state it must
control the system for the current start state for at
least 500 time steps. When a network fails to suc-
cessfully control the system for at least 500 time steps
for the current start state, evaluation is terminated.
The evaluation function is given by the total number
of time steps for which the system was successfully
controlled over all start states tested. Thus, networks
with better performance also receive more evaluation
time. When a network successfully controls the sys-
tem for all 11 initial states for 1000 time steps, the
genetic algorithm is terminated. For each genetic al-
gorithm run, we compute a generalization test to make
sure that the resulting neural network could balance
the pole over 100,000 time steps when starting from
an initial setting where all the variables are 0.

The population is divided into 32 subpopulations. Fit-
ness evaluation in each subpopulation is different be-
cause the 11 initial start states used for training are
sorted into different predefined sequences. As a result,
different subpopulations can evolve different behaviors
and thus evolve different genetic material. This also
has significant implications with respect to the effects
of migration. In many migration schemes individuals
representing above average solutions are moved from
one subpopulation to the next. If a superior individual
migrates to a new subpopulation it may quickly spread
its genetic material through that subpopulation. For
the fitness function used in these control experiments,
however, an individual with a good evaluation in one
subpopulation may or may not be above average in an-
other subpopulation because it may not have learned
to solve problems that appear early in the sequence of
start states for that subpopulation. Only those indi-
vidual’s whose behavior generalizes to other situations
(i.e., different initial states) will be able to compete in
different subpopulations.

3.3 The Single Pole Problem

We experimented on four variants of the classic prob-
lem of balancing a single pole attached to a cart on a
finite track. The most common variant of this prob-
lem uses 4 inputs (pole angle and velocity, cart position
and velocity) and a bang-bang control strategy. Fol-
lowing Wieland we also tested a variant with 4 inputs
and a continuous control strategy where the force ap-
plied to the cart is the output unit’s activity multiplied
by 10. Again following Wieland, we experimented with



cart position | 0 | .9z | —.9x x| —x 0 0]0 0 x| —x
cart velocity | 0 0 0 0 0 0 01]0 0 0 0
pole position | 0 0| — 0 6/2|—-6/2|0)| -0 0 0
pole velocity [ 0| 0 o| of ofd/2]—-6/2|0] o] -0 ¢

Table 1: 11 initial settings of the cart and the pole, parametrized by three numbers

Problem Description | x 0 0

single pole with 4 inputs | 2.4 | 27 | 65

single pole with 2 inputs | 2.16 | 18 | 43

two poles: long pole | 2.16 | 1.8 | 4.3
two poles: short pole 0 0

Table 2: Different values of the three parameters. The cart position (z) is expressed in meters, the pole position

(9) in degrees and the pole velocity (é) in degrees per second.

a variant of the problem where only 2 inputs are given,
(pole angle and cart position) and a recurrent network
must be used to compute the relevant velocity infor-
mation. This problem was also solved using both a
bang-bang and continuous control strategy.

For the recurrent networks, neuron activities are up-
dated in parallel. The initial activation of all neurons
is set to 0. For its first computation, the recurrent net-
work is relaxed 20 times to give the network time to
initialize its internal states. For each subsequent com-
putation the network is relaxed four times in parallel
before its output is considered.

The following syntactic constraints were used for the
single pole problem. The recurrence is limited to a
recurrent link that goes from the output of a neu-
ron directly to its input. The weights and threshold
are constrained to lie between 1 and -1. The num-
ber of neurons in the network varies between 5 and
21. We ran some experiments with no lower bound
on the number of neurons in the network and found
that the genetic algorithm was generating only net-
works with one unit. Rapid premature convergence
to this linear solution prevented the genetic algorithm
from exploring other solutions. Fixing a lower bound
on the number of units prevented this problem.

We ran a generalization test based on that used by
Whitley et al. (1993) where 625 initial settings of the
cart and of the pole are generated. Each of the nor-
malized 4 input variables representing cart position,
cart velocity, pole position, and pole velocity take the
following 5 values: 0.05, 0.25, 0.5, 0.75, 0.95. (Note
that these values actually scale to positions -0.9, -0.5,
0, 0.5 and 0.9 over the +1 input range.) This results
in 5% = 625 test cases. Generalization is tested by
counting the number of test cases for which the neu-

ral network can balance the pole for 1000 time steps.
Whitley et al. reported an average of 406 successes
over 625 test cases using all 4 inputs and a bang bang
control strategy.

The results obtained using cellular encoded networks
as well as fixed architectures using our implementation
of Wieland’s methods are reported in table 3. Each re-
sult represents an average over 10 experiments. These
results suggest that the bang bang control strategy is
easier to learn and that learning with a bang bang
control strategy produces better generalization. If we
allow continuous output of our neural net, then the
set of solutions to the problem is the set of continuous
values instead of the set of Boolean values, which is
much smaller. This suggests that as the set of possible
output values increases, generalization is decreased.

Learning time increases and generalization decreases
when the neural network must learn to compute the
velocity information on its own. This is due to the lack
of precision with which the speed is computed by the
neural network.

3.4 Two Poles

Table 3 also reports results for the experiments in-
volving two poles. The neural networks have 6 input
units which are respectively the cart position, the cart
velocity, the big pole position, the big pole velocity,
the small pole position and the small pole velocity.
The failure angle for the two pole problem is £36 de-
grees. We found that a bang bang control strategy
did not allow precise enough control in this case so
we considered only continuous control. There are a
few differences between the syntactic constraints used
for the one pole problem and the two pole problem.
We do not use the program symbol CYC, and thus the



Cellular Encoded Nets | Fixed Architecture Nets

Problem | Learning Gen. | Learning Gen

1-pole 4 inputs bb 2,234 430 49,500 308
1-pole 4 inputs ¢ 19,011 386 88,300 306
1-pole 2 inputs bb 75,000 314 191,100 229
1-pole 2 inputs ¢ 270,000 220 214,700 202
2-poles 6 inputs ¢ 570,000 513 434,500 432

Table 3: Note, the experiment with the single pole and cellular encoding were run on a sequential machine. They
took on average lmm for the bang bang control 10 mm for the continuous control.

resulting neural network will not be recurrent. In ad-
dition, the number of hidden units and output units
in the network is bounded to be between 9 and 21.
Sampling over the full ranges of the input variables is
impractical for testing generalization because the two
pole system can be controlled within only a narrow
range of values. We defined new ranges of the vari-
ables for training and testing purposes. The actual
input ranges did not change; only the values used for
training and testing. The intervals for the cart vari-
able are the same as the ones used in the learning set:
the position varies between +2.16 meters, the velocity
varies between £1.35 meters per second. The interval
for the big pole is two times the interval used in the
learning set (See Table 2). Thus, the system is tested
with large pole angle settings between +3.6 degrees,
and the pole velocity between £8.6 degrees per sec-
ond. We then used 625 test cases with settings at 0.05,
0.25, 0.5, 0.75 and 0.95 intervals within these reduced
ranges. The small pole was always set to zero, because
it moves so quickly. The poles could be balanced on
average for 513 of the 625 initial settings using these
reduced ranges.

4 Analysis of the Network Structure

By simulating the neural network produced by the ge-
netic algorithm, we noticed that many neurons are
either constantly saturated at +1, or always use the
linear part of the transfer function and compute the
identity. In the nonrecurrent case this made it pos-
sible to obtain a mathematically equivalent simplified
neural network, modulo the effects of rounding errors.

4.1 One Pole With Velocity Information

We took a neural net found by the cellular encoding
algorithm with an average generalization performance
(430 out of 625), simplified the networks and were able
to remove all hidden units. Moreover, the generaliza-
tion of the linear solution was 453. It is known that

this problem has a good linear solution when the pole
angle is within +12 degrees of vertical, but it was un-
clear to us whether a linear solution could generalize
as well as the networks using hidden nodes, since the
pole is allowed to move over a larger range than +12
degrees. Our results show that linear solutions do yield
good generalization for this problem over large ranges
of pole angles.

4.2 One Pole Without Velocity Information

Figure 1 shows two examples of neural networks gener-
ated by the genetic algorithm for the one pole problem
without velocity information. All these neural net-
works show the same features which enable them to
compute the speed. First, the information flows from
the input units to the output units through four lay-
ers. The reason for this is that the neural network
is relaxed four times before its output is considered.
Second, some intermediate neurons are used to retain
information about the previous state. These particular
neurons are pointed out in figure 1. When the infor-
mation flows through these neurons, it takes five or
six time steps to go from the input layer to the output
layer. These neurons are used to register the previous
cart position and pole position, and to compute the
speed.

4.3 Two Poles With Velocity Information

Wieland suggested that the 2 pole problem was very
difficult; Wieland used 10 neurons to solve this prob-
lem. Moreover, we had designed a hand coded solution
to this problem before running the genetic algorithm
that had 16 hidden units.

Figure 2 (a) shows a neural network generated by the
genetic algorithm for balancing two poles. Figure 2 (b)
shows the ANN obtained after having simplified these
neurons. Apart from the input units, the final neural
network contains no hidden units.



1256

Figure 1: Two neural networks generated for the one pole without velocity information, arrows point to the
neurons used to retain information about the previous state. Inputs are shown at the top of the network
diagram.

Figure 2: Simplification of the neural network found by the GA for the balancing of two poles. The ANN with
19 units (a) is reduced to a linear solution after simplification (b).



For the linear solution to the two pole problem the
threshold of the output unit is 0, and the weights (af-
ter scaling by 1/256) are —0.16, —0.23, —1.36, —2.9,
1.47, 0.87. Note that several of the resulting weights
are outside the £1 ranges; this was achieved by the
cellular code by using multiple parallel connections to
overcome the normal +1 range allowed for weights.

The solution found by the genetic algorithm is not
obvious. It begins with four negative weights. The
third and fourth negative weights indicate that if the
big pole is to the right (resp. left) then push the cart to
the left (resp. right). This is counterintuitive, because
it makes the big pole move even further from vertical.
But then, weight 5 and weight 6 are positive; when
the small pole makes an angle bigger than the big pole
in absolute value, then the cart is pushed right (resp.
left) and the two poles are brought back to the null
position. The first two small negative weights tend to
push the cart back to the center.

5 Conclusions

This paper applies a new version of cellular encoding
to the problem of balancing one or more poles on a
cart moving on a fixed track. The new version of cel-
lular encoding allows for data structures encoding the
weights of the neural network; it also uses syntactic
constraints to bound certain properties of the neural
networks, such as the number of hidden units. The use
of real-valued weights in conjunction with cellular en-
coding addresses a criticism of previous work with cel-
lular encoding that was restricted to evolving Boolean
networks.

Cellular encoding produced solutions competitive with
those obtained using methods and architectures devel-
oped by Wieland on these same problems. The advan-
tage of cellular encoding is that it could automatically
find small architectures whose structure and complex-
ity fit the specificity of the problem. This provided new
insight about the complexity of the problem we are
solving. In particular, the results indicate that com-
petitive linear solutions exist not only for the problem
of balancing one pole between +36 degrees, but also
the problem of balancing two poles. The problem of
balancing the pole without velocity information repre-
sents a more complex control task.

The work reported here also reemphasizes the need
to study both generalization and learning time when
evaluating systems for adaptive neurocontrol.

Acknowledgements

This work was supported in part by NSF grant IRI-
9312748. We thank Oakridge National Laboratories for
providing access to their Intel IPSC860.

References

[Collins and Jefferson, 1991] Collins, R. and Jefferson, D.
(1991). Selection in Massively Parallel Genetic Algo-
rithms. In Booker, L. and Belew, R., editors, Proc. of the
4th Int’l. Conf. on GAs, pages 249-256. Morgan Kauff-

man.

[Gruau, 1994] Gruau, F. (1994). Neural Network Synthe-
sts using Cellular Encoding and the Genetic Algorithm.
PhD thesis, Ecole Normale Supérieure de Lyon.

[Gruau, 1995] Gruau, F. (1995). Automatic Definition of
Modular Neural Networks. Adaptive Behavior, In Press.

[Gruau and Whitley, 1993] Gruau, F. and Whitley, D.
(1993). Adding Learning to the Cellular Developmental
of Neural Networks: Evolution and the Baldwin Effect.
Journal of Evolutionary Computation, 1(3):213-233.

[Koza, 1992] Koza, J. (1992). Genetic programming: A
paradigm for genetically breeding computer population of
computer programs to solve problems. MIT Press, Cam-

bridge, MA.

[Miihlenbein et al., 1991] Mihlenbein, H., Schomisch, M.,
and Born, J. (1991). The Parallel Genetic Algorithm as
Function Optimizer. Parallel Computing, 17:619-632.

[Starkweather et al., 1990] Starkweather, T., Whitley,
L. D., and Mathias, K. E. (1990). Optimization Using
Distributed Genetic Algorithms. In Schwefel, H. and
Manner, R., editors, Parallel Problem Solving from Na-
ture, pages 176-185. Springer/Verlag.

[Whitley et al., 1993] Whitley, D., Dominic, S., Das, R.,
and Anderson, C. (1993). Genetic Reinforcement Learn-
ing for Neurocontrol Problems. Machine Learning,
13:259-284.

[Wieland, 1990] Wieland, A. (1990). Evolving Controls for
Unstable Systems. In Connectionist Models: Proc. 1990
Summer School, pages 91-102. Morgan Kaufmann.

[Wieland, 1991] Wieland, A. (1991). Evolving Neural Net-
work Controllers for Unstable Systems. In International
Joint Conference on Neural Networks, Seattle, pages
667-673.



