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Abstract

Genetic Programming (GP) is a most popular approach to automatic generation of com-
puter programs. Standard methods applied in GP use raw fragments of evolved programs
to construct new, hopefully better ones. These methods, except the selection phase, pass
over the behavior of the modified programs and operate mainly on their syntax.

In this dissertation we follow alternative, semantic-oriented approach that concentrates
on the actual behavior of programs in population to determine how to construct the new
ones. This research trend grew up as an attempt to overcome weaknesses of methods that
rely only on syntax analysis. Recent contributions suggest that semantic extensions to
GP can be a remedy to poor performance of classical, syntactic methods.

Therefore, in this dissertation we firstly present the advantages and disadvantages of
several possible descriptions of program’s behavior. Then we introduce the concept of
semantics used in all semantic extensions presented throughout this thesis.

The first semantic extension presented in this thesis is a method population initialization
which forces the individuals in population to be semantically unique. We also show selected
semantic-aware variants of crossover and mutation operators. In particular, we test how
they perform with and without our initialization method.

Next, we introduce and formalize our novel concept of desired semantics that describes
the desired behavior for given part of a program. Then we propose several methods that
employ desired semantics to create new programs by combining matching parts. We show
that some of these methods significantly outperform other methods, semantic as well as
syntactic ones.

The second important proposition of this thesis is the concept of functional modular-
ity. Functional modularity involves defining modules based on their semantic properties
instead of syntactical ones, like, e.g., the frequency of occurring some code fragments.
Functional modularity can be used to decompose a problem into potentially easier parts
(subproblems), and then to solve the subproblems in isolation or together.

All the described methods are illustrated with extensive experimental verification of
their performance on a carefully prepared benchmark suite that contains problems from
various domains. On this suite, we show the overall advantage of semantic-aware exten-

sions, especially for methods that rely on desired semantics.
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1. Introduction

1.1. Problem Setting

Evolutionary Computation is a subfield of Artificial Intelligence that aims at solving opti-
mization problems. It was inspired by the Darwin’s theory of evolution by means of natural
selection and survival of the fittest. Therefore, it uses an iterative process for incremental
improvement of individuals (potential solutions) in a population. One of the subdomains
of Evolutionary Computation is Evolutionary Algorithms, which focuses mostly on the
bioinspired aspects of evolutions, mainly on the genetic operations. Within this subdo-
main, there is the field of Genetic Programming (GP) that concerns evolving of computer
programs, which is the central topic of this thesis.

In a genetic programming task (GP task), the goal is to create a program that behaves
in a desirable way. In general, we are interested in obtaining a symbolic expression (arith-
metic expression, Boolean expression, algorithm, etc.) which processes some input data
and returns an appropriate result or performs some desired actions. For instance, to such
tasks belong symbolic regression problem, logic synthesis, or controlling an arm of a robot.
From this point of view, a GP task can be seen as a machine learning task of supervised
learning, i.e., generating a function that maps inputs to desired outputs.

For example, GP can be used to evolve an expression that classifies an object basing on
its attributes (i.e., returns the proper decision class label given the input data). And in-
deed, such problems are successfully solved by GP [64] 67, [68],25]. Moreover, the advantage
of GP over many other classifiers that assume certain form of hypothesis representation
(e.g., decision trees, neural networks, etc.) is that GP is almost model free. This means
that we do not limit the search to a narrow space of parameters of an assumed model,
but we give the GP algorithm the possibility to construct the model itself (in an imposed
language), and possibly parametrize it. However, such generality brings certain drawbacks
— the space of potential solutions is huge (and slow to search in consequence). Moreover,
such a space can have (and typically has) more local optima in which the whole process
may get stuck. Nevertheless, applying such a model free approach is often the only way
to solve problems for which we do not know the appropriate model in advance.

These properties of GP tasks, together with other more sophisticated features that we
will elaborate on in this thesis, give rise to certain problems that continue troubling this

domain. Among them, of particular interest to us are:
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1. Introduction

e Lack of improvement in consecutive generations (this may manifests in population

converging to only a small number of effectively different individuals),

e Difficulties with constructing useful code fragments (modules) and using them to

assembly the complete solutions,

e High variation of individual quality between parents and offspring (effect of high

epistasis that hinders developing sensible genetic operators).

Up to recent time, researchers were trying to defeat these weaknesses of GP by proposing
strictly syntactic extensions of GP that operate on code fragments in isolation from they
meaning (e.g., [60, 48| [75, 104]). However, in the last few years, methods have been
proposed that take into account semantics of programs, meant as a meaning of programs or
what are the effects of running them [7, 90, 69, [127]. There are convincing arguments that
such semantically founded approaches will lead to a breakthrough in genetic programming

theory and in the effectiveness of its practical applications.

1.2. Research Goals

In the context presented in previous section, the overall goal of this thesis is to propose
semantically-aware extensions of genetic programing, aimed primarily at improving its effi-
ciency (meant as the computational effort required to find a solution of acceptable quality)
and scalability (meant as the capability of producing an acceptable solution altogether).

The specific objectives include:

1. To analyze the properties of different types of descriptions used to characterize pro-
gram behavior (its semantics), particularly with respect of their applicability in the
context of GP.

2. To devise methods that exploit the semantic descriptions of evolving programs and

enable solving problems that are hard to canonical GP.

3. To experimentally verify the effectiveness of the proposed methods on a wide range

of benchmarks of varying difficulty.
4. To compare the proposed methods with other semantic approaches.

5. To propose an approach to defining semantic modules and to give experimental

premises of it practical applicability.

12



1.3. The Scope

1.3. The Scope

For obvious reasons, this thesis cannot embrace all possible scenarios of GP algorithms
and its applications to tasks, so it focuses on a certain class of GP programs, algorithm
parameters, and GP tasks.

We limit our considerations to canonical, tree-based genetic programming [60]. Other
GP variants, like linear genetic programming [6] or cartesian genetic programming [92],
are not considered here. However, the proposed methods can be adopted to those and
other varieties of GP.

Typical GP algorithms have many parameters that control particular aspects of evo-
lutionary run. It is not feasible to test exhaustively their all possible (or even only the
sensible) values. Therefore, in the experiments we use typical settings taken from Nguyen’s
studies [98, 99, 125] and are based on Koza’s works [60), [61].

Historically, GP has been applied to a wide range of problems — from toy examples
[60] to designing quantum algorithms [I18], I19]. Again, tackling all them in this thesis
was unrealistic. However, we made an effort to compare the algorithms studied and
proposed here on a representative of problems. Our benchmark suite contains 39 instances
of problems from two domains: symbolic regression (19) and binary functions (20). These

domains are two most popular in the GP community [87].

1.4. Thesis Outline

This dissertation proposes several, partially independent, extensions of GP, and describes
them in separate chapters. Particular chapters present also the outcomes of computa-
tional experiments that validate these extensions. This implies certain organization of the
text, where the description of the experimental environment precedes the presentation of
particular semantic extensions.

More specifically, the dissertation is organized as follows.

Chapter [2] introduces the canonical genetic programming popularized by John Koza in
his book [60]. Then it presents selected successful applications of GP to show the wide
range of areas GP can be applied in.

In Chapter [3] we discuss the possible definitions and interpretations of semantics in the
GP context. Then we propose a classification of types of semantics, define their properties,
and compare them.

Chapter [4] presents the problems that form our benchmark suite and shows the impact of
the manner in which fitness cases are selected on the problem hardness. Then we present
and justify the common parameter settings applied in our experiments and introduce
evaluation criteria used further to compare the methods.

In Chapter [5| we propose a method of semantic initialization of population. Then we

13



1. Introduction

present selected variants of semantic crossover and mutation. Finally, we show the influ-
ence of these semantic operators on the achieved effectiveness.

Chapter [6]is the main contribution of this thesis. Therein, we introduce a novel concept
of desired semantics and present a number of methods that exploit it. The results obtained
in experimental part show substantial advantage of some of them over the canonical genetic
programiing.

Chapter [7] presents our concept of functional modularity and defines this concept for-
mally. Using this concept, in the experimental part of that chapter we investigate the
modular properties of problems from the benchmark suite. We conclude this, mostly the-
oretical, chapter by demonstrating the possibility of practical applications of the proposed
concept in a simple experimental setup.

The last Chapter [8] summarizes this thesis, reviews its main contributions, and points

out the future research directions.
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2. Genetic Programming

2.1. Overview

Genetic Programming (GP) is a metaheuristic algorithm for solving variety of problems
by biologically inspired evolution of population of computer programs. The key feature of
GP is that the goal of it is to produce a valid computer program, i.e. a procedure (recipe)
for solving a whole class of tasks. This is the main conceptual difference between GP
and genetic algorithms or other similar metaheuristics which, in contrast, optimize just a
particular instance of the problem, for example by tuning some parameters in the solution
frame.

This chapter will introduce the main idea of GP and will present those aspects of GP
which are directly related to this thesis. To get a wider perspective and a more in-deep
understanding of GP mechanism and many variants of this metaheuristic we encourage to
familiarize with many introductory books about GP. For example, we highly recommend
a very nice book [105] (freely available onlineﬂ) written by Poli, Langdon, and McPhee. It
introduces GP but it also describes some advanced techniques and practical applications
of GP. A bit older, but also a good book is [4] written by Banzhaf et al.

GP belongs to a large family of methods inspired by evolution — to evolutionary al-
gorithms [91]. This group of methods takes inspiration from the biological world, where
natural selection causes the fittest individuals to survive and keep on evolving. It is char-
acteristic of evolutionary algorithms that a population of multiple potential solutions is
simultaneously maintained instead of just modifying a single solution like in local search
methods (e.g. hill climbing, tabu search [35] [34], or simulated annealing [56), 24]). Other
techniques belonging to the evolutionary algorithms, beside genetic programming and ge-
netic algorithms mentioned above, are evolutionary programming [27], evolution strategy
[108], differential evolution [121], learning classifier system [45], and gene expression pro-
gramming [26] (which in fact is not fundamentally different from the GP philosophy).

The idea of genetic programming, as it is currently known, was firstly presented by
Nichael Cramer [I], but extended by John Koza [59] and greatly popularized in the be-
ginning of 1990’ thanks to his books [60), [61]. In the classical GP, individuals (potential
solutions) are tree-like structures (originally Koza used Lisp s-expressions) which are con-

venient to encode and ease interpretation. For example, mathematical expressions as well

"http:/ /www.gp-field-guide.org.uk/
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2. Genetic Programming

as programs written in many languages are directly or indirectly represented as trees.
However, such structures, despite being very simple and natural, have also certain draw-
backs. For example, when a solution requires many copies of some routine (a common
subprogram/procedure), the code has to be cloned many times in the individual. This may
be, in general, not easy to achieve using standard evolutionary operators like crossover or
mutation. Therefore, Koza proposed mechanism of discovering such reusable code frag-
ments — automatic defined functions (ADFs) [61], whereas Lee Spector proposed a similar
method — automatically defined macros [I17]. Such mechanisms simply extend the tree-
based structure to enable encoding of the useful subfunctions. For these and other reasons,
other variants of GP have been proposed with different representation of programs, e.g.
linear genetic programming [6] or cartesian genetic programming [92], which enable coding

graph-like structures (implicitly in the former case, explicitly in the latter).

As these methods have different properties than the canonical tree-base programs, the
choice of an appropriate method depends on the problem and experience of a researcher.
However, the canonical tree-based genetic programming, as proposed by Koza in his book
[60], is probably the most popular variant of GP, most intensely extended and analyzed
by researchers. This canonical version of GP became the ipso facto standard, thus all

methods presented in this thesis are also related to and compared to the canonical GP.

Somewhat similar approach for inducing programs is known as inductive logic program-
ming (ILP) [95]. ILP methods induce first-order Horn clauses from positive and negative
examples. The programs are generally represented in Prolog language. Even though both
ILP and GP construct programs, ILP is strictly logic-oriented and the induction is based
on a completely different approach (generalized rule-learning methods). Therefore, in this
thesis we will not consider ILP as it is a different paradigm for inducing programs. A
comparison of GP and ILP systems, as well as propositions of methods combing both

approaches may be found, e.g., in [122] 137, [13§].

GP as a computational intelligence paradigm has several unique properties that distin-
guish it from others. First of all, a solution is constructed from a problem-dependent set of
instructions (sometimes called functions). An instruction, when executed or interpreted,
performs some predefined calculations or takes some actions. The effects of processing
carried out by one instruction have usually direct impact on execution of other (typically:
subsequent) instructions by providing them with values of arguments or changing some
variables.

Another feature quite specific to GP is that execution of a program (a constructed
solution) is not a one-step process, but involves an entire sequence of actions (executions
of single instructions). Therefore, the final result of program execution is not the only
observable outcome; we can also observe intermediate states of program execution, i.e., the
results of executing parts of the program. This feature is very important and extensively

exploited in many semantic-aware approaches which rely on these intermediate states (see
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2.2. The Canonical GP Algorithm

Chapters for details and review).

The third property worth mentioning is that, in most cases, the task for a GP algorithm
is given in form of a set of fitness cases, i.e., pairs composed of input data (that should be
processed by programs) and desired output value (correct result or effect) for that data. In
this respect, a GP algorithm solves a supervised learning from example task, where each
example (corresponding here to fitness case) defines the correct ‘behavior’ of a classifier
(here: evolved program). A potential GP solution is evaluated on several (e.g., 20, but
sometimes several thousands or even more) independent tests, and the attained fitness
reflects how well the program solves all these tasks.

To sum up, a problem for GP is stated by defining three formal objects:
1. A set of functions (instructions) from which the solution should be built.

2. A set of rules telling how instructions can be assembled to form programs (syntax
rules). This may include rules that impose certain constraints on the set of ‘feasible’

programs, like maximal allowed program length (size of a solution).

3. A fitness function — i.e., the function to optimize. It is usually, but not always, given
as a set of fitness cases that specify the correct (expected) program outcomes, and
a metric measuring the similarity between these correct values and actual program

answers.

The first two points relate to the syntax of the allowed solution and are often common
among many different problems from the same domain. For instance, for the domain of
logic circuits synthesis, one can decide to use the same set of instructions containing logic
gates like AND, OR, and NOT. The last point is usually much more specific for the desired
program outcome. Although fitness function could also depend on non-behavioral aspects
of a program, like its syntax (e.g., costs of used instructions), that is quite a rare case that
will not be considered in this thesis.

Other evolutionary parameters that control the behavior of a GP algorithm, like pop-
ulation size, initialization method, presence or absence of elitism, probability of engaging
particular search operators (mutation, crossover), etc., can be obviously very important
for successful solving of a problem. It is nevertheless essential to emphasize that they are
not part of the problem itself. However, when solving specific problems, these parameters

often have to be tuned to attain acceptably good outcomes.

2.2. The Canonical GP Algorithm

The overall scheme of all evolutionary algorithms is very similar and consists of three
main stages: (1) generating an initial population, (2) assessing fitness, (3) generating a

new population. The last two steps are repeated until an ideal solution is found or other
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2. Genetic Programming

Algorithm 2.1 The Grow program initialization algorithm

1: procedure GROW(depth, maxDepth)

2 if depth = maxDepth then

3 return a randomly chosen terminal from the function set
4 else

5: n <— a randomly chosen instruction from the function set
6 k <+ expected number of children for n

7 fori«+1...kdo

8 child;(n) < GROW(depth + 1, maxDepth)

9: return n
10: end procedure

Algorithm 2.2 The Full program initialization algorithm

1: procedure FULL(depth, maxDepth)

2 if depth = maxDepth then

3 return a randomly chosen terminal from the function set
4 else

5: n < a randomly chosen non-terminal from the function set
6 k < expected number of children for n

7 fori<1...kdo

8 child;(n) < GROW(depth + 1, maxDepth)

9: return n
10: end procedure

stopping criteria are met (e.g., the algorithm runs out of the allocated resources, typically
time). Below, we describe these steps in more detail for tree-based genetic programming.

In canonical GP, individuals are represented as expression trees. Solutions in the initial
population are generated randomly from a given set of non-terminal instructions (which
may appear as non-leaf nodes in a tree; e.g., functions), and terminals (which may appear
as leaf nodes; e.g., constants or input variables). This process should not violate the
constraints imposed by task specification (e.g., the limit on the number of nodes per
tree/program, maximal tree height, etc.). One common method (proposed by Koza) is the

Grow algorithm that builds trees in the depth-first manner. In each step, the algorithm

Algorithm 2.3 The Ramped Half-and-Half program initialization algorithm
1: procedure RAMPED-HALF-AND-HALF(minDepth, maxDepth)
2 r <— a random real value from range [0;1)
3 d < a random integer value from range [minDepth; maxDepth]
4: if r < 0.5 then

5: return GRow(1,d)

6

7

8

else
return FuLL(1,d)

: end procedure

18



2.2. The Canonical GP Algorithm

Algorithm 2.4 Evaluation of an individual
1: procedure EVALUATE(p)
2 C < set of fitness cases
3 value < 0
4 for all c € C' do
5: result <~ EXECUTE(p, input(c))
6
7
8:

value < value + |result — output(c)|

return value
end procedure

selects randomly either a terminal instruction, if it is on the maximal allowed depth
(maxDepth), or any instruction (terminal or non-terminal) otherwise (see Algorithm [2.1]).
The Full algorithm is similar but it enforces building full trees by selecting only non-
terminals if the depth limit (maxzDepth) has not been reached (see Algorithm [2.2)).

Depending on the domain and problem, building full or non-full trees may be more or
less desirable. Determining the most appropriate population initialization method for a
specific problem may be hard, so the method of generating the initial population that is
most widely used in practice combines both these practices. Called Ramped Half-and-Half
(see Algorithm , it builds a tree by selecting one from the above two algorithms half
the times (iterations of recursive tree traversal) and selects the maximal depth randomly
from 2 to 6. Other, more complicated methods (like, e.g. PTC2 [82]) are less popular
despite the fact that they allow more detailed control of the tree building process.

The goal of the evaluation phase is to assess fitness of each individual in the population.
As introduced earlier in this chapter, individuals are usually tested on a set of fitness
cases. All of them are supposed to be correctly solved by a good solution. The evaluation
procedure executes (or interprets) a given program to obtain its results for each fitness
case. Then the procedure computes the disparity between the actually produced results
and the desired output values. A sum of these errors is treated as a minimized fitness
value. Often the returned value is additionally transformed by an equation 1/(1 + value)
to obtain a mazimized fitness value. In general, the particular errors can be aggregated in
more sophisticated ways but the simple sum is the most common approach. Algorithm [2.4]
shows a pseudocode of the most popular variant. The evaluation part of GP algorithm is
particularly tightly related to semantic aspect of evolved programs, and will be elaborated
on in Section 3.4l

The third phase — generating the new population — is the most complex stage that can
take different forms depending on the variant of GP algorithm and application domain.
However, there are some generally accepted practices which are most common in use.

A new population is created by breeding new individuals independently, one-by-one.
Each individual is bred by applying a breeding operator (reproduction, mutation, crossover),

selected with some predefined probabilities. Each of these operators selects a specific num-
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2. Genetic Programming

Figure 2.2.1.: The subtree mutation operator.

ber of individuals (parents) from the current population and produces a number of off-
spring (usually the number of children equals the number of parents). Parents are selected
with replacement from the current population by using some selection method. The most
popular one is the tournament selection or fitness-proportional selection (also known as
roulette selection). The first one returns the fittest individual from a small group (usually
3 to 7) of randomly drawn individuals. The roulette selection draws individuals from the
population with probabilities proportional to fitness values. The proportional selection is
sensitive to the absolute value of fitness, which could be calculated quite arbitrary. Also,
a single very fit individual is often selected by this operator and it can easily dominate the
population. Therefore, the tournament selection is widely recognized as safer and more

robust, and is more often used in practice.

Concerning the breeding operators, the reproduction operator is the simplest one — it
just makes a copy of the selected single parent and puts it to the newly created population.
When used together with a selection procedure, this operator preserves good individuals
(i.e. winning the selection procedure) without any modification so the genetic material

will survive without risking any potential destruction.

The mutation operator accepts a single parent and changes it in some, typically minimal,
way. In case of tree-like structures used in GP, a minimal alteration is to modify a single
node in the tree. However, this kind of mutation is rarely used in GP practice. Instead, the
most popular mutation operator replaces a randomly selected subtree in the parent with
a newly generated subtree (see Figure . The new subtree is built using one from the
methods used to generate initial population — most often it is the Ramped Half-and-Half
algorithm.

The crossover operator, as opposed to the previous ones, needs two parents. It randomly
selects one subtree in each parent and swaps them, producing so two offspring. Figure[2.2.2
illustrates this process. If only one offspring is needed (because, for instance, there is space
for only one individual in the new population), the second child is thrown away.

In contrast to genetic algorithms, the crossover and mutation operators in GP are usu-

ally not ‘chained’, i.e., the mutation operator is usually not applied to the product of
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2.2. The Canonical GP Algorithm

Algorithm 2.5 The Canonical Genetic Programming

1: procedure CANONICALGP

2 maxGen < maximal number of generations

3: popSize <+ population size

4 crossover Prob < probability of performing crossover
5 mutation Prob < probability of performing mutation

6: Py<+ 0 > initialize first population
7: while |Py| < popSize do
8: Py < PyU{ RAMPED-HALF-AND-HALF(...) }
9: Dbest < D
10: fitness(ppest)  —00
11: 10
12: loop
13: for all p € P; do > evaluate population
14: fitness(p) <~ EVALUATE(p)
15: if fitness(p) > fitness(ppest) then
16: Pbest < P
> check stopping condition
17: if i = maxGen — 1 or ppes is the ideal solution then
18: return ppes
19: P10 > create next population
20: while |P;11| < popSize do
21: r < a random real value from range [0;1)
22: if r < crossover Prob then > perform crossover
23: p1 < SELECTION(F;)
24: P2 < SELECTION(F)
25: 1, c2 < CROSSOVER(COPY(p1), CoPY(p2))
26: Pi1 +— Py U{a}
27 if |Pi+1] < popSize then
28: P11+ Py U{ea}
29: else if r < crossover Prob + mutationProb then > perform mutation
30: p < SELECTION(F;)
31: ¢ < MuraTION( COPY(p) )
32: Piy1 < Py U{c}
33: else > perform direct reproduction
34: p < SELECTION(F;)
35: Pty < Py U{ Copy(p) }
36: i+i+1

37 end loop
38: end procedure
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2. Genetic Programming

Figure 2.2.2.: The subtree crossover operator.

crossover. Rather than that, mutation is used independently, as one of available genetic
operators. It is worth to notice, that the mutation operator was not originally used in
Koza’s work [60], presumably due to large populations employed there. Only reproduction
and crossover operators were applied in that work (with, respectively, 10% and 90% prob-
ability). However, most of later studies have used mutation instead of the reproduction
operator. Therefore, in this thesis we adopt this standard and use only crossover and mu-
tation operators, without explicitly copying unaltered individuals. However, an implicit
copying of unaltered individuals can still occasionally happen because, when crossover or
mutation fails in generating children that fulfill given constraints (usually the maximal
allowed tree depth), the parent solutions are copied. Nevertheless, this feature is also
considered as a standard, and is implemented in, among others, the ECJ package [83] on
which the experimental part of this thesis is based on.

Another important remark is that the probabilities of operator engagement (crossover-
Prob, mutationProb) does not translate directly to the same proportion of individuals in
a new population created by this operator. This happens because a single application
of crossover produces two individuals at once. Therefore, if the probability of crossover
equals 0.5, there will be approximately 66% individuals produced by the crossover in the
new population. In general, the expected number of individuals produced by a crossover

operator is
2 - crossover Prob

- popSize
1 + crossoverProb pop ’

where crossover Prob is the probability of the crossover operator, and popSize is the size
of a population.
The pseudocode of the entire canonical GP is shown in Algorithm 2.5 To summarize,

the canonical genetic programming has the following main features:
e The evolved programs have form of trees,

e Individuals in the initial population are built using the Ramped Half-and-half pro-

cedure,

e Evaluation of a program consists of executing it for each fitness case,
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2.3. Review of Selected Applications of GP

Figure 2.3.1.: An evolved antenna for NASA’s Space Technology 5 (ST-5) mission. The
image comes from www.nasa.gov website.

e New individuals in the next population are created with either crossover, mutation,

or reproduction operators.

2.3. Review of Selected Applications of GP

As we mentioned in the previous section, GP can be considered as a machine learning
technique, so no wonder that its application areas, both actual and potential, are diverse.
There are many successful application of the genetic programming (and evolutionary com-
putation in general). Some of the most spectacular results are presented at the annual
“Humies” competitions organized since 2004 at the Genetic and Evolutionary Computation
Conference (GECCO [107]). The goal of “Humies” is to award a human-competitive results
produced by a genetic or evolutionary computation. In short, the human-competitiveness
is defined as being at least as good as human-created solution that is considered as an
achievement in a given field.

One example of such field is quantum computing. It turns out that genetic programming
is able to evolve system-size-independent quantum algorithms such as, for example, the
Quantum Fourier Transform algorithm presented by Paul Massey et al. in [85]. In 2004
Lee Spector won (ez aequo) the competition for the work on automatic production of
quantum computer programs [118].

Jason Lohn et al. won ez aequo the second first prize of the same “Humies” edition with
an evolved X-band antenna which was deployed on NASA’s Space Technology 5 spacecraft
[78]. Figurepresents this antenna; despite its unusual, asymmetric shape, it turns out
to have excellent properties. One year latter, Preble et al. used genetic programming to
evolve structures of photonic crystals with maximal band gaps, which enable the control
of the flow of light on nanoscale [106]. In [62], Koza et al. used GP to automatically

synthesize complete designs for optical lens systems which duplicates previously patented
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solutions. Most of the evolved systems do not infringe the previous patents and some of
them are completely novel designs.

Hod Lipson demonstrated in [77] the ability of GP to synthesize compound 2D kinematic
mechanisms. He tested it on classical kinematic challenges of 19th century mechanical de-
sign. Latter, Michael Schmidt and Hod Lipson published in Science a paper [113], which
shows that automatic discovery of physical laws is possible even without any prior knowl-
edge about physics, kinematics, or geometry. Their GP algorithm successfully discovered
Hamiltonians, Lagrangians, and other invariants and laws of geometric and momentum
conservation.

Genetic programming was also successfully applied in biology. In [135] Widera et al.
evolved the protein energy function used in protein structure prediction. The energy
function, built by combining a set of expert-designed energy terms, correctly distinguished
good and bad candidate structures.

In computer vision, GP was successfully applied e.g. to generate a low-level image
feature extractor and visual object recognition. Krawiec in [65) [67, 68] demonstrated
competitive performance for real 3D object recognition both in visible spectrum and in
radar modality. In 2006 Trujillo and Olague presented an evolved interest point detector
[124] which exhibit state-of-the-art performance. Two years letter, Perez and Olague in
[103] showed an invariant region descriptor which could be better than solutions applied
on e.g. the SIFT descriptor. In 2008, Kadar shows an automatically constructed boundary
detector for natural images [52].

Weimer et al. in 2009 won first prize in “Humies” for a system to automatically finding
and repairing bugs in real software written in C language [I34]. Their approach did
not require any formal specifications or program annotations, and it worked for off-the-
shelf legacy applications. This work had been appreciated by the software engineering
community and won both the distinguished paper award and the IFIP TC2 Manfred Paul
award on the 31st International Conference on Software Engineering (ICSE is the premier
software engineering conference). Orlov and Sipper in [102] presented a methodology for
evolving bytecode of unrestricted Java programs. These works, and the paper by Forrest
et al. [28], clearly show that genetic programming can be used not only to repair real
world computer software written in popular languages, but also to construct computer
programs from scratch.

Games are another quite popular area of GP applications. In 2007, Hauptman and
Sipper [42] presented a GP approach for the Mate-In-N problem in the game of chess
(finding such a move that the opponent cannot avoid being mated in N moves). Two years
letter, Hauptman et al. [41] demonstrated the ability of GP to beat human players as well
as the human-designed algorithms in the Rush Hour puzzle.

Genetic programming can be successfully applied also in pure mathematics. In [120],

Spector et al. described the production of human-competitive results in the discovery of
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complex algebraic terms that fulfill certain constraints (mathematicians knew that the
terms exist, but could not find them analytically). Alex Fukunaga in [32] applied GP
to construct an automated heuristic discovery system: GP evolves local search heuristics
that are subsequently used to solve instances of SAT (Boolean satisfiability) problem.
KHosraviani et al. [55] applied GP techniques to find nearly-optimal design of project
organizations.

There are a lot of other successful application of genetic programming. Several dozen
results generated automatically by GP are human—competitiveﬂ More than twenty of
them infringe or duplicate the functionality of previously patented inventions. A reader
interested in a more thorough review of most prominent GP achievements is referred to
[T05, (10T, (109} [110).

?both [63] and http://www.genetic-programming.com/humancompetitive.html (data from December
2003) present 36 results
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3. Semantics of Genetic Programs

3.1. Motivations

Before introducing the semantic perspective for GP, we should present the rationale for
this particular research direction. In other words, why taking into account the semantic
properties of evolving programs and appropriately redesigning the algorithms is worth any
attention in the first place?

A short answer to this question is that a typical GP task comprises much more than
an optimization task. However, because GP is usually perceived only as a mere variant of
evolutionary algorithm, many researchers tend to adopt the “conservative” optimization
perspective, in which problem instance is defined by a domain (search space) and a function
being optimized within that domain. In particular, it is assumed that the search algorithm
knows very little about that function, and querying it is the only allowed action. In this
sense, the function being optimized is a black-box oracle.

An important tenet of this thesis is that applying this stance to GP is utterly wrong and
leads to unnecessary complexity. In fact, in virtually all GP problems the fitness function
is based on a metric that captures the discrepancy between the actual program output
and the desired program output (c.f. Section . Usually, the knowledge about such
target output could be utilized to improve the performance of a search process.

Secondly, the solutions considered in GP are programs, and programs are compositional
by nature. By this we mean that a set of elementary components (instructions) is given,
and any solution is a composite of these components. As a consequence, a solution can
be decomposed into parts, which can be analyzed independently. It may not make sense
to evaluate them using the fitness function, but in most cases they can be independently
executed.

The above features make GP tasks quite specific when compared to arbitrary optimiza-
tion and learning tasks. The methods proposed in Chapters [6] and [7] make extensive use of
these features, which, as the experimental part later demonstrates (Sections , leads to
substantial benefits in performance. In particular, the following section provides a broad
view of the semantics and especially its forms in the genetic programming. The next
section will try to classify semantics in respect to some important properties, and then in
following section we present the definition and properties of the concrete semantics in the

form as used in this whole thesis.
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3.2. Overview of Understanding of Semantics in GP

The word semantics is defined in dictionaries as the meaning, or an interpretation of the
meaning of a symbol, word, sign, facial expression, etc. Alternatively, in linguistics it is
the study of relationships between sentences of words and their meanings [22].

In computer science, the term ‘semantics’ is mainly used in the context of programming
languages and it refers to the meaning of a language construct, as opposed to syntax
that deals with the form of programs (program code). In theory of formal languages, the
meaning is often described using operational or denotational semantics. The operational
semantics defines the meaning of a concrete programming language construct as the com-
putation it induces (i.e., what are the operations that get executed when the program is
run). Therefore, this notion of semantics describes how the effect is produced. In contrast,
the denotational semantics models the meanings by mathematical objects representing the
effect of executing, and is not interested how it is produced.

In the context of genetic programming, semantics usually refers to a description of what
a program does, i.e. what are the effects of execution of an entire program or its constituent
components (subprograms or even individual instructions). However, in a loose form, the
semantics could, if reasonable, incorporate some information not strictly related to the
behavior but describing the program itself.

Let us notice that there is a nice parallel between the evolutionary aspects of GP and
the syntax-semantics divide. Namely, the code (syntax) of a program can be treated as
individual’s genotype, while its meaning (semantics) can be likened to individual’s behavior
(phenotype). This convention has been widely used in GP literature ([I4, 49, [86]), and
seems to be quite broadly accepted by the major researchers in the field, so we will adopt
it in this thesis.

In the GP literature, program semantics has been defined in at least three ways:
e as a canonical representation of a program [§],
e a list of program’s responses to some input data [125], and
e as fitness value [I11].

In following, we describe these alternative approaches.

Using a canonical representation of a program means that all programs giving equivalent
results (e.g., functions returning the same value) are encoded in one designated form. In
the task of logic functions (circuits) synthesis, this form can be a Reduced Ordered Binary
Decision Diagram (ROBDD) that represents a genome itself or is used at a phenotype
level [7]. Also for symbolic regression tasks, it is possible to develop appropriate canonical
representation (see e.g. [I39]). A canonical representation has the advantage that each
individual identifies one unique behavior. However, it may be (and in practice mainly is)

still hard to analyze such canonical forms thoroughly if they have a complicated structure
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like trees or graphs (e.g. like ROBDDs). Therefore, usually only a simple equivalence
checking is performed.

Another representation of semantics might be a list of pairs consisting of input data and a
result computed by a program in effect of processing of these data. Such semantics is called
sampling semantics because it describes the behavior of a program only for a finite number
of cases (different program inputs). As the set of used input data is usually common among
computed semantics, this representation reduces just to a list of produced outputs. For
instance, in symbolic regression tasks it will be a vector of numbers. Comparing such
semantics boils down to comparison of two vectors, which can be defined much simpler
than comparing lists of pairs with arbitrary input data.

The input data used to calculate such sampling semantics may be randomly chosen
from an appropriate problem domain (like in e.g. [98]) or may be fixed and come with a
problem, as a part of problem definition (e.g. [69]). The key feature of this representation
is that the list has generally constant length and, more importantly, its elements have
simple structure and thus the entire semantics are quite easy to analyze.

The elements of sampling semantics do not necessary have to be scalars — they may
be also matrices etc. For example, in an image processing task a single element of such
semantics may be an image produced by a program. Moreover, in general the elements of
sampling semantics may have even different types: some of them may be integers, some
reals, other matrices or nominal values. However, this would be a very exotic scenario
with limited applicability, so for the sake of this thesis, we will assume that all elements
of sampling semantics are of the same type.

The third interpretation of program semantics present in the GP literature is just a sin-
gle scalar. In this simplest case, the semantics may be identified by, for example, a fitness
value, or a phenotype identifier. Thus, from this point of view, even the canonical GP
(described in Section use extremely degenerated semantics as the fitness value is used,
e.g., in selection phase. However, such exceedingly reduced description makes more thor-
ough analysis of programs behavior impossible, and therefore such kind of extraordinary

meaning of semantics will not be considered in further part of this thesis.

3.3. Classification of Semantics

Before formally pinning down the definition of semantics to be used in this thesis, it is
worth considering this concept in a more abstract form. To this aim, in this section we
discuss the forms of semantics and their properties.

Firstly, semantics could fully describe a behavior of a program in such a way that it
explains how a program will work in any admissible conditions, for any possible input data,
etc. This would be the case for, e.g., operational and denotational semantics mentioned

in the previous section. Such complete semantics may seem very desired, however it has
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some disadvantages too. If the space of all possible program behaviors is huge, then a
complete semantic description may also be very long as it has to be able to explain any
possible program from this space. In a consequence, such exact semantics may be used
only for a reasonably small space of phenotypes, otherwise it will be useless in practice.
It should be emphasized that analyzing the complete semantics is generally as complex as
analyzing a raw phenotype and therefore has hardly any advantages. This statement is
true despite the fact that in some situation a description of a sophisticated program could

be very simple and succinct.

Let us illustrate the above observations with exemplary programs that accept a vector
of real numbers. Denotational semantics of any sorting algorithm applied to a vector
x of numbers may be written as Vi < j : x; < x;j, no matter how many numbers are
being sorted. However, it should be noticed that even though this particular program (an
algorithm which sorts numbers) has so simple and easy to encode semantics, many other
programs will have much more complex semantic description. An example of such program
is a program solving a kind of a ‘needle in a haystack’ problem, where the task of the
program is output the logical value true only for a unique combination of input values v. Its
semantics requires enumerating individually all variables: z1 = v1 Axo = va A... Axy = Uy,

and it is very unlikely that this description can be reduced to any simpler form.

In contrast to the complete semantics, it may be worth considering also several types
of incomplete semantics which may describe a program behavior in an non-exhaustive
manner. We say that semantics is partial if it describes behavior of a program only
for a subset of all possible conditions (inputs) and says nothing about how it works in
others. Semantics can be inexact when a description itself is not precise due to, e.g., value
quantization or using linguistic terms like ‘small’ or ‘big’. If this is not the case, i.e., the

description is precise, we say that such semantics is exact.

In this thesis, we are interested in semantics as a means for guiding the evolution
in the right direction. This means that an adopted form of semantics has to make it
possible to construct a function to evaluate or to compare such semantics. In evolutionary
perspective, useful semantics has to contain enough information, meaning that it should
well characterize at least those aspects of a program which are evaluated and used to
calculate its fitness value. Semantics that meets this requirement will be called sufficient
in this thesis. For example, a sampling semantics constructed on a basis of fitness cases,
i.e., examples that come as a part of problem specification (such sampling semantics is
formally defined in the following section, see Definition , is definitely sufficient, because
it allows to calculate the fitness value directly. It is worth to notice that an incomplete
semantics may be sufficient, which is also the case here (in general, sampling semantics is
partial by definition).

In contrast, a sampling semantics calculated for a random set of input data (e.g., random

function arguments in the case of symbolic regression) is usually an example of insufficient
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semantics because the correct output values for these points are usually not known. In gen-
eral, all forms of semantics which do not contain all aspects taken in evaluation procedure
are insufficient. Of course, the terms sufficient semantics and insufficient semantics do
not prejudge whether a particular form of semantics will be useful for evolutionary search
— for instance, insufficient semantics may be used to increase diversity in a population,
or to make a crossover operator which works more locally (e.g., see Section [5.3).

A semantic representation that is sufficient may be enriched with more information
that is not explicitly used to evaluate the program. Such additional information may be
helpful for, e.g., capturing differences between individuals, and exploited by evolutionary
algorithms in various genetic operators, e.g. to diversify a population. Such semantics
enriched with additional program’s description is augmented in the sense that it allows
deeper investigation of the individual, not only focusing on properties strictly optimized
in the given problem, which is the case in standard GP.

For example, when a programming language involves memory, e.g., registers or variables,
semantics may be enriched with state of memory. This means that program’s behavior
may be described not only by the single final output but also by the final values of all other
auxiliary variables created/used by a program, or even some intermediate (i.e. historical)
values of them, to reflect the process of calculation the final value (see [66] for an example

of such approach).

In case of symbolic regression, the roles of augmented semantics could be played by
derivatives calculated at given points or program’s responses to supplementary (i.e., not
included in the original training set) input data. Such sensible additional information may
be useful because many quite different programs (i.e., evolved mathematical equations)
may have similar values for given fitness cases and, in consequence, they are hardly dis-
tinguishable without augmented semantics. For instance, the expression fi(z) = = and
f2(x) = 23 are indistinguishable for a set of fitness cases x € {—1,0,+1} because both
functions have equal values for these three inputs. However, functions values for other x
(x ¢ {—1,0,+1}) and derivatives for any z are different for f; and fo function. For an-
other example, when the task is to evolve a controller for the fastest race car [123, [79, (1], it
seems reasonable to include in semantics not only the total lap time but also information
about number of collisions, number of overtook cars, or whether a car got into a skid, etc.

To sum up, additional elements of augmented semantics may include general properties
such as length of a program, or some expert designed properties suitable in given problem.
Gustafson et al. in work [37] proposed some other elements which could be included in
such kind of semantics.

Exploiting any semantics more sophisticated than a single scalar value seems a bit like a
kind of multi-objectivization (see Knowles et al. [57]), where each element of used semantics
corresponds somehow to a different criterion. In particular sufficient semantics is similar

to multi-objectivization via the decomposition of the original objective [39], whereas the
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Canonical form Sampling semantics Fitness value
behavior description perfect fair extremely rough
complete v X X
partial X v v
exact v v X
sufficient v v [69], X[98] v

augmented 4 (but easily extendable) x
equivalence testing v v v
similarity measure  difficult to define standard norms v

(Euclidean, city-block, etc.)

Table 3.1.: Characterization of different forms of semantics present in literature in terms
of the properties proposed in this thesis.

augmented semantics may be perceived as multi-objectivization via the addition of new
objectives [13]. However, in this thesis we will use neither any specialized multi-objective
optimization algorithms nor any method of dynamically changing selection pressure (e.g.,
as in implicit fitness sharing proposed by Smith et al. in [I15]). Moreover, all methods
described in this thesis (Chapters focus on semantics as a whole, treating evenly all
elements of semantics representation, and they use semantics in the process of program
construction (initialization and breeding operators — see Section , not in the selection
phase.

To summarize, we proposed here a set of properties that seem to be helpful for character-
izing different aspects of semantic description of programs. According to this, a semantic

of a program can be:

complete — fully and precisely describes behavior of a program in any admissible con-
ditions,

partial — describes a program results only in some subset of all possible situations,

exact — accurately describes behavior for presented situations,

sufficient — allows to guide an evolution process in direction defined by the problem

itself (i.e., is consistent with used fitness function),

augmented — contains additional information not necessary connected with aspects of

program evaluated by fitness function.

Table compares the three types of semantics presented in the previous section in
terms of the features discussed above and the features defined in the following section
(equivalence testing and similarity measure). It is clearly visible that the canonical repre-

sentation perfectly describes behavior of any program. However, it has one fundamental
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drawback — it is hard to define a meaningful similarity measure for it (i.e., such that it
correlates with the similarity of behavior/output of compared programs). On the other
extreme, the fitness value is easy to compare, but it describes the program behavior very
roughly, preventing a deeper investigation of program properties.

Between these two extremes lies the sampling semantics, which offers a reasonable com-
promise. On the one hand, sampling semantics are easy to compare, on the other hand,
the precision of description can be adopted by simply increasing or decreasing the number

of elements. Therefore, in following we concentrate only on this kind of semantics.

3.4. Definitions

In this thesis, we employ the variant of sampling semantics that is calculated from the
fitness cases (i.e., training data that come with problem specification). This might suggest
that we constrain our considerations only to problems which define a set of fitness cases,
but this is not true. Indeed, this thesis presents only results obtained on such problems
(all used benchmarks are presented in Chapter , however all proposed algorithms are
generic and nothing stands in the way of applying these methods to other problems and,
after defining appropriate metrics, with other forms of semantics.

In this section we present the necessary definitions related to the semantics in the form

used in this thesis. Lets start with the general definition of fitness cases:

Definition 1. A set of fitness cases is a set of pairs
C={(zi,y;):i=1,...,N},

where z; and y; are, respectively, the i*" input datum and the correct (desired) result
for these datum, and N is the number of fitness cases. In statistical terms, the former

correspond to independent variables, while the latter to the dependent variables.

In general, both x; and y; may be either scalars, vectors, matrices, or anything else,

whatever is appropriate for a particular problem.

Definition 2. A sampling semantics of a program p based on a set of fitness cases C' is

a list of actual results calculated by p:

S(p) = [Si L5 :p(xl)v (xzvyl) € C]v
where p(x;) is the result calculated by program p for input data z;.

Alternatively, we could consider a form of sampling semantics that is not based on a
set of fitness cases. In such a case, the values of z; could be randomly drawn from an

appropriate domain, and the number of elements of such semantics would not necessary
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Fitness case | Program output
R Yi 8;
11]-0.5 -0.125 0.5 — p(z) =222
2| 1.0 1.000 2.0 = s(p) = [0.5,2.0,4.5,8.0]
3] 15 3375 4.5
41 2.0 8.000 8.0

Figure 3.4.1.: An example of symbolic regression problem (defined by a given set of fitness
cases) and the calculated sampling semantics for program p(z) = 222.

be the same as the size of C. However, in this thesis we will use only sampling semantics
based on fitness cases, so |s(p)| = |C|.

For brevity, in following we will use terms ‘semantics’ and ‘sampling semantics’ inter-
changeably, but always in the meaning ‘sampling semantics based on the fitness cases’.

We want to emphasize that sampling semantics as defined above is restricted to describe
only the final output of a program, and it does not tell anything about how the result
was obtained. Therefore, two programs calculating the same results but in completely
different way cannot be distinguished by means of this form of semantics (see discussion
about augmented semantics in Section .

Figure [3.4.1] shows an example of symbolic regression problem, an exemplary program,
and the sampling semantics of that program. The problem is given by the set of fitness
cases (determined by function y = 3, which is however irrelevant here). The shown

sampling semantics is calculated for program p(z) = 2.

Definition 3. Two semantics s; and s are considered equal, iff

Vi, |81, — s2,i| <€,

where s1; and so; are i™™ elements of semantics s; and S92, respectively, and ¢ is a small

tolerance threshold.

An important consequence of this definition is that equality of sampling semantics is
reflexive, symmetric, but not transitive. However, such approximate equality relation has
been already proposed in literature [98], 99, [125] because it is very useful and sufficient in
practice. In all our experiments we set ¢ = 1.11 - 107! (the same value as used in ECJ
[83] package) to eliminate the floating point accuracy problems. Thanks to this, we can
safely assume that mathematically equivalent expressions have equal semantics.

To avoid separate definitions for Boolean domain, in following we will identify the logical
values true and false with numerical values 1.0 and 0.0, respectively. In this way, the
above equality definition is valid also for Boolean problems, and it says in practice that

two Boolean semantics s; and s are equal iff Vi, s1; = s2;.

Definition 4. A distance d(s1, s2) between two semantics s; and sz is
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N
d(Sl,Sg) = ||.5’1 - SQH = Z |51,i — 52ii| (341)
i=1
where s1,; and sy; are ith elements of semantics s; and sy respectively, and || - || is an

assumed L (city-block/Manhattan) distance metric.

Again, replacing logical values true and false with numerical constants 1.0 and 0.0,
respectively, the distance defined above is valid for Boolean domain, and it is equivalent

to the Hamming distance.

It is often convenient to describe algorithms using the concept of similarity between two
semantics rather than distance between them. Founding a similarity measure on distance
obviously requires an appropriate transformation. For the sake of the argument, we can

assume that these two quantities are related in the following way:

1

TFdlsisn) A(s1.52)" (3.4.2)

similarity(sy, s2) =
However, the particular form of mapping distance to similarity is of secondary importance,

as it is not explicitly used in the algorithms proposed in this thesis.

It is important to notice that in most genetic programming problems that define the
set of fitness cases, the task may be defined in the form of target semantics. The target
semantics may be defined as our sampling semantics, but it contains expected (correct)
results instead of outputs from some real program. In other words, the target semantics
is the sampling semantics of an ideal program (potentially only a hypothetical one) which

solves a given problem perfectly.

For such problems, the minimized fitness of an individual is usually calculated as a
difference between the semantics of the individual to evaluate and the target semantics ¢
(cf. Algorithm [2.4)):

F() = d(s(p). ). (3.4.3)

Alternatively, if it is more reasonable, the mazimized fitness value can be calculated as:

f(p) = similarity(s(p),t). (3.4.4)

Therefore, it seems reasonable to use a definition of distance between two sampling
semantics which is the same as the one used in a fitness function imposed by a problem.
The methods proposed in this thesis neither require nor exploit this property, nevertheless,

all benchmark problems have such compatible fitness function.
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3.5. Summary

In this chapter we presented the concept of semantics in genetic programming. Possible
formalizations of this notion and their properties have been discussed. From the wide range
of possibilities we decided to concentrate on the sampling semantics, which is a compromise
between precision (meant as the extent to which semantics reflects the behavior of a
program) and the capability to analyze and compare such semantics.

The sampling semantics based on fitness cases, which will be used throughout this thesis,

might be characterized as:

e partial — because the description might be incomplete if the set of fitness cases does
not cover the whole domain (sampling semantics does not describe actual program
output for other values of independent variables); however, for Boolean problems
from our benchmark suite (see Section , the set of fitness cases contains all
possible combinations of input variables, therefore, the sampling semantics for this

case will be complete,

e accurate — values for all given fitness cases are calculated precisely (strictly speaking,

up to the floating point precision provided by computer implementation),
e sufficient — it describes all aspects evaluated by a fitness function.
For sampling semantic, we can easily define two essential formalisms:
e equivalence relation — checked with an € tolerance threshold,

e similarity function — measured as a sum of absolute differences between correspond-

ing semantics elements.

Importantly, for any pair of semantics, verification/calculation of the above quantities can

be done at low computational expense, linear with respect to the number of fitness cases.
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4.1. Introduction

In the subsequent chapters of this dissertation, we propose a family of semantically ex-
tended GP algorithms that are expected to outperform standard GP methods. To verify
this hypothesis, the algorithms will be compared on a representative sample of problem
instances. Because the experimental framework we built for that purpose is common for
all the proposed approaches, it is presented in this separate chapter, to avoid unnecessary
repetitions.

This practice of benchmarking, meant as comparing algorithms on a representative
sample of problem instances, is common in computational intelligence, and, as a matter
of fact, the only reasonable one. Testing the algorithms on all problem instances is not
only computationally infeasible, but also, according to the No Free Lunch theorem [136],
has to be inconclusive, as the expected outcome of all optimization/learning algorithms
on the entire universe of problems is exactly the same.

Unfortunately, there is a lack of strict standardization and appropriate rigor of bench-
marking [88], and in consequence it is often difficult to compare different approaches.
Therefore, within the last two decades, the community of GP researchers informally elab-
orated a set of benchmarks that became a de facto standard gauge of algorithm quality.

These benchmarks can be grouped into several classes:

e Symbolic Regression — the aim is to fit a (generally real-valued) mathematical
formula to a set of given measurements; the most commonly used problems are

synthetic functions, especially polynomials like quartic,

e Predictive Modeling — tasks similar to symbolic regression, but here the goal is to
create a function which will predict future values of a data series basing on historical

values; Mackey-Glass Chaotic Time Series [76] is one of the more popular one,

e Classification — essentially equivalent to the paradigm of supervised classification
via learning from examples in machine learning; the task is to classify objects into a
predefined set of (two or more) decision classes; this is usually done by evolving an
expression whose output value (possibly after thresholding) indicates the resultant

class identifier; tasks from the UCI repository [29] are often used here,
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e Boolean (Logic) Function Synthesis — the aim is to synthesize a logic expression
(Boolean circuit, usually acyclic) consistent with a given truth table; the even parity

or multiplezer [60] are the most popular benchmarks,

e Path Finding and Planning — the goal is to plan a path and to control some agent
in a way which maximize some criteria; the most often used problem is the Artificial
Ant [60].

Less popular, but also found in literature, benchmarks include: a class connected with tra-
ditional programming like sorting or automatic bug fixing, specially constructed problems
testing some aspects of investigated methods like Max problem.

In this thesis, presented algorithms are evaluated on 39 different problems belonging to
the two most popular classes of benchmarks: symbolic regression and Boolean functions.
According to McDermott et al., these two classes of benchmarks are used, respectively,
in about 33% and 15% of survived 172 articles in [87]. Following sections describe those
problems in details and present evolutionary parameters which are commonly used in our
experiments. In particular, in Section [4.4] we provide experimental results which suggest
that selecting fitness cases randomly for each evolutionary run is not a good practice,
although such a procedure is common in the GP community. Based on these results, we
decide to use a fixed set of fitness cases in the subsequent chapters. The last section of
this chapter introduces criteria used to evaluate performance of proposed algorithms and

presents statistical tools used to compare algorithms with each other.

4.2. Benchmark Suite

4.2.1. Symbolic Regression Domain

The set of symbolic regression problems used in this thesis is presented in Table
Problems FO1-F12 are borrowed from Nguyen paper [126] (half of them Nguyen took from
[44, 54, 50]), and the rest, except the problem RO introduced here, come from Krawiec
and Wieloch work [72]. Within these, the F02-F04 problems are the most widely studied
within GP, so-called quartic, quintic, and sextic polynomials [60, [61]. The table shows
the ‘hidden’ equation to discover (Target program), the number of independent variables
(Vars), the range from which they are chosen (Range), and the number of fitness cases
(points) both for training and testing sets.

A program is treated as an ideal solution if it returns correct values for each fitness case
from the training set with a 1.11 - 107% tolerance (i.e., if its sampling semantics is equal
to the target semantics; ¢f. Definition of sampling semantics equality). This
tolerance threshold is introduced to deal with the floating point imprecision. Without this
assumption, even an expression mathematically equivalent to the target program could be

found non-optimal (i.e., having a non-zero value of minimized fitness function).
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4.2. Benchmark Suite

Target program (expression) Vars Range Training Testing
FO1 B+ 1 [—1;1] 20 200
F02 423+ 2%+ 1 [-1;1] 20 200
F03 P+t +ad+ a2tz 1 [—1;1] 20 200
F04 S +ad+at+ad+a?+a 1 [—1;1] 20 200
FO05 sin(2?) cos(z) — 1 1 [-1;1] 20 200
F06 sin(z) + sin(x + 2?) 1 [—1;1] 20 200
Fo7 log(z + 1) + log(z? + 1) 1 [0;2] 20 200
F08 x 1 [0;4] 20 200
F09 sin(z) + sin(y?) 2 [0.01;0.99] 100 10000
F10 2sin(x) cos(y) 2 [0.01;0.99] 100 10000
F11 xY 2 [0.01;0.99] 100 10000
F12 ot -3+ 22—y 2 [0.01;0.99] 100 10000
P1 28 — 22 + 22 1 [-1;1] 20 200
P2 27 —225+ a5 —at 42 —222+2 1 [—1;1] 20 200
P3 2%+ +a"+ab+adb+at+ad+atra 1 [—1;1] 20 200
RO (z—-1)/(z*+1) 1 [—151] 20 200
R1 (x4+1)3/(2? =z +1) 1 [—1;1] 20 200
R2 (z° — 323 + 1)/(552 +1) 1 [—151] 20 200
R3 (@ +a2%)/(z* + 23 + 22 + 2+ 1) 1 [—1;1] 20 200

Table 4.1.: Symbolic regression functions used in experimental part of this thesis.
columns present the number of independent variables with ranges of allowed
values, and numbers of fitness cases in both training and testing set.

The
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4. Algorithm Evaluation Framework

The points of fitness cases are evenly distributed in appropriate domain. This means
that the values are evenly spaced in a given closed interval shown in Table [{.I] with the
extreme values placed on the interval boundaries. For univariate problems, this implies
that the difference between any two consecutive points equals (b —a)/(k — 1) for k points

in range [a; b].

In case of bivariate functions the values of both variables lie on an evenly spaced square
lattice. For instance, in case of 100 points, both « and y have one from 10 possible,
equally spaced, values. This, however, may cause problems. For that instance, if the
variable ranges were [0;1] for F11, then a substantial number of fitness cases (nearly
40%!) would hit on special arguments of the objective functions (i.e. 0v, 1%, 20, or z1).
This may render evolution unable to escape from even very simple local optima. Therefore

we slightly narrowed the original [0; 1] interval to [0.01;0.99].

The problem mentioned above does not exists in the original problem formulation with
[0;1] interval as in paper [I126] because Nguyen et al. (as most researchers) have used
randomly selected points uniformly distributed in this range. However, as shown in Sec-
tion [£.4] we have strong evidence that such selection of fitness cases is not a good practice

and therefore we decided to use evenly distributed points.

Testing set is created analogously to training set, i.e., the points are also evenly, but
are much more densely distributed in the same domain. For this reason, both training
and testing sets are not disjoint. From the specific ranges and the number of fitness cases
(presented in Table it appears that for all univariate problems exactly two points
(the extreme values from interval boundaries) are common for training and testing sets.
However, in case of bivariate problems, the testing set contains all training fitness cases
(and 9900 others).

For univariate problems, the terminal set contains two elements: z — the independent
variable, and a constant 1.0. For bivariate problems there are two terminals: z and y
— the independent variables, without the constant 1.0. Though the lack of constants for
bivariate problems may seem surprising, let us note that it has been shown many time
that GP fares pretty well without any constants at all, as evolution can easily come up

with the idea of using subexpressions like x/x or x — x instead of constants.

The set of non-terminal instructions consists of eight functions: 4+, —, x, / (protected),
sin, cos, exp, log (protected). The protected version of division returns 1.0 if the de-
nominator equals zero, irrespective of the numerator. The protected version of logarithm
returns 0.0 if its argument equals zero, otherwise it returns the logarithm of the absolute

value of its argument.

Let us note that the provided set of terminal and non-terminal instructions allows
expressing all target functions presented in Table In other words, for every benchmark

problem, an optimal solution is present in the considered solution space.
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4.2. Benchmark Suite

4.2.2. Boolean Domain

In the Boolean domain, four different problems will be used: even parity, multiplexer,
majority, and comparator. First three of them come from Koza’s book [60], and the last
one is a simplified version of a digital comparator proposed in Walker and Miller paper
[128].

In following, for Boolean problems, we will use the term ‘argument’ or ‘bit’ in the same
meaning as ‘independent variable’ was used in the symbolic regression context in the
previous section.

The objective of even parity (PAR) problem is to synthesize a function which returns
true if and only if an even number of its arguments are true. PAR can be alternatively
seen as a generalization of the not-exclusive-or function to more than two arguments. In
this thesis, specific instances of this benchmark problems will use 4, 5, and 6 bits (i.e.
with 4, 5, or 6 input arguments), and will be denoted as PAR4, PAR5, and PARG.

In multiplezer problem, program arguments are divided into two blocks: address bits
and data bits. The goal is to interpret the address bits as a binary number and use that
number to index and return an appropriate data bit. We consider two variants of this
problem — 6-bit (MUX6) and 11-bit (MUX11). In the former we have 2 address bits and
4 data bits. In the latter — 3 and 8 bits, respectively.

The task in majority problem is to create a function that returns true if more than half
of input arguments are true. Note that for even number of arguments, the function should
return false if exactly half (or less) of them are true. We consider three variants of this
problem: with 5 bits (MAJ5), 6 bits (MAJ6), and 7 bits (MAJ7).

The last Boolean problem used in this thesis is comparator. The objective here is to
bisect arguments into two equally-sized subsets, interpret them as two binary integer
numbers, and return true only if the first number is greater than the second one. We
used six (CMP6) and eight (CMPS8) bits variants, which means that we compare 3-bits
numbers (CMP6) or 4-bits numbers (CMPS).

In Table [4.2] all ten problems are shown together with the number of fitness cases on
which solutions will be evaluated. Because the training set contains all possible combina-
tions (2numberOfBits) "there is no testing set. A solution is considered as an ideal only if it
returns correct result for all fitness cases.

A set of terminals used in Boolean domain experiments contains one terminal for each
input bit. For this domain, we consider two function sets (non-terminal instructions):
{AND, OR, NOT, IF} and {AND, OR, NAND, NOR}. If the first set is used, the name
of a problem is prefixed with “I”, if the second set — with “N”. In this way, we have 20

different problems in total:

e Using AND, OR, NOT, and IF functions: IPAR4, IPAR5, IPARG, IMUX6, IMUX11,
IMAJ5, IMAJ6, IMAJ7, ICMP6, ICMPS,
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4. Algorithm Evaluation Framework

Problem Instance Bits Fitness cases

PAR4 4 16

even parity PARS 5 32
PARG 6 64

multiplexer MUXG6 6 64
MUX11 11 2048

MAJ5 5 32

majority ~ MAJ6 6 64
MAJ7 7 128

comparator CMP6 6 64
CMPS8 8 256

Table 4.2.: Boolean problems.

e Using AND, OR, NAND, and NOR functions: NPAR4, NPAR5, NPAR6, NMUXG6,
NMUX11, NMAJ5, NMAJ6, NMAJ7, NCMP6, NCMPS.

Considering two function sets has historical origins. In Koza’s book [60], only the multi-
plexer benchmark uses the first function set containing the IF function, and the others use
the second set with negation of AND and OR. However, for completeness, we use both
sets for all problems.

Similarly to regression problems, also for this domain solutions to all aforementioned

problems can be found in the assumed solution space.

4.3. Evolutionary Parameters

Experiments shown in this thesis, are based on the canonical genetic programming with
appropriate modifications introduced by the proposed methods. When not stated oth-
erwise, parameters of the evolution used in these experiments are shown in Table
These parameters are based on Nguyen’s work [98] 99, [125]. Parameters not mentioned
by Nguyen, are taken from ECJ [83] package and are based on parameters originally used
by John Koza [60, 61].

Most experiments presented in the remaining part of this thesis will aim at assessing
the influence of various search operators on the conduct and final outcome of evolution-
ary search. Therefore, different proportions of the operator in question and one of the
standard crossover or mutation operators (playing the role of auxiliary operator) will be
examined. These proportions will be controlled by corresponding probabilities of opera-
tor engagement. The proportions of the two operators will vary from 0.0 (the auxiliary
operator will not be used) to 1.0 (the analyzed operator will not be used) with step 0.1.
The setup with proportion 1.0 will usually correspond to standard GP, as only crossover

or mutation will be used.
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4.3. Evolutionary Parameters

Parameter Value

Generations 100

Population size 500

Initialization method Ramped Half-and-Half (Algorithm
Initial minimal depth 2

Initial maximal depth 6

Duplicate retries

100 (before accepting a syntactic duplicated individual)

Selection method

tournament

Tournament size 3
Operators probability varying from 0 to 1 with step 0.1
Maximal program depth 15

Node selection

probability of terminal nodes: 10%
probability of non-terminal nodes: 90%

Mutation method
Subtree builder
Subtree depth

subtree mutation

Grow (Algorithm
5

Crossover method

subtrees swapping

Instructions

symbolic regression: see Section [4.2.1
Boolean domain: see Section 4.2.2

Successful run

symbolic regression: error on each fitness case < 1.11-10~

Boolean domain: perfect reproduction of all fitness cases

Number of runs

200 or 1000 (depending on experiment)

Table 4.3.: Evolutionary parameters.
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Problem min  median max IQR pvalue
F01 0.1450  0.9300 1.0000 0.2350 0.0000
F02 0.2350  0.6500 0.8950 0.3000 0.0000
F03 0.0200  0.4750 0.6900 0.2825 0.0000
Fo4 0.0400  0.1675 0.4150 0.1113 0.0000
F05 0.0000  0.0200 0.0700 0.0163 0.0000
F06 0.0850  0.3350 0.7850 0.3425 0.0000
Fo7 0.0100  0.0400 0.1300 0.0250 0.0000
FO8 0.0300  0.0900 0.1600 0.0350 0.0015
F09 0.1150  0.2200 0.3450 0.0700 0.0000
F10 0.0900  0.1550 0.2350 0.0350 0.0336
F11 0.1400  0.2075 0.2900 0.0363 0.0874
F12 0.0000  0.0000 0.0000 0.0000 —
P1 0.0000  0.0050 0.0250 0.0100 0.5039
P2 0.0000  0.0000 0.0200 0.0050 0.0005
P3 0.0000  0.0100 0.0750 0.0150 0.0000
RO 0.0000  0.0050 0.0250 0.0100 0.0939
R1 0.0000  0.0000 0.0000 0.0000 —
R2 0.0000  0.0000 0.0000 0.0000 —
R3 0.0000  0.0000 0.0100 0.0000 0.0094

Table 4.4.: Statistics on the success rates for each problem and for different sets of fitness
cases. IQR is the interquartile range, and the last column shows the p-value
of performed statistical test for testing the hypothesis that the probability of
success for each set are the same.

4.4. The Importance of Fitness Case Assortment

Especially for the real-valued symbolic regression problems, the practice commonly adopted
in GP is to sample the fitness cases uniformly from a given range for each of independent
variables. However, we will show in the following that the choice of concrete values is
crucial — two tasks with the same target function but different fitness cases, even chosen
from the same range, may lead to extremely different hardness of such problems. Obvi-
ously, this does not concern our Boolean benchmarks for which, as it is usually done in
practice, all possible fitness cases are used for fitness assessment.

We demonstrate that problem hardness depends heavily on the chosen set of fitness
cases by testing how the choice of fitness cases impacts the odds of standard GP algorithm
finding the optimal solution. For this purpose we generate randomly 100 alternative sets of
sampled values (i.e., 100 different sets, each with 20 random fitness cases) from appropriate
ranges (see Table , and then for each such set and for each symbolic regression target
function (Table we perform 200 independent evolutionary runs to estimate the success
rate (thus 19 x 100 x 200 = 380000 runs in total). The evolutionary parameters are set
according to Table In this experiment, the probability of standard crossover and
mutation operators was fixed to 0.9 and 0.1, respectively, which is a common setting, also
used in the ECJ library.

Table [.4] for each symbolic regression target function, presents the range of achieved
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Figure 4.4.1.: Five-number summary of success rates for different sets of independent val-
ues (i.e., the smallest observed success rate, first quartile, the median, the
third quartile, and the maximum). Additionally, the cross mark denote a
success rate for evenly distributed fitness cases.

success rates depending on the chosen set of fitness cases. Additionally, we test statistically
(a special test of equal binomial proportion [97]) the null hypothesis that the probabilities
of success are the same regardless of the used set of fitness cases — the calculated p-values
are also shown in the table. Figure [4.4.1] presents graphically the ranges of success rates

varying with different random set of points.

This experiment demonstrates that for 12 problems out of 19 the choice of fitness cases
influences the success rate in a statistically important degree (with « = 0.01). For example,
the problem F01 can be very easy (with success rate equal 100%) or much harder (with
success rate only about 15%), depending just on how the used pseudorandom number
generator happened to behave in the process of generating the training fitness cases. For
two problems (F10 and F11) we cannot reject the null hypothesis despite the fact that the
range of success rate is about 15 percent points wide. It appears that seven problems (F12,
P1, P2, RO, R1, R2, R3) are quite difficult to solve by the standard genetic programming
(best success ratio is less than 3%). For five of them (F12, P1, RO, R1, R2), we also cannot
reject the null hypothesis (at least for the used experimental setup). For problems F12,

R1, and R2, evolution does not find even a single ideal solution in 200 runs for any of the
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100 variants of those problems. Note however, that this does not invalidate GP as a useful
technique for approzimating solutions for these problems.

Table shows influence of proportion between crossover and mutation operators on the
obtained success ratio (in contrast to the previous experiment carried out for crossover
and mutation probabilities fixed at 0.9 and 0.1, respectively). As we can see, most of
the presented symbolic regression problems are easier to solve when the probability of
crossover operator is very high. An exception is problem FO08, for which the success rate
is similar irrespective to this proportion, and problem F11 which seems to be the easiest
when mutation is applied with about 50% probability.

In the GP community, it is common to overcome the above problem of varying task
difficulty by selecting fitness cases randomly for each independent run of an examined
algorithm. However, this implies that each evolutionary run solves in fact a completely
different problem and, what is more, this makes it incorrect to aggregate some statistics
from such runs. For example, the fitness of the same individual can substantially vary
when tested on different variants (sets of fitness cases) of the same problem.

It is even easier to notice that such approach is flawed when the target function cannot
be constructed from the available functions and terminals (i.e., the solution space does not
contain the exact solution to a problem). In this case, the fitness values obtained by the
best possible solution (which approximates the target function best) vary depending on the
selected fitness cases. In other words, the fitness values assigned to the same individuals
by the fitness functions that use different sets of fitness cases are incomparable. By this
token, it does not make sense to compare fitness values of, e.g., the best-of-run individuals
resulting from different runs, not mentioning aggregating their performance.

Therefore, to avoid this conundrum and make problem definition unambiguous, in this
thesis, instead of drawing fitness cases at random, we decided to evenly distribute the
points. In this way, we also make reproduction of presented experiments much easier.

A practical conclusion from the above observations is that in GP, a task should be identi-
fied with a target function and an associated set of fitness cases. Defining a benchmark by
target function alone leads to large variance of algorithm performance and incomparability

of performance across runs.

4.5. Evaluation Criteria

4.5.1. Objectives

This section describes statistics which we employ to evaluate and compare algorithms
tested on the benchmark suite presented in Section The experiments included in fol-
lowing chapters employ, where appropriate, most of these measures. Next section presents
statistical tests and procedures used to analyze these data.

In following, as a final result obtained from an evolution we will treat the best-of-run
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min

R1 median
max
min

R2 median
max
min

R3 median

max

P(zover) 100 90 80 70 60 50 40 30 20 10 0
min 12 14 21 20 23 22 24 20 20 18 12
Fo1 median 93 93 90 8 79 70 60 53 45 38 29
max 100 100 99 98 93 8 &80 69 64 50 41
min 24 24 16 16 11 11 9 7 4 4 2
F02 median 71 65 59 46 38 29 22 17 14 10 5
max 94 90 84 73 60 44 38 28 21 18 11
min 2 2 3 4 2 2 2 0 0 0 0
F03 median 60 48 40 25 16 10 7 4 3 2 0
max 80 69 60 45 30 21 16 8 6 4 2
min 4 4 1 1 1 0 0 0 0 0 0
F04 median 22 17 13 8 5 3 2 1 0 0 0
max 52 42 31 20 12 8 6 5 2 2 1
min 0 0 0 0 0 0 0 0 0 0 0
F05 median 2 2 2 2 1 1 2 0 1 1 1
max 4 7 4 6 4 5 4 3 4 4 3
min 10 8 7 6 4 4 2 2 1 1 0
F06 median 35 34 29 26 22 16 12 9 6 5 3
max 80 78 67 60 42 32 22 18 14 10 8
min 1 1 0 0 0 0 0 0 0 0 0
Fo7 median 5 4 3 2 2 2 1 1 1 0 0
max 14 13 10 6 4 4 4 3 2 2 2
min 6 3 5 6 4 3 4 2 4 3 3
Fo8 median 11 9 10 10 10 9 9 8 10 8 8
max 16 16 16 18 17 16 20 16 18 16 14
min 11 12 10 6 6 5 4 4 4 2 1
F09 median 23 22 19 17 14 12 11 8 8 6 4
max 36 34 36 24 22 24 20 14 15 12 10
min 10 9 8 9 6 4 4 4 2 2 2
F10 median 18 16 14 13 11 8 8 7 6 5 4
max 27 24 21 18 18 14 13 11 10 8 8
min 11 14 17 16 16 20 24 20 18 16 16
F11 median 18 21 25 24 26 28 30 27 26 22 24
max 27 29 34 32 36 42 36 38 34 32 35
min 0 0 0 0 0 0 0 0 0 0 0
F12 median 0 0 0 0 0 0 0
max 0 0 0 0 0 0 0
min 0 0 0 0 0 0 0
P1 median 0 0 0 0 0 0 0
max 4 2 2 2 1 2 1
min 0 0 0 0 0 0 0
P2 median 0 0 0 0 0 0 0
max 3 2 2 1 1 0 0
min 0 0 0 0 0 0 0
P3 median 2 1 0 0 0 0 0
max 16 8 7 4 2 0 0
min 0 0 0 0 0 0 0
RO median 1 0 1 0 1 0 0
max 4 2 3 3 3 3 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0

OO0 O0O0COINOOROO|IROOINOOOO
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Table 4.5.: Comparison of success rates for different proportion of crossover and mutation
operators (P(mutation) = 100% — P(crossover)). All shown values are in
percentage (%).
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individual. In other words, the algorithm returns a single program with the best fitness
value, whenever it appears in the whole evolutionary process. This is quite important
notice, because sometimes only the best individual from the last generation (best-of-last-
generation) is deemed as a final outcome of evolution. However, in this thesis, it does
not matter when the returned program appears. Therefore, there is no risk that the best

evolved individual will be forgotten.

Success Ratio is the ratio of successful runs to all performed runs. It is a natural estimate
of the probability of finding the ideal solution in a single evolutionary run. Because
the stochastic nature of an evolution, each methods will be tested in many (at least
200) independent evolutionary runs to estimate this statistics.

The success ratio is the objective of high practical importance, as it tells about
algorithm’s ability of successfully solving a given problem, i.e., finding a program
which fulfills the problem’s requirements. In the case of symbolic regression, this
means that the evolved program has to give an ideal result within a 1.11-1071?
tolerance for each fitness case from the training set. In case of Boolean problems,

the program has to return perfect output for all fitness cases.

Error is the sum of disparity between a program actual result and the proper output for
each fitness case from a training set. It is calculated according to Equation [3.4.1
as a distance between semantics of a program and the target semantics. The error
shows how well a given algorithm approximates the ideal solution.

Again, if the difference on a single fitness case is less than 1.11-107'9, it is supposed
to be caused by floating point rounding errors, and such difference is interpreted as
zero. Therefore, programs recognized as ideal always have error (as defined here,
i.e., calculated on training set of fitness cases) equal to zero. The error value of an

individual is treated as its minimized fitness used by the evolution.

Testing error is the error calculated in analogous way (i.e., also by means of Equa-
tion , however on an additional testing set. This measure is used to check
whether a program is overfitted.

The testing error is not applicable for Boolean problems, because for them the train-
ing set contains all possible fitness cases. In this thesis, the testing sets have 10 times
more testing cases for all univariate symbolic regression problems and 100 times more
for bivariate problems (10 times more values for each variable). The testing sets are
generated analogously to training sets (see Section . Therefore, due to the even
distribution of test cases, the training and testing sets are not disjoint (exactly 1%

of testing cases belongs to the training set too).

Number of hits counts the number of fitness cases (either from training or testing set)

which are solved ‘well enough’.
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This auxiliary performance measure has been originally introduced by Koza [60] and
used in GP for a long time. It is justified by the practical perspective, where, de-
pending on application context, it may be sometimes better to have a solution that
performs reasonably well on all fitness cases than a solution that behaves perfectly
on some of them while committing large errors on the others. For symbolic regres-
sion problem, a fitness case is considered to be correct (a ‘hit’) if the value of the
dependent variable produced by a program comes within 0.001 of target value. For
Boolean domain, hits counts the number of correct results — the dependent variable

has only two possible values (false and true).

Mean size is the average number of nodes (both functions and terminals) of individuals
in a population.
The tendency of inexorably growing programs generated by GP without correspond-
ing increase of fitness is known as code bloat effect and has been intensively studied
in the GP literature [IT], 100, 89} 116, [73], 23]. This process is generally perceived as
having negative impact on the search (genetic modifications of large programs are
likely to be ineffective, and large programs are more costly to execute) and making
the resultant programs difficult to comprehend. Observing the mean size enables to

monitor the growth of evolved programs and detect code bloat.

Best-of-run size is the size of the best-of-run program.
This is an important factor indicating the quality of achieved results because a small
solution, in the sense of program length, is in general highly desired. A smaller
program is cheaper to produce and runs faster in comparison to larger and more

complicated one.

Time required to execute the evolutionary process (run) is an important criterion saying
about method performance and computational efficiency.
In all experiments, the computations were performed on 16 PCs equipped in identical
hardware. However, the measured times may be inaccurate as the computations were
run on many computers simultaneously with other processes requiring the processor
time and other system resources. Despite these not fully reliable conditions, the
times averaged from many runs are still informative and give some sense of practical
algorithms efficiency. However, due to certain optimization techniques employed in
our implementation, this performance indicator requires additional comments which
we provide in the subsequent Section

Success per hour says how many successful runs are expected if a GP using given setup
would be allowed to run for one hour, starting a new evolutionary run after the
previous one has been completed.

This is much better measure of efficiency than the mean execution time, because a
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method that executes very fast does not necessary score many successes. However,
if a method is faster, then, given a fixed budget of computation time (one hour in
this case), it can be run more times (which can be alternatively seen as restarting
the evolutionary process with different random number generators). This could
potentially improve an assessment of such method, but if the method is poor then

the successive runs do not help much.

Diversity — the number of individuals in a population either with distinct semantics or
distinct fitness values. Diversity shows which method promotes higher variety in
population. Observing how the diversity is changing during the evolution could help

to explain the performance of compared methods [15] [14].

4.5.2. Optimization of Program Execution

It is necessary to remember that measured evolution runtime (c.f. criterion Time above)
depends not only on method performance, but also on its implementation. In this context,
it is important to mention that our implementation, to avoid repeating the same computa-
tions, intensively uses a cache to save the output of each internal node of a program once
it has been calculated. This means that each subprogram is processed only once during
the entire evolutionary run, no matter in how many solutions it appeared as a result of
genetic modifications (as long as it has not been modified). This gives extreme speedup
in computation time (evaluation is even six times faster, however the overall evolution
runtime has shorten up to three times). This happens, however, at the expense of much
higher memory usage, which sometimes may have negative impact on the computation
time, especially when the available memory runs out.

Let us illustrate the benefits of this optimization with two simple examples. Firstly,
consider a new individual created by the standard, subtree mutation operator, in which
a randomly selected subtree s has been replaced by a newly created random subtree s’
(see Figure [1.5.1a)). Normally (i.e., when using standard GP implementations like the one
offered by ECJ), such individual would have to be executed entirely, on all fitness cases,
to assess its fitness. However, within the proposed optimized scheme, only the subtree s’
and nodes on the path from the location of s’ to the root node are executed.

In case of crossover operator, a randomly chosen subtrees s; and so are swapped. Be-
cause we remember output of all unmodified subtrees, each created offspring requires
computation only on the path from the crossover point up to the root (see Figure .
This means, that the number of nodes which require recalculations is only O(logn) or-
der comparing to not optimized O(n) (where n is the number of nodes in an individual).
Hence, a control experiments which are using only mutation and crossover operators with-
out any other mechanism have a big advantage to other methods performing some more

complicated computations which are not so prone to such simple optimization.
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mutatlon crossover

Figure 4.5.1.: Optimized version of standard breeding operators. In each offspring, only
the nodes marked with black dots need to be executed.

4.5.3. Statistical Tools

To determine whether one method is better than others, an appropriate statistical tools
should be used. The well-known procedure for testing differences between many related
samples is the one-way Repeated Measures ANOVA (or within-subjects ANOVA). How-
ever, ANOVA assumes that the dependent variable is both continuous and normally dis-
tributed, and that the sphericity condition is not violated (i.e., variances of the differences
between all combinations of tested algorithms must be equal).

Because, we want to run statistical tests for data violating these conditions, we will use
the Friedman test [31], [30], which is a non-parametric alternative to the one-way ANOVA
with repeated measures. For a set of k£ samples, this nonparametric test checks if at least
two of them represent populations with different median values. The null hypothesis says
that medians of all samples are equal, and the alternative hypothesis says that this is not
true. These k groups of independent variable, corresponding to methods/algorithms in our
case, are traditionally referred as treatments (also conditions or within-subjects factor),
and the set of benchmark problems corresponds to subjects in the design of Friedman test.

In this test, a ranking of all compared algorithms has to be prepared. The procedure of

calculating ranks has two steps:

1. For each problem independently, create a ranking of algorithms on this problem with
respect to the assumed quality indicator (see Section [4.5.1). The best method has

rank one; for tied values assign the average ranks of all tied algorithms.

2. For each algorithm, average the ranks obtained in the previous step for all considered

problems.

ol



4. Algorithm Evaluation Framework

It is important to be aware, that the produced ranks are averaged over all problems.
Moreover, in case of ties, i.e., if several algorithms have equal values for a given problem
then the assigned ranks are averaged and all of them get the same rank. Therefore, the
best algorithm (not worse on any problem than other algorithms) might have the rank
greater than one. For example, if two algorithms A and B perform equally on one problem
but algorithm A is better than B on a second problem, then eventually method A will get
rank 1.25 = (1.5+1)/2 and method B — 1.75 = (1.5 4 2) /2. Such ties happen very often,
especially for easier problems where most algorithms are able to find an ideal solution, or
for hard problems where most of them fail.

Nevertheless, such ranking can be used to sort methods from the best one to the worst.
However, even if the Friedman test says that there is a statistical difference between some
of the algorithms, an additional analysis is necessary to determine which one is significantly
better than another.

To compare a single method with all other algorithms, Holm’s post-hoc statistical pro-
cedure [46] will be used as suggested by Derrac et al. in [2I]. This procedure calculates
the adjusted p-values, allowing the comparison between an algorithm in question and all
others. However, to check all pairs of methods, another post-hoc procedure should be
used. For this purpose, Garcia et al. [33] strongly encourage the use of Shaffer’s static
procedure [114], which benefits from using information about logically related hypothesis.

In a simpler case, when only two methods are compared with each other on several
benchmarks, the paired Wilcoxon test will be performed instead of the Friedman test.

The Friedman test or paired Wilcoxon test will be used to compare algorithms perfor-
mance (e.g. success ratio or error) tested on all benchmarks. However, to check statistical
significant difference between two methods on the same problem, other tests are more ap-
propriate. In such situation, criteria like error will be compared using the Mann-Whitney
U test (also known as Wilcoxon rank-sum test).

However, for comparison of two success ratios, a more suitable, special test of equal
proportion [97] will be performed. This test has the null hypothesis that the probabilities

of success in several groups are the same. This test is used to compare success ratio in

Section [4.4] and [5.21
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5. Semantically-oriented Search Operators

5.1. Introduction

Chapter [3] of this thesis provided rationale for using semantic information in GP. In this
chapter, we review the past work on semantically-aware GP and present results of ex-
periments performed on our benchmark suite. The purpose of this part of dissertation is
threefold: (i) to verify the results published in related methods, using our experimental
methodology and software framework, (ii) to determine optimal probability of applying
those methods, and (iii) to provide reference results for the methods presented in subse-

quent chapters.

The semantic information may be used in many different ways. In this chapter, methods
will be presented that replace various components of the standard evolutionary scheme
of genetic programming, described in Section The components that potentially can
be modified to utilize semantic information include: population initialization, selection
procedure, and search operators, i.e., crossover and mutation. Because the scope of mod-
ifications required by any of the methods proposed in this chapter is limited to a single
component, these methods can be quite simply incorporated into existing evolutionary
frameworks. Other, more sophisticated methods employing semantics, which engage mul-

tiple components of evolutionary algorithm, are described in Chapters [6] and

To remind, the semantics used in further part of this thesis, if not stated otherwise, will
have the form of sampling semantics described earlier (Section . Sampling semantics
is a vector of outputs produced by a program in response to a predefined set of inputs
(fitness cases). Such semantics is partial, so two different programs with the same sampling
semantics may produce different outputs for some other input data not included in the
set of training fitness cases. We will not extend these semantics with any additional
information to keep the whole framework as simple as possible and, more importantly, to
investigate the influence of semantics as such, apart from other elements which potentially

may be very specific for a particular problem.
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5.2. Population Initialization

5.2.1. Overview

Genetic programming, as most population-based search/optimization algorithms, belongs
to the category of global search algorithms. In contrast to local methods, such algorithms
are assumed to perform simultaneously exploration and exploitation of the search space.
There are two prerequisites for exploration: appropriate initialization of the search process,
and effective variation mechanisms during the search process. This section focuses on the
former one.

In more straightforward problems of optimization and learning, population initialization
is not an issue. For instance, evolutionary strategies that perform search in continuous
vector spaces do not require sophisticated initialization procedures. With GP however,
providing sufficient diversification in the initial population can be challenging. The reason
is the many-to-one genotype-phenotype mapping, which causes some semantics to occur
much more often than others when using standard initialization procedures like Ramped
Half-and-Half (RHH) (see Algorithm [2.3 on page 18)). For instance, Langdon showed [74]
for the Boolean domain that, particularly for large program trees, some semantics are very
easy to generate while others are close to impossible to generate.

Our experiment confirms Langdon’s observations. We generated one million random
programs using the RHH procedure with depths limit set from 2 to 15, and counted how
many times each unique semantics appeared. We repeated this procedure for several
different instruction sets used by different problems from the benchmark suite presented
in Section The calculated numbers for the first 1000 most frequent semantics are
shown in Figure It is important to notice, that the frequencies are presented on
a logarithmic scale. As it is easily visible, generating one from the 100 most frequent
semantics is several orders more probable than others. About 28%65% of all generated
programs, depending on the instruction set, have one of the 100 most frequent semantics
(and 18%-52% — one from only 10 most frequent!). Moreover, most semantics have hardly
any chance to be generated by RHH procedure (more than 90% of all generated semantics,
for each instruction set, appeared only once for one million programs).

Population initialization is then an important and nontrivial stage of any GP algorithm,
which deserves attention and offers potential benefits. For these reasons, we examine it
thoroughly in this section.

There are several works devoted to the process of creating an initial population in genetic
programming. Most of them concentrate on building syntactically diversified individuals
in general [60], or on their particular aspects like diversity of program structure or shape
[16], 12, [84].

Relatively few papers bring up behavioral aspects of created individuals. Looks in his

study [81] analyzes behavioral distribution of randomly generated programs, and points
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Figure 5.2.1.: Frequencies of the most 1000 common semantics of one million programs
generated by the Ramped Half-and-Half procedure with depths limit set
from 2 to 15. The set of used instructions depends on the problem.

out that, because of a highly skewed distribution of sampled programs, probability of gen-
erating some program decreases exponentially with the growing complexity of its behavior
(defined as a minimal required program length).

Motivated by this observation, Looks proposed a heuristic for sampling programs that
tries to approximate a uniform distribution of minimal programs by length. His algorithm
uses a special reduction procedure which transform any program to its equivalent reduced
(syntactically simplified) version of minimal length. This simplification procedure depends
on a program domain and is not trivial in general. Results presented in [81] show that
the semantic sampling procedure leads to statistical significant improvement of mean best
fitness after the first 10 generations, when compared to the ramped half-and-half (RHH)
initialization procedure. These advantages diminish in later generations and the differ-
ences become generally insignificant. These observations were consistent with the results
presented in [84]. However, Looks showed that his heuristics eventually leads to better
success ratio and lower computational effort for most problems.

Beadle and Johnson in [8] make an attempt to attain the same goal, i.e., to increase the
behavioral diversity in the initial population. They present detailed analysis of program
initialization, particularly the influence of behavioral diversity, tree size and shape on the

performance of GP algorithm. Their semantically driven initialization (SDI) algorithm and
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5. Semantically-oriented Search Operators

its hybridization with RHH called HSDI, in contrast to [81], operate on reduced ordered
binary decision diagrams (ROBDD), which are translated into problem specific language
in the process of creating the initial population. Results obtained by Beadle and Johnson
are similar to those of Looks. They conclude that the performance improvement depends
on the problem and report that, for the seven tested problems, HSDI performs best for
three, SDI for two, and the traditional RHH is the best in two cases.

5.2.2. Semantically Unique Initialization

The algorithms proposed by Looks [81] or Beadle and Johnson in [8] are quite complicated
and their implementation depends very much on the problem domain. Therefore, we
propose and experimentally verify here a very simple method that rejects programs with
semantics identical to any already created individual in the population. The drawbacks of
this method mentioned in [81], like possibly quite large number of programs which needs
to be generated, are compensated with trivial implementation.

As Koza noticed in [60], duplicated individuals are unproductive deadwood, and there-
fore it is desirable to avoid such duplicates. Therefore, some evolutionary packages, like
ECJ, have population initialization procedure which, by default, tries to avoid syntacti-
cally identical individuals. In contrast, we propose an analogous initialization procedure
analyzing semantics. Our procedure operates as follows. When a candidate individual
generated during population initialization turns out to be semantically equivalent (see
Definition to an individual already in the population, such an individual
is discarded and a new candidate is randomly generated. The procedure tries to produce
a unique individual several times (up to 100 by default — analogously to the syntactic
procedure implemented in ECJ) before giving up (in this case the population will contain
semantic duplicates).

In the control experiments we perform only the standard rejecting procedure of syntactic
duplicates which is applied by default. This means that two individuals are considered
equal if they are exactly the same, i.e., both have exactly the same nodes in the same
places. In contrast, we also perform experiments with our candidate rejection when two
individuals have the same, measured semantics, i.e., they behave equally, no matter how
they are built. In both cases, a ramped half-and-half algorithm is used to generate new
candidate individuals, and the rejecting procedure retries to generate a unique program
maximal 100 times. Algorithm presents both procedures to create initial population
— with the standard syntactic duplicate rejection and with our rejection of semantically
equivalent individuals.

We compare the GP performance between setups with syntactic and semantic dupli-
cates rejection for several proportion between crossover and mutation probability. The
tested probability of crossover varied from 0.0 to 1.0 with step 0.1, thus eleven setups with

syntactic and eleven setups with semantic initialization are executed. Setups with both
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Algorithm 5.1 Syntactic and semantic methods of population initialization.

1:

[\V]

14

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:

maxTries < maximal number of tries
: popSize < population size

: procedure INIT-SYNTACTICALLY
P«
for i < 1...popSize do

t < mazT'ries

repeat

t+—t—1
until p ¢ P or t=0
P+ PU{p}
return P
: end procedure

: procedure INIT-SEMANTICALLY
P« 0, S+ 0
for i < 1...popSize do

t «— maxTries

repeat

s <= SEMANTICS(p)
t—t—1
until s ¢ Sort=0
P+« PU{p}
S+ SuU{s}

return P
end procedure

p < RAMPED-HALF-AND-HALF(. ..

p < RAMPED-HALF-AND-HALF(. ..

> default 100

> P is a multiset

> P and S are multisets

> get semantics of individual p
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5. Semantically-oriented Search Operators

Setup  Rank Setup  Rank

SEM|X 1.0 6.29 X+M 0.5 11.46
SEM|X+M 0.2 6.91 | SEM|X+M 0.6 11.73
X 1.0 6.96 | SEM|X+M 0.7 12.59

SEM|X+M 0.1 7.17 X+M 0.6  13.27
X+M 0.1 7.55 X+M 0.7 13.63
X+M 0.2 7.69 | SEM|X+M 0.8  14.79
SEM|X+M 0.4  8.54 X4+M 0.8 15.29
X+M 0.3 877 | SEM|X+M 0.9 15.79
SEM|X+M 0.3 9.60 X+M 09 17.04
X+M 0.4 10.58 M 1.0 17.60

SEM|X+M 0.5 11.19 SEM|M 1.0 18.54

Table 5.1.: Friedman ranks of success ratio performance on all 39 problems (both symbolic
regression and Boolean domain).

crossover and mutation operators are denoted as X+M [, where [ is the probability of
the second operator — here mutation. Prefix SEM denotes initialization with rejecting
semantic duplicates, lack of it means the regular, syntactic rejection. We perform one
thousand of independent runs of each setup. Other parameters of the evolutionary meth-

ods, are the same as used in the rest of experiments presented in this thesis (see Table

on page 43).

5.2.3. Results

Table presents ranks from the Friedman test applied to success rates obtained by each
setup. Bold font is used to emphasize the best setups from each combination of operators
and the initialization procedure. The first observation is that setups without the mutation
operator or with small proportion of it behave much better than setups with high mutation
probability. This experiment shows that the semantic initialization gives slightly better
results, however the difference is minimal.

The errors committed by the best-of-run individuals rank the methods in a very similar
way to Table so we do not report them here (see Appendix . However, all observa-
tions and conclusions presented in this section are true also with reference to errors made
by the best obtained individuals.

If we analyze the results in more detail, it turns out that for the symbolic regression
problems the standard syntactic initialization leads generally to higher success ratio than
the semantic initialization. Conversely, for the Boolean problems the situation is inverted.
Tables and show results for each setup separately for both these domains. Numbers
in bold font denote statistically significant superiority of a given initialization method.

As an example, let us compare the results obtained by the best setups from the rank-
ing that do not use mutation (i.e., X 1.0 and SEM|X 1.0). For the symbolic regression

problems, the semantic initialization gives better (statistically insignificant) results on
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5.2. Population Initialization

P(zover) 100 90 80 70 60 50 40 30 20 10 0
Fol syntact%c 96 95 92 89 82 73 66 56 48 39 30
semantic 95 93 90 86 79 72 61 54 44 39 32
F02 syntact%c 71 65 57 49 40 34 27 22 17 11 8
semantic 66 58 52 44 39 30 24 19 16 9 8
FO3 syntact%c 68 57 49 32 24 14 9 6 3 2 1
semantic 56 44 36 26 17 12 7 4 4 2 1
Fo4 syntact%c 29 21 16 12 8 4 3 2 2 0 0
semantic 22 16 12 8 5 5 2 2 1 1 0
FO5 syntact%c 2 1 1 1 2 1 1 1 1 1 1
semantic 2 1 2 1 1 1 2 1 2 1 1
FO6 syntact%c 43 44 40 34 27 23 16 11 9 6 4
semantic 46 42 37 34 27 21 15 11 9 7 4
Fo7 syntact%c 5 4 2 2 3 2 1 1 2 1 1
semantic 5 4 3 4 3 1 2 2 1 1 0
Fo8 syntact%c 1 1 0 1 0 1 1 1 0 0 1
semantic 0 1 1 0 1 0 1 0 1 0 0
F09 syntact%c 25 25 23 20 20 16 14 10 10 8 6
semantic 25 29 24 22 19 17 11 12 11 9 6
F10 syntact%c 21 21 16 14 13 10 10 6 6 5 4
semantic 22 20 18 18 14 13 9 6 6 5 4
Fl1 syntactic 21 22 30 30 30 33 33 35 31 28 28
semantic 19 24 26 28 31 29 35 32 31 31 29
F12 syntact%c 0 0 0 0 0 0 0 0 0 0 0
semantic 0 0 0 0 0 0 0 0 0 0 0
P1 syntact@c 0 0 0 0 0 0 0 0 0 0 0
semantic 0 1 1 0 0 0 0 0 0 0 0
P syntact%c 1 1 0 0 0 0 0 0 0 0 0
semantic 0 0 0 0 0 0 0 0 0 0 0
P3 syntact%c 8 3 2 1 0 0 0 0 0 0 0
semantic 3 2 1 1 0 0 0 0 0 0 0
RO syntactic 1 1 1 1 1 1 1 1 1 1 1
semantic 1 1 1 0 1 1 1 1 1 2 0
Rl syntact%c 0 0 0 0 0 0 0 0 0 0 0
semantic 0 0 0 0 0 0 0 0 0 0 0
R2 syntact%c 0 0 0 0 0 0 0 0 0 0 0
semantic 0 0 0 0 0 0 0 0 0 0 0
R3 syntactic 0 0 0 0 0 0 0 0 0 0 0
semantic 0 0 0 0 0 0 0 0 0 0 0

Table 5.2.: Comparison of success rates for 19 symbolic regression problems for differ-
ent proportion of crossover and mutation operators (P(mutation) = 100% —
P(crossover)) — statistically better results (p-value < 0.05) in each pair are
printed in bold. All values are in percentage (%).
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5. Semantically-oriented Search Operators

P(zover) 100 90 80 70 60 50 40 80 20 10 0
ICMP6 syntactic 15 19 18 21 19 18 17 15 13 8 1
semantic 20 22 22 23 22 21 19 20 15 8 2
syntactic 0 0 0 0 0 0 0 0 0 0 0
ICMP8 semantic o o o 0o 0 0 0 0 0 0 0
AT symtactic 98 98 98 97 96 96 97 95 93 89 76
semantic 98 98 99 98 98 96 96 95 93 92 81
MATS syntactic 71 68 68 65 61 56 51 44 37 22 i
semantic 70 69 70 64 61 59 53 48 37 24 1
syntactic 4 4 3 3 1 1 1 0 0 0 0
IMAJ7 semantic 3 4 3 2 2 1 1 0 o0 0 0
sy ntactic 1 1 2 1 1 1 1 0o 1 0 0
IMUX11 o mantic 1 2 1 2 2 1 1 1 o 0 0
NIUxG  Symactic 94 96 96 95 95 94 92 92 9ol 85 73
semantic 96 96 95 94 94 95 94 92 91 8 75
PARA symtactic 89 91 91 91 90 91 90 91 89 86 82
semantic 94 94 92 92 92 92 91 91 91 89 86
ARG symtactic 19 18 19 18 18 16 15 13 12 8 7
semantic 21 19 21 19 19 16 17 16 13 11 7
syntactic 0 0 0 1 0 0 0 1 0 0 0
IPARG semantic 1 0 0 0 1 0 0 1 0 1 0
symtactic 11 11 14 13 13 14 12 119 5 0
NCMP6  Gomantic 13 14 16 15 16 17 16 14 11 5 0
syntactic 0 0 0 0 0 0 0 0 0 0 0
NCMP8  mantic o o o o0 O 0 0 0 0 0 0
NMAgs  Symtactic 88 87 83 & 81 81 79 77 73 59 33
semantic 89 87 86 84 84 84 81 81 T4 67 41
symtactic 37 37 33 20 27 26 19 14 8 4 0
NMAJ6  onantic 37 33 33 31 30 26 24 17 9 4 0
syntactic 1 0 0 0 0 0 0 0 0 0 0
NMAJT  emantic o o o 0o O ©0 0 0 0 0 0
syntactic 0 0 0 0 0 0 0 0 0 0 0
NMUX11  emantic o o o o O ©0 0 0 0 0 0
syntactic 75 76 78 79 78 76 76 76 71 63 30
NMUX6  Gemantic 78 80 8 8 82 80 80 78 74 67 34
NPARA syntactic 41 41 41 37 36 35 31 26 23 13 5
semantic 48 47 45 44 40 37 34 31 27 17 5
Symtactic o 0 o0 0 0 0 0 0 0 0 0
NPARS ' antic o o o o0 o0 0 0o 0 0 0 0
syntactic 0 0 0 0 0 0 0 0 0 0 0
NPAR6  antic o o o o0 O ©0 0 0 0 0 0

Table 5.3.: Comparison of success rates for 20 Boolean problems for different proportion
of crossover and mutation operators (P(mutation) = 100% — P(crossover))
— statistically better results (p-value < 0.05) in each pair are printed in bold.
All values are in percentage (%).
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5.2. Population Initialization

two benchmarks, but in 8 cases it is worse (statistically significant in 4 cases). On the
other hand, for the Boolean domain, it appears that semantic initialization is better for 9

problems (statistically significantly for 3) and (insignificantly) worse for 3 other problems.

These results clearly show that effectiveness of the semantic initialization, in the form
proposed in this section, strongly depends not only on particular problem definition, but
much more on the problem domain itself — especially on the used set of functions and
terminals. We hypothesize, that the reason for this might be the fact that for symbolic
regression problems the initial diversity in genetic material is not as important as in
Boolean programs, because it is much easier achievable in the former domain.

Figure [5.2:2] shows the influence of initialization methods to the diversity in all genera-
tions. In this visualization, we use two alternative measures to quantify the diversification
of population: the number of individuals with unique semantics and the number of in-
dividuals with unique fitness. Unsurprisingly, for regression problems, the number of
semantically unique individuals is only slightly higher than the number of unique fitness
values in the population. This is due to the fact that, for continuously valued semantics,
it is very unlikely to have different semantics that have exactly the same fitness values.
For discrete semantics used in the Booolean problems, this is much more frequent.

The graphs demonstrate that semantic duplicate rejection provides higher semantic
diversity in the first generations, however later the difference becomes smaller. Note also
that the difference in number of unique semantics for the later generations is higher for the
two chosen symbolic regression problems than for the Boolean ones where the difference
is negligible and hard to notice. We can then state that for the former domain the effects
of semantically unique initialization are more likely to impact an entire evolutionary run
than for the later.

Finally, Table shows how many random programs need to be generated to ensure
that the initial population (of size 500) will contain only unique individuals (syntactically
or semantically, respectively). In other words, it is the total number of calls of the Ramped
Half-and-Half function in appropriate procedure shown in Algorithm [5.1] For the reasons
discussed earlier, the reported numbers are much lower for regression problems than for
the Boolean problems, and more computational effort is required to provide semantic
uniqueness than syntactic uniqueness. The varying number for semantic initialization for
symbolic regression problems comes from a different range of input variables (for FO7
and F08) or from different set of terminals (F09-F12 have two independent variables).
For Boolean problems, the variation comes from different numbers of fitness cases (an
implementation issue which influences on both syntactic and semantic procedure) and
different function sets (other for problems with I and N prefixes).

Presented results demonstrate that increasing semantic diversity in the initial popula-
tion is beneficial to achieved success ratio. Results not presented in this section (for more
statistics see Appendix additionally show that setup SEM|X 1.0 produces programs
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Figure 5.2.2.: Number of individuals with unique semantics (solid line) and unique fitness
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values (dotted line), for a crossover-only setup without (left column) and
with (right column) semantically unique population initialization. Vertical
lines show generations in which some runs finished with an ideal solution
found, therefore values in subsequent generations are averaged from fewer
runs.



5.3. Crossover

Problem  syntactic  semantic Problem syntactic ~ semantic
Fo1 732 977 ICMP6 825 1081
F02 732 977 ICMP8 834 989
Fo3 732 977 IMAJ5 819 1197
Fo4 732 977 IMAJ6 825 1081
Fo05 732 977 IMAJ7 829 1024
F06 732 977 IMUX11 845 937
Fo7 732 972 IMUX6 825 1081
Fo8 732 972 IPAR4 818 1679
F09 732 832 IPARS 819 1197
F10 732 832 IPARG6 825 1081
F11 732 832 NCMP6 793 1211
F12 732 832 NCMP8 796 1038
P1 732 977 NMAJ5 795 1442
P2 732 977 NMAJ6 793 1211
P3 732 977 NMAJ7 795 1105
RO 732 977 NMUX11 804 944
R1 732 977 NMUX6 793 1211
R2 732 977 NPAR4 797 2624
R3 732 977 NPARS5 795 1442

NPARG6 793 1211

Table 5.4.: Mean number of randomly generated programs needed to ensure the syntac-
tic and semantic uniqueness of all individuals in an initial population of the
assumed size 500.

often making smaller errors than the best control setup (for 15 problems SEM|X 1.0 gives
better error and for 5 problems worse error on the training set, and is better for 11 and
worse for 5 problems on the testing set). Therefore, we can conclude that the semantic ini-
tialization is advantages in most cases, even though such initialization procedure requires

a bit more time.

5.3. Crossover

5.3.1. Overview

As already signaled in Chapter [3] the major weakness of most crossover operators de-
veloped for GP is that they operate exclusively on syntactic level. For instance, for the
standard tree-swapping crossover (cf. Section , neither the parent programs, nor the
subtrees swapped between them, have anything in common semantically. As a result,
such operators act in quite a haphazard way. No wonder then that with the dawn of
semantically-aware approaches in GP, some attempts have been made to harness seman-
tics for designing more effective crossover operators. This section is another contribution
to that trend.

In the literature, several methods incorporating semantics into a crossover operator have
been described.

Beadle and Johnson in [7] proposed the Semantically Driven Crossover. This modifica-
tion to Koza standard crossover [60] adds the offspring to the new population only if it is

semantically different (i.e., non-equivalent) to any of its parents. To check two programs
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5. Semantically-oriented Search Operators

for semantic equivalence, Beadle and Johnson transform them to a canonical represen-
tation. As they apply their technique to Boolean problems, they used Reduces Ordered
Binary Decision Diagrams (ROBDD) as the canonical form. In this case, two programs

are semantically equivalent if and only if they reduce to the same ROBDD.

Quang Uy Nguyen et al. in [98] proposed a quite similar approach — Semantically
Aware Crossover. However, it does not check the semantics of the whole resultant program,
but instead ensures that the swapped subtrees under the crossover points have different
semantics. Moreover, Nguyen et al. use sampling semantics to represent behavior of the

subtrees, so the equivalence is only approximately checked.

The two studies cited above test the considered programs or subprograms only for

equivalence. However, for sampling semantics it is easy to measure the distance between

them (see Equation(3.4.1 on page 35)). This property was exploited by Nguyen et al. in [127]

in a Semantic Similarity Crossover (SSC) method. This operator tries to select as crossover
points such subtrees in parent solutions that have similar but not identical semantics.
Technically, this is realized by selecting at random candidate crossover points and checking
whether the semantic distance between the corresponding subtrees falls within an assumed
interval of upper and lower bound of semantic similarity. In this way, the operator increases
the search locality (understood as leading to smaller semantics changes) and improves its

overall performance.

This method has, however, one drawback — authors claim that SSC is very sensitive
to its parameters, i.e., the lower and upper bound of an acceptable semantics distance.
Therefore, in [I126] the same team proposed several procedures for self-adapting these
parameters. The best one, Self-Adaptation based on Successful Execution (SASE), adjusts
the lower and upper bound depending on the proportion of SSC which successfully found
the acceptable crossover points in the previous generation. If the matching points were

found too easily then the range is narrowed, if too hard — the range is widened.

Krawiec and Lichocki proposed in [69] a crossover operator which is approximately
geometric in the semantic space. The operator produces a fixed-size pool of candidate
offspring using the standard crossover [60]. From this pool, only the child most similar to
both parents is appointed as the ‘true’ offspring and is propagated to the new population.
Formally, such offspring has minimal sum of distances between its semantics and the
semantics of its first and second parents. Assuming that the fitness function in GP is
usually also based on distance from a predefined target (see Formula , and thus the
fitness landscape is a unimodal cone, such operator is expected to exploit the fitness—
distance correlation in the semantic fitness landscape. Authors show that their approach
is not worse than the conventional GP but, unfortunately, in the presented version does

not outperform the reference method.
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Algorithm 5.2 Semantic Similarity based Crossover (SSC) [127]

1: procedure SSC(p1, p2, A, B)

2 mazxTries « maximal number of tries > default 12

3 t < maxTries

4 repeat

5: subtree; < random crossover point in py

6 subtrees <— random crossover point in ps

7 t—t—-1

8 until A < ||SEMANTICS(subtree;) — SEMANTICS(subtrees)|| < B or t =0
> see Equation [5.3.1]

9: c1, c3 < children produced by swapping subtree; with subtrees in p; and ps

10: return {cy,ca}

11: end procedure

5.3.2. Experiments

To show capabilities of semantic crossover we test the performance of Nguyen’s SASES
approach which, according to [126], is the best variant of SASE type of SSC method. In
SASES, the required proportion of successful execution of SSC is not fixed like in SASE,
but changes linearly during an evolution. Nguyen and coauthors claim that this method
not only gives the best results but also reduces the number of tuning parameters.
Algorithm shows a pseudocode of SSC method. The calculated distance (line (8| of

the pseudcode) between two sampling semantics (lets call them u and v) is defined as

|
|lu—v| = NZ\uz—vl] (5.3.1)
i=1

i.e., it equals to the mean absolute difference of each semantics elements. Note that this
formula is equivalent (up to scaling) to the semantic similarity as defined in Formula[3.4.1]
Let us remind that for Boolean domain, as mentioned in Section we treat true and
false values as 1.0 and 0.0, respectively. Therefore, the above equation in this case is
equivalent to the Hamming distance normalized to an interval [0;1]. SSC tries to find a
pair of crossover points that meet the required constraints (see line |§ of Algorithm [5.2)
up to 12 times before giving up.

In the SASES approach the required proportion of successful executions of SSC in the
beginning of evolution is set to 65%, and is continuously increased to 85% in the last (in
our experiments — 100th) generation. If, in a given generation, the number of successful
executions achieves this level, the [A, B] range is narrowed, otherwise it is widened. In the
first generation the upper (B) and lower (A) bounds are set to 0.4 and 0.004 respectively,
and then they are both multiplied or divided by 0.9 to narrow or widen the bounds. These
settings follow the ones used by Nguyen in [126].

To test the performance of SASES we run a series of experiments — 11 setups with
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Setup  Rank Setup  Rank Setup  Rank
SASES+M 0.2 5.51 | SASES+M 0.7 9.99 X+M 0.5 13.56
SASES+M 0.1  5.73 X+M 0.2 10.27 | SASES+M 0.9  14.28
SASES 1.0 5.87 X 1.0 10.47 X+M 0.6 14.32
SASES+M 0.3  6.18 X+M 0.1  10.55 X+M 0.7 14.90
SASES+M 0.4  6.58 X+M 0.3 11.87 X+M 0.8 15.81
SASES+M 0.5  7.71 | SASES+M 0.8 12.23 X+M 0.9 16.53
SASES+M 0.6  9.29 X+M 04 12.36 M 1.0 16.99

Table 5.5.: Friedman ranks of success ratio on all 39 problems (both symbolic regression
and Boolean domain).

SASES and mutation operators, and 11 control setups with standard crossover and mu-
tations. Setups are denoted as SASES+M 3 or X+M f, where § is the probability of
choosing mutation and it varies from 0 to 1 with step 0.1 (therefore we have 21 distinct
setups in total). All other parameters are exactly the same as in previous experiments.

Two hundred independent runs of each of the above setups were performed.

5.3.3. Results

Table presents ranks from the Friedman test applied to success rates obtained by each
setup. Again, bold font is used to emphasize the best setups from each combination of
operators. This ranking clearly shows that the setups with SASES outperform canonical
crossover, which confirms conclusions formulated in [126]. The best setup, SASES+M 0.2,
statistically significantly (p-value < 0.05) outperforms SASES+M 0.6 and all further se-
tups. The best control experiment (X+M 0.2) is statistically worse than the first four
setups (SASES+M 0.2 — SASES+M 0.3).

Tables and show detailed values of success rates for each setup and problem.
Success rates that are statistically better values than the performance of GP with standard
crossover are marked with bold font. The main observation resulting from these tables
is that the setups with the standard crossover never perform significantly better than
SASES. The latter method, for at least one proportion of mutation, is statistically better

on eleven symbolic regression problems and thirteen Boolean problems.

5.4. Mutation

5.4.1. Overview

In [9], Beadle and Johnson proposed Semantic Driven Mutation operator. This algorithm
proceeds as the standard subtree mutation, but after producing the candidate offspring
checks if it is semantically different from its parent. If both programs are semantically
equivalent, the mutation is reverted and the process is repeated. If the algorithm fails

several times to produce a semantically distinct child, then the parent is copied to a new
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B8 0.0 0.1 0.2 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SASES+M 096 094 094 093 0.9 0.81 0.80 0.61 0.57 0.44 0.29

Fo1 X+M 096 096 092 090 083 075 0.63 059 050 039 0.29
roy SASESTM 074 074 073 0.67 052 049 045 031 021 019 0.07
X4+M 073 0.64 060 045 038 029 025 024 015 0.14 0.07
703 SASESTM 068 0.66 053 045 020 020 009 007 004 004 000
X+M 068 055 054 030 025 0.19 011 007 003 004 0.00
ros SASESTM 036 031 0.28 022 014 0.1 007 002 004 000 0.00
X4+M 027 0.8 014 013 008 004 004 002 003 000 0.00
705 SASESTM 003 005 002 0.6 003 004 005 0.05 001 002 001
X4+M 002 003 000 001 00l 002 002 00l 001 00l 001
r0g SASESTM 056 058 053 049 0.54 041 0.25 0.23 013 008 006
X+M 046 046 043 041 024 020 016 011 010 007 0.06
707 SASESTM 004 004 002 005 003 002 004 00l 001 001 0.02
X4+M 007 005 002 002 004 001 002 000 003 001 002
ros SASESTM 0.03 002 001 001 002 002 000 00l 002 002 001
X+M 000 000 001 001 000 00l 001 000 00l 000 001
70y SASESTM 085 084 0.84 080 070 051 0.26 030 0.20 011 007
X4+M 025 029 023 017 020 015 012 011 010 006 0.07
o0 SASESTM 075 071 0.63 0.62 051 031 026 017 0.6 009 0.04
X4+M 019 0.9 013 014 0.6 010 008 0.07 005 007 0.04
o1, SASESTM 0.35 044 043 042 0.46 052 053 047 041 0.40 0.29
X+M 017 019 029 026 029 037 035 032 032 026 029
o1y SASESTM 000 000 000 000 000 000 000 000 000 000 0.00
X4+M 001 000 000 000 000 000 000 000 000 000 0.00
by SASESTM 000 001 001 001 001 000 000 000 001 000 0.00
X4+M 000 000 00l 002 000 000 000 000 000 000 0.00
by SASESHM 002 000 00l 001 000 000 000 000 000 000 000
X4+M 000 0.0l 00l 000 000 000 000 000 000 000 0.00
b3 SASESTM 01 007 004 001 000 00l 000 00l 000 000 0.00
X4+M 007 003 001 001 00l 000 000 000 000 000 0.00
Ro  SASESYM 003 002 001 001 0.04 002 00l 004 00l 001 0.02
X+M 001 001 002 001 00l 002 001 00l 000 003 002
m1 SASESTM 000 000 000 000 000 000 00l 000 000 000 0.00
X4+M 000 0.00 000 000 000 000 000 000 000 000 0.00
Ry SASESTM 000 000 000 000 000 000 000 000 000 000 0.00
X4+M 000 000 000 000 000 000 000 000 000 000 0.00
R3  SASESTM 000 000 000 000 000 000 000 000 000 000 0.0

X+M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.6.: Comparison of success rates for 19 symbolic regression problems for
SASES+M S and X+M g for different values of 5 (i.e., probability of mu-
tation). Statistically better results (p-value < 0.05) in each pair are printed in
bold.
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B 0.0 0.1 0.2 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SASES+M 0.29 0.33 0.45 0.42 0.42 0.35 0.35 0.35 0.31 0.15 0.01

ICMP6 X+M 0.9 022 023 021 020 018 015 013 0.16 006 0.01
onps | SASESTM 000 000 001 000 000 000 000 000 000 0.00 0.0
X+M 000 000 000 000 000 000 000 000 000 000 0.00
AT SASES+M  1.00 1.00 1.00 008 1.00 1.00 098 096 097 0.95 078
X+M 099 098 096 097 097 095 097 097 093 088 0.78
INMATG SASES+M 0.88 0.91 088 0.89 0.84 0.80 080 0.71 0.62 0.45 001
X+M 074 0.65 075 0.67 0.64 057 047 045 035 024 0.01
AT SASEStM 0.29 0.26 0.18 0.15 0.07 0.09 002 001 00l 000 0.00
X+M 005 005 003 002 002 001 00l 000 000 0.00 0.00
NUx1  SASESTM 0.06 0.07 0.7 0.09 011 0.08 0.04 004 001 001 000
X+M 001 002 001 00l 00l 001 00l 00l 001 000 0.00
nUxe  SASESTM 099 099 1.00 099 1.00 0.99 0.8 1.00 096 0.95 0.3
X+M 096 096 096 095 094 094 089 093 092 084 0.73
AR SASES+M 091 091 096 093 094 092 093 092 090 089 084
X+M 089 090 093 091 094 091 090 092 089 091 0.84
ARG SASEStM 023 029 029 0.27 025 0.28 0.8 0.19 020 014 0.09
X+M 017 0.16 021 018 0.17 0.16 016 0.16 0.15 0.09 0.09
ARG SASEStM 0.0l 001 001 002 001 001 00l 002 00l 002 001
X+M 001 000 001 000 00l 000 000 002 001 00l 001
NOMPG  SASESTM 034 038 045 037 047 0.39 0.39 0.30 0.20 0.8 0.00
X+M 0.0 015 011 012 013 0.5 0.10 013 009 006 0.0
Nevps | SASESTM 000 000 000 000 000 000 000 000 000 0.00 0.0
X4+M  0.00 0.00 000 000 000 000 000 000 000 0.00 0.00
NMAjs  SASESTM 0.8 1.00 099 098 0.96 0.96 0.93 0.0 0.85 0.76 034
X+M 087 085 080 087 081 081 080 077 073 059 0.34
NMAJe  SASESTM 085 0.86 0.79 0.76 078 0.70 0.69 053 0.42 0.18 0.0
X+M 036 036 032 031 025 020 018 0.6 009 0.03 0.00
NMAg,  SASESTM 0.45 0.8 0.10 0.09 0.05 0.04 001 001 000 000 000
X+M 000 000 000 000 0.0l 000 000 000 000 0.00 0.00
NMUX1  SASESTM 000 000 000 000 000 000 000 000 000 000 0.00
X+M 000 000 0.00 000 000 000 0.00 000 000 000 0.00
NvUxG  SASESTM 094 0.90 094 0.97 0.96 0.95 0.96 0.2 0.90 0.84 030
X+M 073 080 074 0.80 079 080 0.86 080 0.71 0.68 0.30
NPAR4  SASESTM 057 0.60 053 056 052 0.51 042 043 040 020 006
X+M 037 043 040 039 037 033 030 030 021 0.18 0.06
NPARS  SASESTM 001 001 001 001 00l 00l 000 000 000 000 0.00
X+M 0.0l 000 002 000 000 000 000 000 000 000 0.00
NPARG  SASESTM 000 000 000 000 000 000 000 000 000 0.00 0.0

X+M  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.7.: Comparison of success rates for 20 Boolean problems for SASES+M [ and
X+M g for different values of § (i.e., probability of mutation). Statistically
better results (p-value < 0.05) in each pair are printed in bold.
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Algorithm 5.3 Semantic Similarity based Mutation (SSM) [99]

1: procedure SSM(p, A, B)

2 mazxTries « maximal number of tries > default 12
3 t < maxTries

4 repeat

5: subtree; < random mutation point in p

6 subtreeg <+ GROW(1, maxDepth) > see Algorithm
7 t—t—1

8 until A < ||SEMANTICS(subtree;) — SEMANTICS(subtrees)|| < B or ¢t =0

> see Equation [5.3.1]
9: return child produced by replacing subtree; with subtrees in p
10: end procedure

population. In this work, Beadle and Johnson also used Reduced Ordered Binary Decision
Diagrams (ROBDD) to test the candidate solutions for behavioral equivalence — exactly
as in Semantically Driven Crossover (see Section [5.3).

In line of the Semantically Aware Crossover and Semantic Similarity Crossover (de-
scribed in Section , Nguyen et al. in [99] presented two analogous methods: Semanti-
cally Aware Mutation (SAM) and Semantic Similarity Mutation (SSM). The first operator
chooses randomly a mutation point (a subtree in the parent program) and generates at
random a new subtree. If the distance between semantics of this two subtrees (calculated
according to Equation is sufficiently large, i.e., exceeds certain threshold (the only
parameter of the method), then the subtree at the mutation point is replaced by the new
subtree. Otherwise, the procedure may be repeated (but originally, in [99], it is not) sev-
eral times, and in case of failure a standard subtree mutation can eventually be applied.
In this way, SAM tries to force the new subtree to behave differently enough than the old
replaced subtree.

The SSM method works very similarly to SAM. However, instead of testing semantic
equivalence, SSM checks if the semantic similarity are in a given range (see Algorithm.
Therefore, the SSM operator has two parameters — lower and upper bound of acceptable
distance between semantics. Both SAM and SSM methods use sampling semantics as all

previously mentioned Nguyen et al.’s algorithms.

5.4.2. Experiments

In this section we conduct experiments to test SSM on our benchmark problems. The lower
and upper bound of semantic sensitivity are set to B = 0.4 and A = 0.004, respectively
(like for SASES in the previous section). SSM makes up to 12 attempts to generate an
appropriate subtree before applying the standard subtree mutation.

Again, we tested different proportion between pairs of operators — standard crossover
and SSM (X+4SSM f) for the SSM setups and standard crossover with standard mutation
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Setup  Rank Setup  Rank Setup  Rank
X+4+SSM 0.1 7.01 | X+SSM 0.4  9.09 | X+SSM 0.7 12.97
X+M 0.2 7.10 X+M 04  9.50 X+M 0.8 13.77
X+M 0.1 7.15 | X+SSM 0.5 10.14 | X+SSM 0.8  13.96

X 1.0 7.40 X+M 0.5 10.46 | X+SSM 0.9  14.62
X4+SSM 0.2 7.82 X+M 0.6 11.51 X+M 0.9 15.15
X4+SSM 0.3 7.88 | X4+SSM 0.6 12.00 M 1.0 15.94
X+M 0.3  8.63 X+M 0.7 12.55 SSM 1.0 16.33

Table 5.8.: Friedman ranks of success ratio performance on all 39 problems (both symbolic
regression and Boolean domain).

(X4+M f) as control experiments. Other parameters are set as in previous experiments in
this thesis.

5.4.3. Results

The ranking of all examined setups is presented in Table Bold font is used to em-
phasize the best setups from each combination of operators. It appears that the setup
X+SSM 0.1 is slightly better than the second setup X+M 0.2, but this difference is negli-
gible. In fact the best setup, X+SSM 0.1, statistically significantly outperforms only the
twelfth (X+M 0.6) and the following items from this ranking. The best control experiment
(X+M 0.2) significantly outperforms exactly the same setups.

One explanation for these results could be that SSM is overall not a very good mutation
operator. However, its not necessary true because the best setups in Table[5.8/use mutation
very rarely or not at all. Therefore, even if SSM was very advantageous comparing to the
standard mutation, this operator would have little chance to demonstrate that. On the
other hand, in the setups with large mutation probability, SSM could act too intensely,
causing exaggerated exploration while neglecting exploitation of the search space.

When analyzing individual success rates for particular problems, it appears that there
are only a few statistical significant differences between SSM and standard mutation.
For all problems, SSM demonstrates its advantage only in two cases from all considered
proportions of crossover operator, and the standard mutation outperforms SSM only in
three cases out of 390 cases (39 problems times 10 setups with active mutation operators).
For this reason, the detailed tables presenting those results are omitted here (but they are
attached in Appendix [A]).

5.5. Summary

In this chapter we described selected past works on the semantic methods applied to GP.
We also conducted a series of extensive computational experiments, in which we tested the

most promising of these methods on a benchmark suite. The results obtained in this way
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Setup  Rank Setup  Rank
SEM|SASES+SSM 0.1 13.19 | SEM|SASES+SSM 0.8  32.06
SEM|SASES 1.0 13.96 SASES+SSM 0.8  32.17
SASES+M 0.2 14.23 SEM|X+M 0.4  32.28
SEM|SASES+SSM 0.3 15.15 X+SSM 0.3 32.37
SASES+M 0.1  15.35 SEM|X+M 0.3 33.17
SASES+SSM 0.1 15.42 X+M 0.3 34.08
SASES 1.0 15.62 X+SSM 0.4 34.85
SASES+M 0.3 16.73 SASES+M 0.8  35.06
SEM|SASES+SSM 0.2 17.45 X+M 04  36.01
SASES+SSM 0.3 17.69 SEM|X+M 0.5  37.54
SASES+M 0.4 18.01 SEM|X+M 0.6 37.91
SASES+SSM 0.2 19.13 X+SSM 0.5 38.33
SASES+SSM 0.4 19.91 SASES+SSM 0.9  38.71
SEM|SASES+SSM 0.4  20.01 X+M 0.5 39.15
SASES+SSM 0.5  21.06 SEM|X+M 0.7  40.40
SASES+M 0.5  21.40 SASES+M 0.9 41.14
SEM|SASES+SSM 0.6  21.74 X+M 0.6 41.14
SEM|SASES+SSM 0.5  23.63 | SEM|SASES+SSM 0.9  41.81
SASES+SSM 0.6 25.65 X+SSM 0.6 41.87
SEM|X 1.0 26.26 X+M 0.7  43.51
SEM|SASES+SSM 0.7 26.56 X+SSM 0.7 43.83
SASES+M 0.6  26.85 SEM|X+M 0.8  44.42
SEM|X+M 0.1 28.04 X+M 0.8  45.27
SEM|X+M 0.2  28.38 X+SSM 0.8 45.94
SASES+SSM 0.7 28.63 X+SSM 0.9  46.55
SASES+M 0.7 28.69 SEM|X+M 0.9  46.82

X+M 0.2 29.05 X+M 0.9 47.87

X+4SSM 0.1 29.42 M 1.0 49.13

X 1.0 29.76 SEM|SSM 1.0 49.81

X+M 0.1 30.05 SSM 1.0 50.41

X+4+SSM 0.2 31.56 SEM|M 1.0 50.78

Table 5.9.: Friedman ranks of success ratio performance on all 39 problems (both symbolic
regression and Boolean domain) for all semantic operators. There are 62 setups
in total.

form a base for comparison with more advanced methods shown in following chapters.

The experiments from this chapter demonstrate that semantically oriented search oper-
ators proposed recently for GP, when compared to the standard crossover and mutation,
are generally profitable, however to a greater or lesser extent, depending on the setup and
problem. Especially, the SASES appears to evidently outperform the standard crossover,
whereas the advantage of semantic population initialization procedure proposed in Sec-
tion [5.2] or SSM tested in Section [5.4] is hardly visible.

Finally, in this section we compare all setups from previous sections together. In this
comparison, we include also two additional setups that combine SASES and SSM opera-
tors (setups SASES+SSM f), and setups that contain all three semantic operators, i.e.,
semantic initialization, SASES, and SSM, at the same time (setups SEM|SASES+SSM 3).
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Figure 5.5.1.: Subset of the ranking presented in Table Dotted arrows show order of
ranks, solid arrows shows the first setup in the ranking which is statisti-
cally significantly worse (Friedman test with Shaffer’s post-hoc procedure,
p-value < 0.05).

The parameters of both operators and the whole evolution are the same as in previous
sections.

The obtained ranking is presented in Table (as practiced in this thesis, we mark
the best setup of a given type in bold). This ranking shows that synergy of all semantic
operators is profitable — the best nineteen setups (out of 62) incorporate the SASES
operator, but the best setup is a fusion of all three semantic operators. This suggests that
it may be worthy to design GP variants that implement semantic-aware mechanisms on all
stages of evolutionary search: population initialization, recombination, and mutation. It
is also worth emphasizing that the gap between the performance of most semantic-aware
methods, particularly SEM|SASES+SSM /3, and the best non-semantic setups is big: the
best setup based on standard GP, X4+M 0.2, has rank around 29, while the leader around
13.

To conclude, Figure [5.5.1] visualize graphically which setups are statistically better than
other (p-value < 0.05) in the sense of achieving success ratios (cf. Table[5.9)). The results
are obtained by Friedman test with Shaffer’s post-hoc procedure which compares all 62
possible pairs of tested setups, but the graph shows the 14 best setups from each pair
of used operators (denoted by bold font in Table and 9 setups directly surpassed by
them. The dotted arrows show order of setups in the ranking. Solid arrows point the first,

statistically significantly worse setup from the ranking. This means that if some method
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SASES 1.0
SEM|X 1.0

SASES+M 0.1
SEM|X+M 0.1

SASES4SSM 0.2

X+SSM 0.1
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X+M 0.1

p SSM 1.0
IOM 1.0
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. ,_O'OSEM|M 1.0

SEM|X-+M 0.8 ]
SEM|SSM 1.0

Figure 5.5.2.: Subset of Friedman ranking of median error on training set performed on
all 39 problems.. Dotted arrows show order of ranks, solid arrows shows the
first setup in the ranking which is statistically significantly worse (Friedman
test with Shaffer’s post-hoc procedure, p-value < 0.05).

A statistically outperforms some other method B, then it simultaneously outperforms all
methods following B in the ranking (dotted arrows).

It appears, that the performed test (Shaffer’s post-hoc procedure that compares all
setups together) does not show that the best control setup (X4+M 0.2) is statistically
worse than any of the semantic operators. However, the best setup is statistically better
than X4+M 0.1 which has only one worse rank than the best control setup (X+M 0.1
— 30.05, X4+M_0.2 — 29.05, see Table . On the other hand, the Holm’s post-
hoc procedure (comparing selected method with all others) shows that the best setup
(SEM|SASES+SSM 0.1) is statistically better than SASES+SSM 0.6 and following se-
tups. Moreover, using this procedure, the best control setup (X+M 0.1) is statistically
worse than the first 7 best setups from the ranking.

The advantage of semantics setups is much more visible when comparing errors (see
Section . Figure shows a similar graph visualizing which setups are statistically
better (Shaffer’s post-hoc procedure, p-value < 0.05) in the sense of committed errors on
training set. This chart shows, that five best setups (SEM|SASES+SSM 0.1, SEM|SASES
1.0, SASES+SSM 0.2, SASES+M 0.1, and SASES 1.0) are statistically better than the
best control setup (X 1.0). However, the Holm’s post-hoc procedure says that the first 17
best setups are statistically better than X 1.0 (see Appendix |[A|for full ranking of median

erTors).
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6. Desired Semantics

6.1. Introduction

In this chapter we introduce the concept of desired semantics, and propose and experimen-
tally investigate a few approaches that rely on it. Informally, desired semantic, calculated
for a location in a program, expresses the semantics of a code fragment (desired building
block) which, when implanted at that location, maximizes program’s fitness. To calculate
the desired semantics, a property of (at least partial) instruction (function) inversibility is
required. In other words, the proposed approach requires all instructions (functions) given
by a problem definition to be reversible (at least to some extent, which we will explain
further in this chapter).

To explain how the proposed idea of desired building blocks works, we first introduce
the term ‘context’ (see also Chapter E)I) The context is a fragment of a GP program
bereft of some part of it. Because, we constrain this thesis only to the tree-based GP (see
Section , we will further identify the context with an incomplete tree that misses a
single branch (part). Thus, an entire program can be assembled by combining a context

with a part (subtree).

Definition 5. The desired semantics of a context (desired semantics for short) is semantics
of such a part, which combined with the given context causes the resultant program to
have the target semantics (i.e., a program which is an ideal solution). A desired semantics
of an empty context is equivalent to the target semantics (see Section as in this case
the missing part has to be the entire solution itself.

Formally, the desired semantics of a context ¢ for problem with target semantics ¢ may

be expressed as a set D(c,t) (D in short):
D(c,t) ={z: s(cox) =1t}

where s(c o x) denotes semantics of context ¢ fed with (composed with) semantics z, i.e.,
semantics of a composition of a context ¢ and a hypothetical part with semantics = (i.e.,
not necessarily constructable from an available set of instructions). In other words, desired
semantics of a context describes semantics of all such parts that the semantics of a program

assembled from one of these parts and the given context equals the target semantics.

It is important to notice that for particular context ¢ and target ¢, the desired semantic

75



6. Desired Semantics

may not exist (and thus D = )). In such a case, no value fed into the context at the
missing branch location (denoted by ‘#’) can make ¢ return ¢. Note also however, that
this situation is different from a scenario in which D # (), but there is no part that has
the desired semantics, which we will discuss later in this chapter.

The desired semantics of a context should not be confused with a semantics of a
(sub)program (represented by a (sub)tree). Semantics is associated with a root node
of a (sub)tree and describes the behavior of this (sub)program. In contrast, the desired
semantics describes the desired behavior of a hypothetical part which does not have to
exists. Therefore, it pertains to a missing part of a context.

In following, by ‘desired semantics of a node’ we mean the desired semantics of a context
created by removing a subtree rooted at that node from the original program. Desired
semantics always refers to some context.

The desired semantics says what, in an ideal case, should be put in a given place to get
an optimal solution of a problem (i.e., cause the semantics of the program to equal the
target). Obviously, such desired subtree semantics might not exist at all or be ambiguous.
For this reason the desired semantics requires richer means of expression than subtree

semantics, which enable describing the following five possible situations:

1. There exists exactly one semantics of a subtree which causes the context to have the

target semantics.
2. There exists more than one such semantics, but the set of all of them is finite.

3. There is an infinite number of such semantics, so the only way to express them

concisely is to resort to a more complex notation, e.g. to formulas.

4. Any semantics is accepted in D because whatever is fed into the context, the resultant
tree will always have the target semantics. In other words, the missing tree in this
context is an intron and does not have any influence on the final behavior of the

program.

5. No matter what is fed into the context, the resultant tree will not have the target
semantics anyway. In such a case, the context is not able to achieve the target

semantics in any situation (to do this, the context has to be changed itself).

To illustrate all of the above situations let us assume that the problem is to evolve a
real-valued mathematical expression which always (identically) equals zero, i.e., its target
semantics ¢ = 0. For this problem we can easily design contexts that represent the above
categories. Examples of such contexts are shown in Figure[6.1.1] The first context encoding
expression 1 - (# — 1), where # is the missing subtree, accepts exactly one semantics —
only by replacing # with a subtree returning 1 one can obtain an expression which equals

0. The second expression 1 — #2 accepts two possible semantics: —1 and 1. In the next
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(a) one unique, (b) many values
specific value

QR M
v OB U

(c) infinite (d) any, (¢) no  one
number value is (incon-
of values insignifi- sistent

cant context)

Figure 6.1.1.: Examples of five qualitatively different situations concerning desired seman-
tics for zero-valued target (i.e., t = 0). The subtitles report the number of
semantics accepted in D. The dotted circle (node ‘#’) represents a missing
subtree of the context.

example, 1 — cos(#), a subtree returning any value equal to 27n, n € Z is acceptable, so
the cardinality of D is infinite (but countable). Next, when the context is 0 - sin(#), then
whatever is put in the missing place, the whole expression will always equal zero anyway
(D has an infinite and uncountable number of elements). Finally, the last example shows a
situation in which the resultant expression is always greater than 1 disregard the semantic
substituted in place of #, so this context cannot be used to construct a solution to our
problem (such desired semantics will be called inconsistent in following).

In this simple and extreme example, the five above-mentioned situations occurred glob-
ally for the whole semantics. However, they can occur also locally, independently for each
component of semantics. For instance, when the used semantics has a form of sampling
semantics (see Definition , i.e., it is a list of responses for each fitness case,
then each element of this list falls into one of the above five categories individually and
independently from others. This feature is very important because it allows practical ap-
plication of methods using desired semantics, even if some elements of it are insignificant
or inconsistent.

Further, in the experimental part, we simplify the space of desired semantics, so each

element can express only one from three cases (instead of five):

e One, concrete value is acceptable (see Case |l on the facing page)).

e Any value is acceptable (i.e., ‘don’t care’) — such elements will be called insignificant
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in following (Case {4).
e No value is acceptable — it is inconsistent (Case .

Such simplified desired semantics can be expressed as a single list (similarly to sampling
semantics defined in Section with two special values encoding undefined values —
both insignificant (‘don’t care’) and inconsistent elements. In following we will identify
desired semantics just with this simplified version of it, which does not require set notation
any more.

In our implementation, when more values are acceptable (see Cases|2/and ,
only one of them, arbitrary chosen, will be stored and considered in further processing
(instead of a full set of all possible values, or an expression defining all of them). We choose
such proceeding to simplify both the computations and the representation complexity, even
though this can introduce some bias and punish good subtrees. Otherwise, the complexity
of desired semantics would increase exponentially with the length of the path from the
root node to the missing subtree of context.

To illustrate this, let us continue the example presented on page [70] where the goal
was to evolve an expression returning zero. For the context 1 — #?2 (see Figure
our simplified desired semantics will equal either —1 or 1, and any further computation
will assume that only one of them is correct. Similarly, for the context 1 — cos(#) (see
Figure , the simplified desired semantics will be 0 (although in theory it could be
any multiplicity of 27, our implementation prefers smaller values among all valid). As a
result, a part returning, e.g., 2w, will be treated as committing some error, even though
this value is formally acceptable too.

To calculate the desired semantics of a context, all instructions should be invertible, as
mentioned at the beginning of this section. When we have perfectly invertible instruction,
the inversion of it will have the same properties as an inverse function in mathematics.
This means, that it must be possible to calculate the desired input for each of used
functions (instructions), given the values all the other inputs (remaining arguments of
a function) and the expected output (the result of the function). For functions that are
not fully invertible, some elements of the calculated desired semantics can be ambiguous
or inconsistent. It should be also noticed that the invertibility requirement means that
the used functions cannot be just black boxes given by a problem definition — we must
know how to calculate the desired argument to get an expected function value (i.e., we
must know the inverse functions).

When a method calculating the desired input value for each function is given, the
algorithm to calculate the desired semantics of a whole context is straightforward. It
starts from the root node and goes along the path to the missing subtree of the context.
In each step, the desired value of an argument on the path is calculated. Thus, at the

beginning, the desired argument for the instruction located at the root node is calculated
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Algorithm 6.1 Calculating desired semantics of a context

1: procedure DESIREDSEMANTICS(c, t) > for context ¢ and target semantics ¢
2 L + list of nodes on the path from root of ¢ to the missing subtree

3 d<+«t > desired semantics of an empty context
4 for alln € L do

5: S < semantics of all children x (subtrees rooted in x) of node n such that x ¢ L
6 d <+ n=1(d,S) > calculate desired values using inverse of function n
7 return d

8: end procedure

Figure 6.1.2.: Exemplary context with calculated desired semantics (in bold). The tar-
get semantics of a task is [2,0, 0], semantics of an independent variable is
[—1,0,1], and the context desired semantics is [—1, 7, 1].

(the given target semantics is simultaneously a desired semantics of the root). Then,
recursively, all consecutive nodes on the path are processed. For each node, the semantics
of all its subtrees (arguments) not belonging to the path are directly accessible, therefore
the only unknown for each node is the quested desired semantics. The last calculated value
forms the unknown desired semantics of the context. Algorithm shows the pseudocode

of this procedure.

To give an example, let us suppose that a given problem is a symbolic regression task to

evolve expression z2

—x. The only input variable is z, and there are three fitness cases, for
which it assumes values —1,0, 1, respectively. Thus, the semantics of the terminal node x
equals [—1,0, 1] and the sampling semantics of the target is [2,0,0]. Figure shows an
exemplary context (# -z — z) with semantics of all subtrees denoted in plain text (here
only terminals). In bold there are shown all desired semantics computed from the root
node till the missing part of the context (i.e., also the context which arises by removing the
subtree rooted in the multiplying (x) node). The [2,0, 0] semantics presented in the figure
is both the desired semantics of a completely empty context and the target semantics of

problem.

In this example the desired semantics of the context is [—1, 7, 1], with the question mark
denoting insignificant value (‘don’t care’). It does not matter what is the second element
of the missing subtree semantics, because the program will be always correct anyway. In

this concrete example, any value of this element is multiplied by zero. As the result of the
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subsequent processing at the root node (subtraction), second element of the semantics of

entire program is zero, which is the target value.

6.2. Methods

Using the concept of desired semantics a new family of methods for solving problems may
be proposed. The common high-level idea of them is to maintain two groups: one of con-
texts and one of parts, and then to construct complete programs by matching the elements
from both of these sets, where the choice of contexts and parts is driven by analysis of
desired semantics. This meta-algorithm may be implemented in many ways, especially in
an evolutionary manner. For example, one may evolve separately two populations, one of
contexts and one of subtrees, or just a single population of full trees (individuals), which
would be virtually divided into contexts and subtrees. In this thesis, we propose several
variants of the latter concept (i.e., the evolution of a single population), which are quite
simple extensions to the classical GP algorithm described in Section [2.5

In our proposition, we simply enable the evolution to use, in addition to mutation or
crossover, a new breeding operator which combines a selected context extracted from a
single parent individual and the best matching subtree from a library of available subtrees.
All variants of this operator, presented below in this section, differ only in how the context
from a parent is chosen.

In the proposed approach, the library of available subtrees contains all subtrees extracted
from all individuals from the present population. This means, that in every generation
the set of all subtrees existing in current individuals is created from scratch. However,
if two or more subtrees have the same semantics, then only the one with the minimal
subtree depthlﬂ is stored in the set. Such restriction to minimal subtrees with unique
behaviors drastically reduces the size of this library. There are two reasons to it. Firstly,
the majority of genome fragments in the whole evolved population exists in many copies.
Secondly, different genotypes often map to equivalent phenotypes, i.e., have the same
semantics.

Below we describe all five variants of the proposed breeding operator. All of them work
somehow similarly to the standard subtree-replacing mutation operator [60]. However,
instead of generating a new random subtree in place of the old one, they all look for such
a subtree in the library which has semantics that matches the best the desired semantics
of the context arising from removing the old subtree.

The first variant of the operator called Random Desired Operator (RDO) removes a
randomly chosen subtree from the parent and puts in the missing place the best matching

subtree found in the library (see Algorithm [6.2)). Because RDO compares semantics of

"We use subtree depth criterion because we apply the same type of constrain to entire evolutionary
process., i.e., we limit the maximal tree depth. In other setups, other measures, e.g., a maximal subtree
size (number of nodes), might be more appropriate.
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Algorithm 6.2 Random Desired Operator (RDO)

1: procedure RDO(p)

2: r <— random crossover point in p

3: ¢ < CONTEXT(p, r) > extract a context by removing subtree r from p
4: s <~ DESIREDSEMANTICS(c, t) > calculate for target semantics ¢
5 7’ <~ SEARCHLIBRARY () > find a subtree best matching given s
6: return child produced by replacing subtree r with r’ in p

7. end procedure

Algorithm 6.3 Steepest Desired Operator (SDO)

1. procedure SDO(p)

2 (Tolds Tnew, dpest) < (D, 9, 00)

3 for all r € nodes in p do

4: ¢ < CONTEXT(p, 1) > extract a context by removing subtree r from p

5 s <~ DESIREDSEMANTICS(c, t) > calculate for target semantics ¢

6 7’ <~ SEARCHLIBRARY (s) > find a subtree best matching given s

7 d + DISTANCE(s, SEMANTICS(r"), penalty)
> penalize inconsistent elements in s (see Equation

8: if d < dpest then

9: (Toldy Tnew, dbest) < (Ta le d)

10: return child produced by replacing subtree 7,4 with 7, in p

11: end procedure

subtrees with only one desired semantics, then the undefined (i.e., both insignificant and
inconsistent) elements in this desired semantics may be just ignored without any influence
to the final result. In other words, the semantic distance between the desired semantics

and the parts in the library is calculated only on the defined elements of the former.

The second variant, Steepest Desired Operator (SDO) considers all possible locations
for subtree replacing in the parent and chooses the one for which a subtree found in the
library fits best. In other words, SDO considers all contexts from the parent individual,
and for each of them operates as RDO, returning the pair (context, part) characterized
by the smallest semantic distance. Technically, SDO calculates the desired semantics for
every node in the parent and for each of them it searches the best matching subtree.
Eventually, SDO chooses the place of substitution with a minimal distance between found
subtree semantics and the desired semantics of appropriate context. A pseudocode of this
procedure is presented in Algorithm

Because SDO compares similarities between different pairs of desired semantics and
semantics of subtrees from the library, the way it handles the undefined elements in the
desired semantics becomes important. As it would be undesired to promote contexts
with many inconsistent elements, the similarity measure used by SDO adds, for each such

element, a big penalty value to the overall distance, increasing so the dissimilarity between
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Algorithm 6.4 Constrained Steepest Desired Operator (CSDO)

1: procedure CSDO(p)

2 (Told> Tnews dbest) — (9,9,0)

3 for all r € nodes in p do

4 ¢ < CONTEXT(p, 1) > extract a context by removing subtree r from p
5: s <= DESIREDSEMANTICS(c, t) > calculate for target semantics ¢
6 if s contains only consistent elements then

7 ' <~ SEARCHLIBRARY(s) > find a subtree best matching given s
8 d < DISTANCE(s, SEMANTICS(r'), 0) 1> ignore inconsistent elements in s
9: if d < dpest then

10: (Told> Tnew, dpest) < (T, T, d)

11: return child produced by replacing subtree 7,4 with 7, in p

12: end procedure

the compared semantics:

0 if sq; is insignificant

DISTANCE(sg, s, penalty) = Z penalty  if sq; is inconsistent (6.2.1)

N
=1

|sq; — si| otherwise

Let us observe that, without such punishment, i.e., by ignoring inconsistent elements
(as RDO does), SDO would, in an extreme case, always choose the context in the parent
with fully inconsistent desired semantics (i.e., inconsistent on all positions), because all
subtrees would perfectly fit to it. Technically, for symbolic regression problems, we add
penalty value 10'® for each inconsistent element (as the maximal possible error committed
on a single element /fitness case is infinite). For Boolean problems the situation is different,
because the maximal possible distance between two elements of semantics is finite (the
distance between the ‘true’ and ‘false’ values). Therefore, we treat inconsistent elements
just as mismatched.

Alternatively, instead of adding some penalty value to the similarity measure, SDO may
consider only the contexts that have minimal number of inconsistent values in their desired
semantics. This version is called Constrained Steepest Desired Operator (CSDO). Because
the number of inconsistent elements can only increase with larger context (i.e., extending
any context by adding any node never makes its desired semantics less inconsistent as was
before this extension), the algorithm can give up visiting any child node if the extended
context would have more inconsistent elements. Moreover, as all our benchmark problems
are realizable with the available function set and thus the target semantics has all consis-
tent elements, we can restrict the operation of this algorithm only to contexts with fully
consistent desired semantics. In this way, it is possible to substantially reduce the com-
putational cost, because fewer subtrees need to be searched in the library. Algorithm

presents this procedure.
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Algorithm 6.5 Error Desired Operator (EDO)

1: procedure EDO(p)
2 (Told, Stest> Apest) < (@, @, —00)
3 for all r € nodes in p do
4 ¢ < CONTEXT(p, 1) > extract a context by removing subtree r from p
5: s <= DESIREDSEMANTICS(c, t) > calculate for target semantics ¢
6 d < DISTANCE(s, SEMANTICS(7), 0) > ignore any inconsistent elements
7 if d > dpes; then
8 (rolda Sbests dbest) A (1", S, d)
9 r’ <~ SEARCHLIBRARY (Spest) > find a subtree best matching given speg;
10: return child produced by replacing subtree 7,4 with 7’ in p

11: end procedure

Another advantage of CSDO is that it does not need one parameter that was required by
SDO — the penalty value for inconsistent elements. How to set this value appropriately is
not obvious and depends on the problem domain (more precisely: on the adopted definition
of semantics) and the range of possible values in semantics. In our experiments we set the

penalty value arbitrary, and it is possible that another value would be better (or worse).

The fourth proposed variant of breeding operator is Error Desired Operator (EDO).
Similarly to SDO, it considers all contexts that can be generated from the parent program,
but unlike it, to choose the most promising context, it compares the desired semantics with
the semantics of the subtree present at that location in the parent individual. Eventually,
EDO selects the subtree for which that difference is the largest, and browses the library for
the best matching subtree (see Algorithm . EDO, like SDO, does not want to promote
the inconsistent elements of desired semantics. However, as it maximizes the difference
between semantics, in contrast to SDO, EDO simply ignores the inconsistent elements

instead of adding any penalty.
The motivation behind this particular design of EDO is to identify the location in

the parent program that is the ‘most erroneous’, i.e., at which the actual partial result
of computation diverges the most from the desired outcome. Note however that this
reasoning should be taken with a grain of salt, because, in general, such errors do not
propagate proportionally to the end of program (the root node). For instance, given a
parent individual and two locations in it with errors assessed in the above way, applying
EDO at the location with the larger error does not guarantee greater improvement of
fitness than for the other location.

A slightly different approach is to explicitly consider only the contexts with the min-
imal number of inconsistent elements in the desired semantics. We name this variant
Constrained Error Desired Operator (CEDO). A pseudocode of CEDO is shown in Al-
gorithm Because CEDO introduces analogous modifications to the EDO as CSDO
does to SDO, therefore CEDO can be expected to have similar advantages as CSDO when
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Algorithm 6.6 Constrained Error Desired Operator (CEDO)

1: procedure CEDO(p)
2 (Told, Stest> Apest) < (@, @, —00)
3 for all r € nodes in p do
4 ¢ < CONTEXT(p, 1) > extract a context by removing subtree r from p
5: s <= DESIREDSEMANTICS(c, t) > calculate for target semantics ¢
6 if s contains only consistent elements then
7 d < DISTANCE(S, SEMANTICS(r), 0) > ignore any inconsistent elements
8 if d > dpest then
9 (Tolda Sbhest dbest) <~ (Ty S, d)
10: r’ <~ SEARCHLIBRARY (Spest) > find a subtree best matching given spes;
11: return child produced by replacing subtree 7,4 with v/ in p

12: end procedure

comparing them with their base, unconstrained versions.

The common operation performed by the five methods proposed above is searching
the library for a subtree with semantics that has the minimal distance to a given desired
semantics. This problem is well known as a nearest neighbor search (NNS) [17, [10] (known
also under different names, e.g., post office problem [58]). NNS is an optimization problem
of finding in a set of points in a metric space (usually a highly-dimensional one) the one
that is the closest to a given point. This problem is not trivial and, especially in highly-
dimensional space, computationally demanding.

To effectively realize this task, many approximate nearest neighbor search algorithms
were proposed [3 47, 96, 38]. However, all these algorithms are not prepared to handle
unknown values on arbitrary dimensions (i.e., the point in question must be fully defined
in the same space as all stored points). Therefore, we use a straightforward algorithm
which is able to cope with missing values — the simplest, yet also the slowest, linear

search through all points (i.e., in our case: through semantics of all stored subtrees).

6.3. Experiments

To verify performance of all methods described in the previous section, we tested our
approach on all 39 benchmark problems described in Chapter We conduct a series of

experiments involving two genetic operators simultaneously in each of them:

1. one helper operator: either standard crossover (X) or mutation (M), and

2. one from all proposed methods exploiting information about desired semantics, i.e.,

RDO, SDO, CSDO, EDO, or CEDO.

In the set of control experiments both standard crossover and mutation are used together.
For each pair of operators we tested different proportions of their probabilities varying

from 0 to 1 with step 0.1 (resulting in eleven different setups for each pair). Setups are
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generally denoted as Oy + Os 3, where O1 and Oy are symbols of used operators, and 5
is the probability of operator Oy (i.e., P(O1) =1 — ). When 8 =0 or 8 = 1 then the
notion simplifies to O7 1.0 or O3 1.0, respectively.

Basic parameters of evolution used in these experiments are the same as in previous
experiments (see Table . Because we wanted to verify the positive effect of
our proposed operators, in our experiments we checked influence of a different proportion
of them. We did not test varying values of any other parameters.

In following, by DO we will call any of our proposed operators (RDO, SDO, CSDO,
EDO, CEDO) if it does not matter which from these five operators is involved.

After excluding redundant setups with disabled desired operators (i.e. 5 = 0 which
equals to one of the control setup) or disabled helper operator (setups X + DO 1.0 is
identical to M +xDO 1.0 and are denoted simply as DO 1.0) we have 106 (2x5x9+5+11)
distinct setups together with all 11 control experiments. Each setup was tested on all 39
problems. To get statistical significant results each setup was run independently 200 times
with different seeds of a pseudo random number generator, which give us 106 x 39 x 200 =

826800 total number of evolutionary runs.

6.4. Results

6.4.1. Qualitative Results

In this subsection we present qualitative outcomes obtained in our experiments. The
shown results come generally from statistical analysis and therefore they are quite easily
interpretable.

Table depicts the ranks computed through the Friedman test comparing success ratio
of all setups tested on all problems. Setups with the best proportion of used operators
are emphasized with a bold font. Tables [6.2] and [6.3] present appropriate ranks of setups
tested separately on symbolic regression or Boolean problems appropriately.

It is worth to remind that calculating per problem ranks (the first phase of calculating
the final values in the presented rankings — see Section, in case of ties, i.e., if several
setups have equal values of analyzed characteristic (success rate, error, etc.) the assigned
ranks are averaged and all setups get the same value. The values in presented rankings are
averaged over all considered problems. This is the reason why the best setup (not worse
on any problem than any other method) might have the final rank much greater than one
(the more problems with ties the greater rank).

From the presented tables, it results that M+RDO 0.3, M+SDO 0.3, and X+RDO 0.5
are the best setups (with almost negligible differences in ranking of success ratio) and
these three pairs of operators outperforms others in case of solving all problems. Setups
M+RDO 0.2-0.5, M+S8DO 0.3-0.5, and X+RDO 0.4-0.5 are better than the next best
setup with operators X+SDO.
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Setup  Rank Setup  Rank Setup  Rank
M+RDO 0.3 23.83 X+RDO 0.7 29.94 X+CEDO 04 61.31
M+SDO 0.3 23.90 M+SDO 0.1 30.22 X+CEDO 0.2 61.35
X+4+RDO 0.5 24.94 (skipped 8 items) X+EDO 0.3  61.41

M+RDO 0.4 25.18 | X4CSDO 0.2 35.38 X+EDO 0.4 61.62
X+RDO 0.4  25.54 M+RDO 0.1  35.82 (skipped 8 items)
M+SDO 0.5 25.63 | M+CSDO 0.3 36.04 X 1.0 67.09
M+RDO 0.5 25.81 X+CSDO 0.1 36.13 | M+CEDO 0.2 69.44
M+SDO 0.4  25.85 X+4+CSDO 0.3  37.06 X+M 0.1 69.76
M+RDO 0.2 26.29 X+4+SDO 0.9  37.09 X+4+CEDO 0.6  69.86
X+4+SDO 0.6 26.58 M+CSDO 0.2 37.13 M+CEDO 0.4 70.63
M+SDO 0.6  27.01 M+SDO 0.9  38.06 X+M 0.2  70.69
M+RDO 0.7  27.17 RDO 1.0 38.23 M+CEDO 0.3  70.76
X+SDO 0.5 27.23 X+CSDO 0.4 38.23 X+EDO 0.6 71.29
M+RDO 0.8 27.50 M+CSDO 0.1 38.46 M+EDO 0.3 73.62
X+4+SDO 0.4 27.95 M+CSDO 0.4  38.67 (skipped 3 items)
X+RDO 0.3 28.05 M+CSDO 0.5 39.24 M+EDO 0.2 74.55
X+4+SDO 0.2 28.12 X+4CSDO 0.6 39.42 (skipped 4 items)
M+SDO 0.2 28.33 (skipped 6 items) CSDO 1.0 77.68
X+4+SDO 0.7 28.33 SDO 1.0 51.78 (skipped 17 items)
M+RDO 0.6  28.36 (skipped 2 items) M 1.0 88.33
X+4+SDO 0.3 28.38 | X4+CEDO 0.1 58.97 (skipped 2 items)
X+RDO 0.2 29.31 X+4+CEDO 0.3 59.00 CEDO 1.0 92.73
X+SDO 0.1 29.87 X+EDO 0.1 60.22 EDO 1.0 92.81

Table 6.1.: Friedman ranks of success ratio performance on all 39 problems (both symbolic

regression and Boolean domain).

Setup  Rank Setup  Rank Setup  Rank
M+CSDO 0.3 27.32 M+CSDO 0.6  33.95 X+EDO 0.2  53.79
M+4SDO 0.3 27.32 M+SDO 0.6  33.95 (skipped 3 items)
M+RDO 0.3 30.82 X+RDO 0.2 34.45 | M+CEDO 0.4 56.92
X+4+CSDO 0.6 31.68 X+4+CSDO 0.1  34.50 M+CEDO 0.2  57.08
X+SDO 0.6 31.68 M+RDO 0.2 34.55 M+CEDO 0.3 58.29
M+CSDO 0.5  32.34 X+SDO 0.1 34.55 (skipped 2 items)
M+SDO 0.5 32.34 M+CSDO 0.1 34.74 RDO 1.0 61.24
X+SDO 0.2 32.39 M+SDO 0.1 34.74 (skipped 2 items)
M+CSDO 0.2 32.42 M+RDO 0.4 34.92 M+EDO 0.3 64.16
M+SDO 0.2 32.42 M+RDO 0.5  36.32 M+EDO 0.4  67.00
X+4+CSDO 0.4  32.53 X+RDO 0.3  36.63 X 1.0 67.21
X+SDO 0.4  32.53 X+RDO 0.1  37.21 (skipped 2 items)
X+4+CSDO 0.2 32.55 M+RDO 0.7 39.39 CSDO 1.0 68.42
M-+CSDO 0.4  32.61 (skipped 9 items) SDO 1.0 68.42
M+SDO 0.4 32.61 | X4+CEDO 0.3 45.05 (skipped 3 items)
X+CSDO 0.3 32.66 (skipped 4 items) X+M 0.1 71.61
X+SDO 0.3 32.66 X+4+CEDO 0.4  47.97 (skipped 2 items)
X4+RDO 0.4 33.05 X+EDO 0.4 48.61 X+M 0.2 75.74
X+4+CSDO 0.5  33.18 X+4+CEDO 0.5  49.29 (skipped 12 items)
X+SDO 0.5  33.18 X+EDO 0.3 50.00 CEDO 1.0 90.95
X+RDO 0.5  33.45 X+EDO 0.5  50.50 EDO 1.0 91.11
X+4+CSDO 0.7 33.63 (skipped 5 items) (skipped 3 items)
X+SDO 0.7 33.63 X+4+CEDO 0.2 53.00 M 1.0 93.82

Table 6.2.: Friedman ranks of success ratio performance on 19 problems from symbolic

regression domain.
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Setup Rank Setup Rank Setup Rank
M+RDO 0.9 15.40 X+4SDO 0.5 21.58 X+M 0.2 65.90
M+RDO 0.7 15.55 X+SDO 0.6 21.73 X 1.0 66.98
M+RDO 0.6 15.70 M+RDO 0.1 21.75 X+M 0.4 67.78
X+RDO 0.6 15.78 X+4+SDO 0.8  22.70 X4+M 0.1  68.00
M+RDO 0.5  15.83 X+4+SDO 0.9  23.08 X+M 0.3 6848
M+RDO 0.4 15.93 X+SDO 0.7 23.30 X+CEDO 0.2 69.28
X4+RDO 0.9 15.93 X+4+SDO 0.4 23.60 X+EDO 0.2  69.28
M+RDO 0.8  16.18 (skipped 8 items) (skipped 3 items)
X+RDO 0.7 16.35 SDO 1.0 35.98 X+CEDO 0.3 72.25
RDO 1.0 16.38 | X+CSDO 0.1 37.68 X+EDO 0.3 72.25
X+RDO 0.8  16.40 X+CSDO 0.2 38.08 (skipped 6 items)

X+RDO 0.5  16.85 X+CSDO 0.3 41.25 | M+CEDO 0.1 80.35
M+RDO 0.3 17.20 | M+CSDO 0.2 41.60 M+EDO 0.1 80.35
X4+RDO 0.4  18.40 M+CSDO 0.1 42.00 M+CEDO 0.2 81.18

M+RDO 0.2 18.45 X+CSDO 0.4 43.65 M+EDO 0.2 81.18
M+SDO 0.5 19.25 M+CSDO 0.3 44.33 (skipped 2 items)
M+SDO 0.4 19.43 M+CSDO 0.4 44.43 M 1.0 83.13
X+RDO 0.3 19.90 X+4+CSDO 0.5  45.70 (skipped 6 items)
M+SDO 0.6  20.43 M+CSDO 0.5  45.80 CSDO 1.0 86.48
M+SDO 0.7  20.48 (skipped 8 items) (skipped 1/ items)
M+SDO 0.3 20.65 | X4+CEDO 0.1 63.58 CEDO 1.0 94.43
M+SDO 0.8 21.53 X+EDO 0.1 63.58 EDO 1.0 94.43

Table 6.3.: Friedman ranks of success ratio performance on 20 problems from Boolean
domain.

If symbolic regression problems are tested separately then M+SDO 0.8 together with
M+CSDO 0.3 (which gives almost the same results) slightly outperform M+RDO 0.3.
Setup X+SDO 0.6 (and X+CSDO 0.6) is third before the X+RDO 0.4 — the next best
pair of operators. If only Boolean problems are solved, most setups with RDO operator,
especially M+RDO 0.9 and X+RDO 0.6, clearly outperforms others. The second, well
behaving operator is SDO, especially M+SDO 0.5 setup.

It is important to notice, that the difference between SDO and CSDO in practice strongly
depends on the penalty value used by SDO (see Formula [6.2.1]). As mentioned earlier, for
symbolic regression domain, we use penalty value of 10'°. Therefore, as long as the
distance between compared semantics is less than 10! (the overwhelming majority of
cases), there would be no difference in effect between SDO and CSDO. However, for the
Boolean problems the penalty has only a unitary value and it could be easily dominated
(majority of cases) by the distance resulting from an ordinary disparity between elements.
Therefore, the SDO and CSDO give quite different results for all benchmarks with Boolean
problems.

Rankings presented in Tables clearly show that, considering success ratio, the
best setups are those with the either RDO or SDO. The successive good operators are
CSDO, CEDO, and the worst from the proposed operator is EDO. Despite the fact that
this order may change a bit depending on the domain of solved problems, the RDO setups

always are in the lead. We recommend SDO as the second operator, especially for symbolic
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Setup Rank Setup Rank Setup Rank
M+RDO 0.5 23.18 X+4+SDO 0.4 30.73 M+CSDO 0.8 54.40
M+RDO 0.6  23.19 RDO 1.0 30.88 X+CEDO 0.3 54.91
M+RDO 0.7  23.22 X+RDO 0.1  31.15 X+EDO 0.2 55.14
M+RDO 0.4  23.64 X+SDO 0.5  31.94 X+CSDO 0.8 57.49
M+RDO 0.8  23.68 M+SDO 0.5  32.06 X+EDO 0.3 59.15
X+4+RDO 0.7 24.26 | X+CSDO 0.1 33.81 X+CEDO 0.4 59.90
X4+RDO 0.8  24.38 X+4+CSDO 0.2 34.24 SDO 1.0 60.28
M+RDO 0.3  24.65 M+SDO 0.6  34.46 | M+CEDO 0.3 61.56
X+RDO 0.6  24.73 X+SDO 0.6  34.62 M+CEDO 0.2 62.21
M+RDO 0.9 25.35 | M+CSDO 0.3 35.51 M+CEDO 0.4 63.35
X+RDO 0.5  25.40 M+CSDO 0.2 36.01 (skipped 2 items)
X+RDO 0.4  25.67 X+4+CSDO 0.3  36.67 X 1.0 64.69
X+RDO 0.3  25.78 X+4+SDO 0.7 36.69 X+M 0.1 64.99
X4+RDO 0.9 26.14 X+4+CSDO 0.4  37.44 X+M 0.2 65.09
M+RDO 0.2 26.21 M+SDO 0.7  37.59 (skipped /4 items)
X4+RDO 0.2  27.81 M+CSDO 0.1  37.95 M+4+EDO 0.2 67.62
M+SDO 0.3 28.00 M+CSDO 04  38.73 M+EDO 0.3 67.72
M+SDO 0.2 28.79 X+4+CSDO 0.5  40.68 (skipped 20 items)
M+RDO 0.1  29.60 M+CSDO 0.5  41.35 M 1.0 86.59
X+4+SDO 0.2 29.67 (skipped 7 items) (skipped 8 items)
X+SDO 0.1 29.92 | X4+CEDO 0.1 49.13 CSDO 1.0 90.24
X+4+SDO 0.3 29.92 X+4CSDO 0.7  49.38 (skipped 4 items)
M+SDO 0.4  30.45 X+CEDO 0.2 50.42 EDO 1.0 101.79
M+SDO 0.1  30.64 X+4+EDO 0.1 53.90 CEDO 1.0 101.90

Table 6.4.: Friedman ranks of median error on training set performed on all 39 problems
(both symbolic regression and Boolean domain).

regression problems where the first 17 places in the ranking took 16 setups with different
proportion of either SDO or CSDO.

On the other hand, setups with CEDO or EDO do not seem to be a good choice as
very often, if the probability is badly chosen, they give worse results than the best control
experiments which use only standard crossover and mutation. It is worth to notice that
using either EDO or CEDO operator alone gives mostly worse results than just a simple
mutation (M 1.0). Therefore, we conclude that the strategy to chose a replaced subtree
used by EDO is not good for maximizing success ratio (the probability of finding an ideal
solution).

When comparing median errors obtained on training set, the order of proposed operators
(see Table and are almost the same as comparing the probability of successes.
Here, however, higher probability of RDO is more advantageous. Moreover, it is worth to
notice that in Table[6.6 presenting errors on Boolean problems the first 31 setups have first
place ex aequo. This happens because only seven setups with RDO or SDO have success
rate below 0.5 on some problem (M+RDO 0.1, X+RDO 0.1-0.2, and M+SDO 0.1 only
for problem NPAR6; X+SDO 0.8-0.9 only for ICMPS8; SDO 1.0 for NCMP6, NCMPS,
NPARG6, and ICMPS8), and therefore the rest RDO/SDO setups have median error equal
to zero.

Table presents errors made on testing set (only symbolic regression problems). The
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Setup  Rank Setup  Rank Setup Rank
M+RDO 0.5 18.87 X+4+SDO 0.1  32.71 | X+CEDO 0.5 50.92
M+RDO 0.6  18.89 X+SDO 0.3  32.71 | X4+EDO 0.3 54.29
M+RDO 0.7  18.95 M+CSDO 0.1 33.24 | M+CEDO 0.5 54.71
M+RDO 0.4  19.82 M+SDO 0.1  33.24 X+EDO 0.2 56.11
M+RDO 0.8  19.89 M+SDO 0.4  33.79 | M+CEDO 0.1 56.34
X+RDO 0.7 21.08 M+CSDO 04 33.95 X+EDO 0.4 56.34
X+RDO 0.8 21.34 X4+RDO 0.1  34.13 (skipped 5 items)
M+RDO 0.3  21.89 X+4+CSDO 0.4 34.21 | M+EDO 0.3 58.92
X+RDO 0.6  22.05 X+SDO 0.4 34.37 X+EDO 0.5 59.08
M+RDO 0.9  23.32 RDO 1.0 34.68 M+EDO 0.4 59.13
X+RDO 0.5  23.42 X+CSDO 0.5  36.79 X+EDO 0.1 59.39
X+RDO 04  23.97 X+SDO 0.5  36.84 M+EDO 0.2 60.76
X+RDO 0.3 24.21 M+CSDO 0.5  37.05 (skipped 16 items)
X+RDO 0.9 24.95 M+SDO 0.5  37.11 X 1.0 81.21
M+RDO 0.2  25.08 M+CSDO 0.6  42.03 X+M 0.1 81.89
X+RDO 0.2 27.42 (skipped 3 items) M+EDO 0.8 82.39
M+CSDO 0.3 28.76 | X4+CEDO 0.3 45.58 X+M 0.2 82.53
M+SDO 0.3 28.76 | M+CEDO 0.3 46.29 (skipped 5 items)
M+CSDO 0.2 30.39 X+4+CEDO 0.2 46.42 CSDO 1.0 90.61
M+SDO 0.2 30.39 (skipped 2 items) SDO 1.0 90.61
M-+RDO 0.1 31.00 X+4+CEDO 0.4  48.18 (skipped /4 items)
X+4+SDO 0.2 32.18 (skipped 2 items) EDO 1.0 98.58
X+CSDO 0.2 32.29 M+CEDO 0.4  49.29 CEDO 1.0 98.79
X+CSDO 0.1 32.71 X+CEDO 0.1  49.61 (skipped 2 items)
X+4+CSDO 0.3 32.71 M+CEDO 0.2  49.66 M 1.0 101.58

Table 6.5.: Friedman ranks of median error on training set performed on 19 problems from
symbolic regression domain.

Setup  Rank Setup  Rank Setup Rank
M+RDO 0.2 27.28 X+RDO 0.8  27.28 X+EDO 0.1 48.68
M+RDO 0.3  27.28 X+RDO 0.9  27.28 X+M 0.1 48.93
M+RDO 0.4 27.28 X+SDO 0.1 27.28 X 1.0 49.00
M+RDO 0.5  27.28 X+SDO 0.2 27.28 X+M 0.3 49.28
M+RDO 0.6  27.28 X+SDO 0.3 27.28 X+M 0.4 49.50
M+RDO 0.7 27.28 X+SDO 0.4  27.28 (skipped 5 items)
M+RDO 0.8 27.28 X+SDO 0.5  27.28 X+CEDO 0.2 54.23
M+RDO 0.9 27.28 (skipped 8 items) X+EDO 0.2 54.23
M+SDO 0.2 27.28 SDO 1.0 31.48 (skipped 6 items)
M+SDO 0.3 27.28 | X+CSDO 0.1 34.85 X+CEDO 0.3 63.78
M+SDO 0.4  27.28 X+CSDO 0.2  36.10 X+EDO 0.3 63.78
M+SDO 0.5  27.28 X+CSDO 0.3 40.43 (skipped 2 items)
M+SDO 0.6  27.28 X+4+CSDO 0.4  40.50 M 1.0 72.35
M+SDO 0.7 27.28 | M+CSDO 0.2 41.35 | M+CEDO 0.1 72.40
M+SDO 0.8  27.28 M+CSDO 0.3 41.93 M+EDO 0.1 72.40
M+SDO 0.9 27.28 M+CSDO 0.1  42.43 M+CEDO 0.2 74.13
RDO 1.0 27.28 M+CSDO 0.4  43.28 M+EDO 0.2 74.13
X+RDO 0.3 27.28 X+CSDO 0.5  44.38 (skipped 1/ items)
X+RDO 04  27.28 M+CSDO 0.5  45.43 CSDO 1.0 89.90
X+4+RDO 0.5 27.28 (skipped 2 items) (skipped 10 items)
X+RDO 0.6 27.28 X+M 0.2 48.53 CEDO 1.0 104.85
X+RDO 0.7 2728 | X+4+CEDO 0.1 48.68 EDO 1.0 104.85

Table 6.6.: Friedman ranks of median error on training set performed on 20 problems from

Boolean domain.
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Setup  Rank Setup  Rank Setup Rank
X+4+RDO 0.5 19.84 X+SDO 0.5 31.97 | X4+EDO 0.3 51.45
X+RDO 0.8 20.24 | M+CSDO 0.3 33.00 X+EDO 0.4 53.55
X4+RDO 0.6  20.74 M+SDO 0.3 33.11 | X4+CEDO 0.6 53.92
X+RDO 04  20.84 M+RDO 0.1  33.63 | M+CEDO 0.5 54.87
X+RDO 0.7  20.95 RDO 1.0 34.05 | X+CSDO 0.8 56.11
X+RDO 0.3 21.24 M+CSDO 0.2 35.13 X+EDO 0.5 56.13
M+RDO 0.4 22.61 M+SDO 0.2 35.13 X+SDO 0.8 56.16
M+RDO 0.5 22.66 M+SDO 0.4 38.24 X+EDO 0.2 56.32
M+RDO 0.3  23.34 X+CSDO 0.6  38.37 (skipped 3 items)
M+RDO 0.6 24.05 M+CSDO 0.4 38.45 | M+EDO 0.3 59.39
X+RDO 0.2 24.37 X+SDO 0.6  38.63 M+EDO 0.4 59.50
M-+RDO 0.7 24.79 M+CSDO 0.1 38.76 (skipped 4 items)
X+RDO 0.9 25.26 M+SDO 0.1 38.76 M+EDO 0.2 63.24
M+RDO 0.8  26.47 M+CSDO 0.5  39.21 (skipped 13 items)
M+RDO 0.9  26.63 M+SDO 0.5  39.32 X 1.0 80.71
M+RDO 0.2 26.97 | X+CEDO 0.3 42.37 X+M 0.1 81.71
X+SDO 0.2 28.50 (skipped 2 items) M+EDO 0.8 82.08
X+CSDO 0.2 28.66 X+CEDO 0.2 44.37 X+M 0.2 82.55
X+CSDO 0.3 28.92 (skipped 2 items) (skipped 4 items)
X+SDO 0.3 29.03 X+CEDO 0.4 46.34 CSDO 1.0 90.08
X+CSDO 0.4 30.34 | M+CEDO 0.3 46.66 SDO 1.0 90.08
X+SDO 0.1  30.45 X+4+CEDO 0.1  48.42 (skipped 5 items)
X+4+CSDO 0.1  30.50 X+4+CEDO 0.5  48.76 EDO 1.0 98.53
X+4+SDO 0.4 30.55 M+CEDO 0.4  49.66 CEDO 1.0 98.95
X+RDO 0.1  31.63 (skipped 2 items) (skipped 2 items)
X+4+CSDO 0.5  31.97 M+CEDO 0.2 51.39 M 1.0 102.37

Table 6.7.: Friedman ranks of median error on testing set performed on 19 problems from

symbolic regression domain.
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6.4. Results

order of setups looks also very similarly to the previous rankings. This suggest that, RDO
is generally beneficial and setups with this operator reliably outperforms others.

It is interesting, that SDO performs generally worse than RDO (the only exception is
success ratio ranking for symbolic regression) which may be a little surprising. It would
appear that the SDO operator which checks all nodes in an individual for the best place of
substituting it subtree should perform better than doing this just for a randomly selected
node. The experiments, however, clearly shows that this is not true, and setups SDO
gives greater error than RDO. Probably, this happens because such steepest approach is
too greedy and leads too quickly to a local optima, especially when the library still lacks
good, desirable subtrees. On the other hand, this is a good news, because RDO works
much faster than SDO, which is additional advantage of RDO.

From ranks presented in Tables[6.1H6.7]it arises that most beneficial probability of RDO
is about 0.3-0.5, and 0.3-0.6 (or 0.1-0.4 if minimizing error) of SDO. In general, it seems
that problems from the Boolean domain are easier to solve if RDO is used more frequently
than in case of solving problems from symbolic regression domain when RDO could be
used less often. Nevertheless, the results show that the evolution is not much sensitive to
the exact probability of RDO and SDO, as the range of its values is quite broad for the
well performing setups.

We compared also each setup with all control experiments to check which setups are
advantageous and which are not. Therefore, we perform series of Friedman tests comparing
12 setups together (1 setup in question and 11 control setups) followed by Holm’s post-
hoc statistical procedure. We compared both achieved success ratio and error on training
sets for all 39 problems. Tables [6.8] and [6.9] shows the final results of these tests, where
letter s means statistically important (p-value < 0.05) advantage (white background) or
disadvantage (gray background) of a setup in the row comparing with control setup in the
column. Letter e indicates statistical difference between medians of obtained errors on
training set.

These tables confirm all previous conclusions. Especially, they show that all setups with
RDO outperforms all control experiments. This is particularly interesting because it means
that any chosen proportion between RDO and either mutation or crossover operators is
statistically beneficial. In the case of SDO, this operator is profitable if it is combined
with either mutation or crossover — then both success ratio and errors are significantly
better. When SDO is applied alone, success rates are still better, but there is not always a
significant difference in errors. Similarly, CSDO is advantageous if it is not too frequently
applied. Using CSDO alone is mainly deteriorating. Setups with either EDO or CEDO are
statistically worse in many cases, irrespectively of its probability, and therefore it seems
hazardous to use them at all.

To conclude, Figure[6.4.1] visualize graphically which setups are statistically better than
other (p-value < 0.05) in the sense of achieving success ratios (cf. Table . The results
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M+RDOO0.1 se se se se se se se se se se se
M+RDO 0.2 se se se se se se se se se se se
M+RDO 0.3 se se se se se se se se se se se
M+RDO 04 se se se se se se se se se se se
M+RDO 0.5 se se se se se se se se se se se
M+RDO 0.6 se se se se se se se se se se se
M+RDO 0.7 se se se se se se se se se se se
M+RDO 0.8 se se se se se se se se se se se
M+RDOO09 se se se se se se se se se se se

RDO1.0 se se se se se se se se se se se
M+SDO 0.1 se se se se se se se se se se se
M+4+SDO 0.2 se se se se se se se se se se se
M+SDO 0.3 se se se se se se se se se se se
M+SDO04 se se se se se se se se se se se
M+4+SDO 0.5 se se se se se se se se se se se
M+SDOO0.6 se se se se se se se se se se se
M+SDO 0.7 se se se se se se se se se se se
M+SDO0.8 se se se se se se se se se se se
M+4+SDO 09 se se se se se se se se se se se

SDO 1.0

s s s s s s s s se se se
M+CSDO 0.1 s s s se sSe se se se se se se
M+CSDO 0.2 s s s se se se se se se se se
M+CSDO 0.3 s s s se se se se se se se se
M+CSDO 0.4 s s s s s se se se se se se
M+CSDO 0.5 s s s s s se sSe se se se se
M+CSDO 0.6 s s s s s s se se se se se
M+CSDO 0.7 s s s s s s se se se se se
M+CSDO 0.8 s s s s s s se se se se se
M+CSDO 0.9 s s s s s s s se se se se
CSDO 1.0 se se se e e e e e s
M+EDO 0.1 s e se
M+EDO 0.2 se se
M+EDO 0.3 se se
M+EDO 0.4 e se
M+EDO 0.5 e se
M+EDO 0.6 se se se e e
M+EDO 0.7 se se se e se
M+EDO 0.8 se se se se e e
M+EDO 0.9 se se se se se e e
EDO 1.0 se se se se se e e e e e
M+CEDO 0.1 e se se
M+CEDO 0.2 se se
M+CEDO 0.3 se se
M+CEDO 0.4 se se
M+CEDO 0.5 se se
M+CEDO 0.6 se se se e e
M+CEDO 0.7 se se se e se
M+CEDO 0.8 se se se se e e
M+CEDO 0.9 se se se se se e e
CEDO 1.0 se se se se se e e e e e

Table 6.8.: Results of statistical tests comparing setups M+xDO (mutation and every de-
sired operator) in rows with all control experiments in columns. Letters show
significant (p-value < 0.05) improvement (white background) or decline (gray
background): s — probability of success, e — median error on training set.
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X4+RDOO0.1 se se se se se se se se se se se
X4RDOO0.2 se se se se se se se se se se se
X4+RDO0.3 se se se se se se se se se se se
X4RDO 04 se se se se se se se se se se se
X4+RDOO0.5 se se se se se se se se se se se
X4+RDO 06 se se se se se se se se se se se
X4RDOO0.7 se se se se se se se se se se se
X+RDO 0.8 se se se se se se se se se se se
X4RDO 09 se se se se se se se se se se se
RDO10 se se se se se se se se se se se
X4SDO 0.1 se se se se se se sSe se se se se
X+SDO0.2 se se se se se se se se se se se
X4SDO 0.3 se se se se se se sSe se se se se
X4SDO 04 se se se se se se se se se se se
X+SDOO0.5 se se se se se se se se se se se
X4SDO 0.6 se se se se se se sSe se se se se
X+SDO 0.7 se se se se se se se se se se se
X4SDO 0.8 se se se se se sSe sSe se se se se
X+SDO09 se se se se se se se se se se se
SDO 1.0 s s s s s s s s se se se
X4CSDO 0.1 se se se se se se se se se se se

X4+CSDO 0.2 s s s se se se se se se se se
X+4+CSDO 0.3 s s s s se se se se se se se
X4+CSDO 0.4 s s s s se se se se se se se
X4CSDO 0.5 s s s s s se se se se se se
X4+CSDO 0.6 s s s s s se se se se se se
X4+CSDO 0.7 s s s s s s se se se se se
X4+CSDO 0.8 s s s s s s s se se se se
X+4+CSDO 0.9 s s s s s se se se
CSDO 1.0 se se se e e e e e s
X+EDO 0.1 s se se se se se se
X+4+EDO 0.2 se se se se se
X+EDO 0.3 s se se se se
X+4+EDO 0.4 s se se se se
X+EDO 0.5 s se se
X+EDO 0.6 e e e se se
X+4+EDO 0.7 e e e s se
X4+EDO 0.8 se se se e e se
X4+EDO 0.9 se se se e e e e
EDO 1.0 se se se se se e e e e e
X+4+CEDO 0.1 s se se se se se se
X+CEDO 0.2 se se se se se
X4+CEDO 0.3 s se se se se
X+CEDO 0.4 s se se se se
X+CEDO 0.5 s se se
X+4+CEDO 0.6 e e e se se
X+CEDO 0.7 e e e se se
X+4+CEDO 0.8 e e e e se
X+CEDO 0.9 se se se e e e e
CEDO 1.0 se se se se se e e e e e

Table 6.9.: Results of statistical tests comparing setups X+zDO (crossover and every de-
sired operator) in rows with all control experiments in columns. Letters show
significant (p-value < 0.05) improvement (white background) or decline (gray
background): s — probability of success, e — median error on training set.
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M+CSDO 0.3X+CSDO 0.2

RDO 1.0 X+SDO 0.6

SDO 1.0 X+RDO 0.5

X+CEDO 0.1 M+SDO 0.3

X+EDO 0.1 M+RDO 0.3

p EDO 1.0

M-+CEDO 0.2 b CEDO 1.0

X4MO01 O -0 M 1.0

M+EDO 0.3 CSDO 1.0

Figure 6.4.1.: Subset of the ranking presented in Table Dotted arrows show order of
ranks, solid arrows shows the first setup in the ranking which is statistically
significantly (Friedman test with Shaffer’s post-hoc procedure, p-value <
0.05) worse.
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are obtained by Friedman test with Shaffer’s post-hoc procedure which compares all 106
possible pairs of tested setups, but on the graph only 18 best setups from each pair of
used operators are shown (denoted by bold font in Table . The dotted arrows show
order of setups in the ranking. Solid arrows point the first, statistically significantly worse
setup from the ranking, so this means that if some method A statistically outperforms
some other method B, then it simultaneously outperforms all methods following B in the
ranking (dotted arrows).

It appears, that from setups shown in this chart the first six ones (M+RDO 0.3, M+SDO
0.3, X+RDO 0.5, X+SDO 0.6, X4+CSDO 0.2, and M+CSDO 0.3) are statistically better
than the best control setup (X 1.0). The advantage of other setups over the control ones
are not statistically significant in this comparison.

It is worth to notice that comparing the X 1.0 with the rest setups using Holm’s post-hoc
procedure, the first 50 setups (up to X+CSDO 0.7 inclusively) from the ranking presented
in Table are statistically better than the best control experiments X 1.0.

6.4.2. Quantitative Results

Due to the large number of setups tested on 39 problems it is senseless to present here all
computed statistics for each pair of setup and problem. Therefore, most of the computed
results are placed in Appendix [A] where an interested reader can find much more detailed
results.

Tables show detailed comparison of two setups selected from the success rate
point of view: the best one (M+RDO 0.3) and the best control setup (X 1.0). For each

problem these tables present:

e achieved success rate and, if appropriate, mean number of generation when the ideal

solution was found,

e median of errors and number of hits obtained on training set by the best of run

individual,

e median of errors and number of hits obtained on testing set (only Table with

symbolic regression problems) by the best of run individual,
e average number of milliseconds required for single evolutionary run,

e number of achieved successes in a time unit (scaled appropriately to get number of

successes per hour),
e mean size (i.e., number of nodes) of individuals over all generations,

e average size of the best of run individual in case of a successful run (size of an ideal

solution of the problem) and in case of failure (the best but imperfect individual).
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Success  Success  Train  Train Test Test

Problem Setup ) .
rate gen. error hits error hits
M+RDO 0.3 1.000 1.8  0.000 20.0 0.000 200.0
FO1 X 1.0 0.955 10.0 0.000 20.0 0.000 200.0
best value: 1.000 1.0  0.000 20.0 0.000 200.0
M+RDO 0.3 0.840 5.1 0.000 20.0 0.000 200.0
F02 X 1.0 0.725 16.1 0.000 20.0 0.000 200.0
best value: 0.965 1.4 0.000 20.0 0.000 200.0
M+RDO 0.3 0.335 8.5  0.002 20.0 0.083 189.0
F03 X 1.0 0.680 19.0  0.000 20.0 0.000 200.0
best value: 0.680 2.0 0.000 20.0 0.000 200.0
M+RDO 0.3 0.215 10.3  0.002 20.0 0.161 182.5
Fo4 X 1.0 0.270 30.5 0.174 6.0 1.658 64.0
best value: 0.580 2.0 0.000 20.0 0.000 200.0
M+RDO 0.3 0.580 8.1 0.000 20.0 0.000 200.0
F05 X 1.0 0.015 18.3  0.096 4.0 0.910 45.0
best value: 0.750 1.8 0.000 20.0 0.000 200.0
M+RDO 0.3 0.695 4.6  0.000 20.0 0.000 200.0
Fo6 X 1.0 0.460 24.2  0.054 10.0 0.466 102.0
best value: 0.945 1.0  0.000 20.0 0.000 200.0
M+RDO 0.3 0.315 7.8 0.001 20.0 0.021 199.0
Fo7 X 1.0 0.070 20.4  0.049 7.0 0.490 68.0
best value: 0.430 1.0  0.000 20.0 0.012 200.0
M+RDO 0.3 0.535 6.9  0.000 20.0 0.000 200.0
F08 X 1.0 0.000 — 0.216 2.0 2.712 18.0
best value: 0.535 1.0  0.000 20.0 0.000 200.0
M+RDO 0.3 0.990 3.0 0.000 100.0 0.000 10000.0
F09 X 1.0 0.250 32.2 1.967 10.0 160.697 852.0
best value: 1.000 1.0 0.000 100.0 0.000  10000.0
M+RDO 0.3 0.955 3.5 0.000 100.0 0.000 10000.0
F10 X 1.0 0.190 24.6  0.894 20.0 79.067 1831.5
best value: 1.000 1.2 0.000 100.0 0.000  10000.0
M+RDO 0.3 1.000 1.5 0.000 100.0 0.000 10000.0
F11 X 1.0 0.170 13.4 2578 6.0 191.581 559.0
best value: 1.000 1.1 0.000 100.0 0.000 10000.0
M+RDO 0.3 0.000 — 0.194 42.0 19.208 4118.5
F12 X 1.0 0.005 92.0 1.890 6.0 164.741 528.5
best value: 0.005 8.0 0.141 56.0 15.206 5383.0
M+RDO 0.3 0.310 12.7  0.000 20.0 0.026 198.0
P1 X 1.0 0.000 — 0.127 4.0 1.762 24.0
best value: 0.370 2.0 0.000 20.0 0.007 200.0
M+RDO 0.3 0.010 8.5  0.008 18.0 0.675 149.5
P2 X 1.0 0.000 — 0.878 1.0 8.325 10.0
best value: 0.075 4.0 0.002 20.0 0.252 169.5
M+RDO 0.3 0.020 12.8 0.007 18.0 1.470 146.5
P3 X 1.0 0.065 56.0  0.390 4.0 3.589 44.0
best value: 0.095 3.0 0.003 20.0 0.491 157.5
M+RDO 0.3 0.420 13.3 0.000 20.0 0.006 200.0
RO X 1.0 0.005 11.0 0.144 4.0 1.398 34.5
best value: 0.675 1.1 0.000 20.0 0.000 200.0
M+RDO 0.3 0.010 8.0 0.011 17.0 0.357 149.0
R1 X 1.0 0.000 — 0.703 1.0 6.877 7.0
best value: 0.035 2.0 0.004 19.0 0.166 178.0
M+RDO 0.3 0.000 — 0.008 18.0 0.452 149.0
R2 X 1.0 0.000 — 0.754 1.0 7.552 7.0
best value: 0.005 21.0 0.003 20.0 0.187 172.0
M+RDO 0.3 0.005 13.0 0.002 20.0 0.135 183.0
R3 X 1.0 0.000 — 0.148 5.0 1.529 52.0
best value: 0.015 5.0 0.001 20.0 0.086 189.0

Table 6.10.: Success rates, and median errors and hits comparison of the best setup
(M+RDO 0.3) with the best control setup (X 1.0) — results for 19 sym-
bolic regression problems. The shown best values (in italic) for each problem
and each column may come from different setups.
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Problem Setup Time Success M ean Size Size
[ms]  per hour size  (success)  (failed)

M+RDO 0.3 21.9 164492.3 12.9 11.7 —

Fo1 X 1.0 22.3 154433.2 18.7 12.6 59.1
best value: 15.1 237723.3 9.9 11.4 19.6

M+RDO 0.3 782.7 3863.8 118.4 16.3 266.6

Fo02 X 1.0 102.2 25546.5 46.8 18.6 82.1
best value: 102.2 25546.5 17.5 15.3 18.4

M+RDO 0.3 2880.2 418.7  165.2 25.3 315.9

Fo3 X 1.0 101.9 24014.6 42.4 24.1 75.2
best value: 101.9 24014.6 18.2 19.9 16.8

M+RDO 0.3 2915.7 265.5 1449 25.5 276.4

Fo4 X 1.0 216.4 4492.3 54.2 34.5 82.4
best value: 216.4 4492.3 20.2 21.9 20.8

M+RDO 0.3 1825.2 1144.0  130.7 15.1 271.5

Fo05 X 1.0 278.6 193.8 56.1 14.7 77.8
best value: 278.6 1584.7 16.3 9.0 16.8

M+RDO 0.3 1286.0 1945.6  151.9 13.0 321.3

Fo6 X 1.0 122.2 13547.7 29.9 14.2 51.9
best value: 122.2 19369.3 17.4 11.6 18.2

M+RDO 0.3 2696.1 420.6  129.6 16.4 244.7

For X 1.0 217.8 1157.0 40.9 17.7 63.3
best value: 217.8 1387.1 16.8 13.8 174

M+RDO 0.3 1951.9 986.7 131.0 11.8 267.9

FO8 X 1.0 287.4 0.0 56.1 — 81.0
best value: 287.4 1590.0 19.0 11.8 19.83

M+RDO 0.3 223.0 15979.6 36.3 8.3 164.0

F09 X 1.0 409.9 2195.9 32.3 7.5 53.6
best value: 67.7 53207.3 8.9 7.5 8.9

M+RDO 0.3 650.5 5285.1 98.2 10.7 355.1

F10 X 1.0 422.2 1620.0 33.6 11.9 47.7
best value: 121.8 29558.1 10.2 9.8 10.9

M+RDO 0.3 58.3 61801.9 11.6 6.0 —

F11 X 1.0 509.6 1200.9 34.1 8.3 51.8
best value: 47.4 75960.7 9.7 5.9 6.0

M+RDO 0.3  10820.9 0.0 128.0 — 234.7

F12 X 1.0 582.4 30.9 56.0 97.0 83.5
best value: 582.4 30.9 15.2 42.0 15.4

M+RDO 0.3 2756.3 4049 114.7 26.8 200.2

P1 X 1.0 324.4 0.0 69.3 — 100.8
best value: 824.4 499.6 22.2 15.0 22.6

M+RDO 0.3 4669.8 7.7 168.1 29.0 312.7

P2 X 1.0 330.7 0.0 70.6 — 101.0
best value: 330.7 145.1 26.8 27.0 27.5

M+RDO 0.3 4672.5 154  166.4 37.5 305.6

P3 X 1.0 248.3 942.4 58.3 46.8 86.1
best value: 248.8 942.4 19.9 29.0 20.4

M+RDO 0.3 2492.7 606.6  132.3 19.8 261.1

RO X 1.0 263.6 68.3 49.3 55.0 67.8
best value: 263.6 1483.5 17.4 12.9 18.0

M+RDO 0.3 4041.8 8.9 132.1 20.0 227.1

R1 X 1.0 305.3 0.0 64.8 — 93.8
best value: 305.3 16.7 25.4 19.0 25.9

M+RDO 0.3 4723.9 0.0 160.0 — 300.0

R2 X 1.0 262.8 0.0 46.2 — 66.9
best value: 262.8 4.7 235.1 91.0 20.9

M+RDO 0.3 4307.6 4.2 1445 31.0 240.7

R3 X 1.0 306.3 0.0 62.8 — 94.4
best value: 306.3 24.0 15.2 25.0 15.9

6.4. Results

Table 6.11.: Time execution and mean individual’s size comparison of the best setup
(M+RDO 0.3) with the best control setup (X 1.0) — results for 19 sym-
bolic regression problems. The shown best values (in italic) for each problem
and each column may come from different setups.
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Problem Setup Success  Success Train Tm?n
rate gen. error hits

M+RDO 0.3 1.000 6.7 0.000 64.0

ICMP6 X 1.0 0.185 75.8 2.000 62.0
best value: 1.000 4.6 0.000 64.0

M+RDO 0.3 1.000 16.8 0.000 256.0

ICMP8 X 1.0 0.000 — 13.500 242.5
best value: 1.000 11.4 0.000 256.0

M+RDO 0.3 1.000 3.6 0.000 32.0

IMAJ5 X 1.0 0.985 24.2 0.000 32.0
best value: 1.000 2.1 0.000 32.0

M+RDO 0.3 1.000 6.2 0.000 64.0

IMAJ6 X 1.0 0.735 56.9 0.000 64.0
best value: 1.000 3.8 0.000 64.0

M+RDO 0.3 1.000 11.9 0.000 128.0

IMAJ7 X 1.0 0.050 85.2 3.000 125.0
best value: 1.000 5.8 0.000 128.0

M+RDO 0.3 1.000 10.2 0.000 2048.0

IMUX11 X 1.0 0.010 89.5  231.000 1817.0
best value: 1.000 5.0 0.000  2048.0

M+RDO 0.3 1.000 3.1 0.000 64.0

IMUX6 X 1.0 0.955 27.8 0.000 64.0
best value: 1.000 2.0 0.000 64.0

M+RDO 0.3 1.000 4.0 0.000 16.0

TPAR4 X 1.0 0.890 34.6 0.000 16.0
best value: 1.000 2.1 0.000 16.0

M+RDO 0.3 1.000 9.9 0.000 32.0

TPARS X 1.0 0.170 75.6 2.000 30.0
best value: 1.000 4.1 0.000 32.0

M+RDO 0.3 0.975 25.9 0.000 64.0

IPARG6 X 1.0 0.005 93.0 11.000 53.0
best value: 1.000 7.8 0.000 64.0

M+RDO 0.3 1.000 6.8 0.000 64.0

NCMP6 X 1.0 0.100 71.1 2.000 62.0
best value: 1.000 4.7 0.000 64.0

M+RDO 0.3 1.000 15.5 0.000 256.0

NCMP8 X 1.0 0.000 — 14.000 242.0
best value: 1.000 11.0 0.000 256.0

M+RDO 0.3 1.000 3.9 0.000 32.0

NMAJ5 X 1.0 0.870 33.9 0.000 32.0
best value: 1.000 2.4 0.000 32.0

M+RDO 0.3 1.000 6.3 0.000 64.0

NMAJ6 X 1.0 0.360 69.1 1.000 63.0
best value: 1.000 3.7 0.000 64.0

M+RDO 0.3 1.000 11.6 0.000 128.0

NMAJ7 X 1.0 0.000 — 5.000 123.0
best value: 1.000 5.5 0.000 128.0

M+RDO 0.3 1.000 14.9 0.000 2048.0

NMUX11 X 1.0 0.000 —  334.500 1713.5
best value: 1.000 8.6 0.000  2048.0

M+RDO 0.3 1.000 4.5 0.000 64.0

NMUX6 X 1.0 0.730 56.5 0.000 64.0
best value: 1.000 2.9 0.000 64.0

M+RDO 0.3 1.000 5.5 0.000 16.0

NPAR4 X 1.0 0.365 55.0 1.000 15.0
best value: 1.000 2.8 0.000 16.0

M+RDO 0.3 1.000 15.4 0.000 32.0

NPARS5 X 1.0 0.005 82.0 6.000 26.0
best value: 1.000 5.8 0.000 32.0

M+RDO 0.3 0.870 43.7 0.000 64.0

NPARS6 X 1.0 0.000 — 18.000 46.0
best value: 1.000 10.1 0.000 64.0

Table 6.12.: Success rates, and median errors and hits comparison of the best setup
(M+RDO 0.3) with the best control setup (X 1.0) — results for 20 Boolean
problems. The shown best values (in italic) for each problem and each column
may come from different setups.
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Problem Setup Time Success  Mean Size Size
[ms]  per hour size  (success)  (failed)

M+RDO 0.3 94.9 37919.9 32.2 115.9 —

ICMP6 X 1.0 669.2 995.2 1724 290.7 206.6
best value: 78.2 46032.6 8.1 31.0 8.6

M+RDO 0.3 688.2 5231.2 99.9 322.4 —

ICMP8 X 1.0 588.4 0.0  158.7 — 230.9
best value: 96.5 6338.7 8.6 75.0 8.7

M+RDO 0.3 35.3 101927.5 26.3 66.8 —

IMAJ5 X 1.0 115.9 30605.4  107.2 205.1 152.0
best value: 21.2 169925.8 21.4 50.8 28.7

M+RDO 0.3 102.5 35112.5 42.7 142.9 —

IMAJ6 X 1.0 583.3 4536.3  223.1 350.6 313.9
best value: 93.6 38451.0 22.6 71.5 27.1

M+RDO 0.3 472.3 7622.3 126.9 415.3 —

IMAJ7 X 1.0 1072.3 167.9  302.5 528.9 461.4
best value: 204.9 9689.4 26.0 218.5 27.6

M+RDO 0.3 691.7 5204.5 48.8 93.0 —

IMUX11 X 1.0 625.2 57.6 177.5 179.5 244.9
best value: 145.8 7726.8 10.7 56.0 12.7

M+RDO 0.3 35.6 101018.4 19.3 18.4 —

IMUX6 X 1.0 155.0 22176.4 111.6 129.7 193.9
best value: 25.5  141343.8 8.5 12.4 7.8

M+RDO 0.3 41.0 87852.7 38.2 81.9 —

TPAR4 X 1.0 342.4 9357.4 204.5 269.3 210.1
best value: 28.8 124963.5 34.1 42.5 27.0

M+RDO 0.3 260.9 13798.2  101.6 255.5 —

IPARS X 1.0 1110.0 551.3 319.1 440.5 436.8
best value: 184.4 19525.7 47.2 36.0 58.9

M+RDO 0.3 2242.7 1565.1  426.1 806.1 751.8

IPARG6 X 1.0 1096.6 16.4  349.7 220.0 500.7
best value: 352.3 3424.9 53.2 32.0 59.8

M+RDO 0.3 79.6 45239.6 27.9 101.2 —

NCMP6 X 1.0 553.4 650.5  143.8 235.1 186.4
best value: 68.3 52717.4 8.0 51.7 10.5

M+RDO 0.3 531.7 6770.9 79.5 257.9 —

NCMP8 X 1.0 431.5 0.0 1349 — 203.0
best value: 85.5 8428.4 7.7 151.0 8.7

M+RDO 0.3 29.4 122553.5 23.1 61.6 —

NMAJ5 X 1.0 206.1 15195.5  122.3 179.1 133.9
best value: 24.1 149229.9 15.5 40.6 21.0

M+RDO 0.3 103.8 34677.7 34.9 115.1 —

NMAJ6 X 1.0 608.9 2128.4 179.2 279.1 230.0
best value: 87.2 41294.6 18.7 63.0 21.6

M+RDO 0.3 420.7 8556.7 95.3 323.9 —

NMAJ7 X 1.0 768.2 0.0 204.7 — 308.2
best value: 174.0 12486.8 20.0 151.0 23.6

M+RDO 0.3 1437.9 2503.6 104.2 216.4 —

NMUX11 X 1.0 615.1 0.0 168.3 — 253.4
best value: 1174 3147.2 14.2 141.0 16.2

M+RDO 0.3 47.9 75164.4 23.6 46.8 —

NMUX6 X 1.0 382.8 6865.2  139.1 191.1 173.6
best value: 44.6 80759.1 11.4 28.0 14.9

M+RDO 0.3 50.8 70907.4 34.1 83.8 —

NPAR4 X 1.0 557.5 2356.8 188.4 247.4 212.2
best value: 41.7 86394.4 22.5 54.0 23.0

M+RDO 0.3 462.5 7784.4  132.6 336.3 —

NPARS5S X 1.0 772.0 23.3 2199 307.0 286.5
best value: 205.3 17037.0 28.0 123.0 38.0

M+RDO 0.3 3827.3 818.3  448.7 669.2 626.4

NPARG6 X 1.0 682.5 0.0 226.8 — 324.4
best value: 224.8 3153.9 31.9 178.0 39.5

6.4. Results

Table 6.13.: Time execution and mean individual’s size comparison of the best setup
(M+RDO 0.3) with the best control setup (X 1.0) — results for 20 Boolean
problems. The shown best values (in italic) for each problem and each column
may come from different setups.
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In addition, for each problem and each property, the best value from all 106 setups is
shown to get better image of achieved quality and be able to compare presented methods
against others.

The first observation is that M+RDO 0.3 has worse success rate than X 1.0 only on
four (F03, F04, F12, P3) out of all 39 problems. For the symbolic regression problems,
the setup with a desired operator has a big advantage over the control experiment on the
rest of problems except P2, R1, R2, and R3 where both setups have no or hardly any
successes. In fact, no setups achieved better success ratio than 0.5% on F12, 7.5% on
P2, 3.5% on R1, 0.5% on R2, and 1.5% on R3. On the easy F01 problem both M+RDO
0.3 and X 1.0 setups perform successfully. For the Boolean problems the M+RDO 0.3
found an ideal solution almost always (except problems IPAR6 and NPARG), whereas X
1.0 often was not able to found any single solution in 200 repetition (for ICMP8, NCMPS,
NMAJ7, NMUX11, and NPARG6). For 9 problems X 1.0 found an ideal in at most one
tenth tries.

There could be many reasons why X 1.0 has advantage over M+RDO 0.3 setup on the
F03, F04, and P3 problems (on F12 it found ideal only once out of 200 tries). One of
the explanation, which seems most likely, is that these three problems require quite big
programs with many repeated subfunctions. F03, FO4, and P3 are polynomials in the form
2" 4+ 2" 4 ... + 2 (see Chapter 4.2)) which could be quite easily created by a standard
crossover operator by simply copying frequent subexpressions. This property is intensified
by the fact that only addition and multiplication operators are needed which dramatically
increase the probability of constructing proper expressions, for instance, equal to x™.

Comparing mean generation number in which an ideal solution was found, it appears
that M+RDO 0.3 setup needs much less generations to succeed — often even one order
of magnitude less than X 1.0. The one exception is the problem R0 where X 1.0 found an
ideal solution in 11th generation, however this setup did it only once (for 200 independent
runs) comparing to M+RDO 0.3 which found 84 ideal solutions (in 13.3th generation in
average).

It appears that X 1.0 got better median error on the F03 problem. However, for all
others the M+RDO 0.3 setup is better (or equally good for FO1 and F02) comparing
median errors and hits on both train and test sets. This observation shows that the
desired operator does not only improve the probability of success but also reduces errors
of the best individuals in most evolutionary runs.

The mean time of evolutionary runs shown in Tables [6.11] and [6.13] are inaccurate due
to the fact that the computations run simultaneously on several very similar computers
on which other processes may use the processor time and other system resources as well.
However, the measured and averaged times are still informative and give some sense of
performance.

In general, the time required by an evolution depends on two main factors:
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6.4. Results

1. Problem hardness — if an ideal solution is not found earlier, the evolution will lasts

all 100 generations.

2. Problem properties — sometimes the evolution tends to build larger individuals

which require more time to process, but sometimes smaller programs are promoted.

Due to the need of scanning the whole library of semantically unique subfunctions (sub-
trees) in the RDO operator, M+RDO 0.3 setup requires generally much more time to
execute than X 1.0. It is especially visible for problems which are solved by M+RDO 0.3
but not by X 1.0 (in consequence requiring all 100 generations) for which M+RDO 0.3
setup runs much longer. For example, NUMX11 problem is solved by M+RDO 0.3 over
two times longer than X 1.0 setup, despite the fact that M+RDO 0.3 evolution stops find-
ing an ideal after 15th generation on average, and X 1.0 always lasts all 100 generations.
On the other hand, a possible fewer number of generations caused that 14 problems from
the Boolean domain and only 3 from the symbolic regression domain are solved quicker
than in the X 1.0 setup.

To calculate the performance of each setup, the average number of successes per hour
is calculated. This measure says how many successful runs is expected if a given setup
would run for one hour (starting a new evolution after finishing last one). The computed
values shows that in 11 symbolic regression problems and in all Boolean problems the
M+RDO 0.3 setup outperforms X 1.0. It is worth to notice that if the used linear search
procedure will be replaced with some faster method (e.g., the rough search which will be
considered in Section , there is a chance that RDO operator would have even more
advantage. However, in the current implementation, M+RDO 0.3 setup has even 1-2
orders of magnitude worse performance in solving some symbolic regression problems.

A code bloat is a process of an inexorably growing of a mean program size during an
evolution. To investigate this effect in both compared setups the mean size of individuals
in all generations averaged over 200 runs are calculated and shown in Tables and
It reveals that the approach with RDO operator promotes bigger programs trying to find
an ideal solution. This is especially visible when comparing mean size of the best programs
in runs which failed in finding the optimum. In M+RDO 0.6 setup, such programs have
much more nodes (even 7 times!) than the best but not perfect solutions found by X 1.0
setup. This clearly shows that RDO operator tends to explore a bigger and bigger space
when it has trouble with finding a solution.

On the other hand, the tables show that the found, real solutions are often much smaller
and more compact in the M+RDO 0.3 setup. For example, the ideal solutions for problem
IMUXG6 have 18.4 nodes in average if they come from M+RDO 0.3 setup but more than 129
nodes from the X 1.0 setup. This difference is important because both setups are quite
successful in solving IMUX6 and the sizes are averaged over large number of solutions
(M+RDO 0.3 always found an ideal and X 1.0 found 191 ideals in 200 runs).
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It seems that the desired operators are trying to construct as simple solution as possible
if they could find such ideal. In other case RDO builds bigger and more complicated
programs in the hope that such complexity is required by the solved problem. This is not
always true, like in case of problem P3 or F03 when the found ideal programs are not big.
However, it seems that this strategy gives in general good results and it enables the search
procedure to find a solution eventually. It is worth to notice, that a bigger population
potentially generates a bigger library of subtrees used by RDO. Probably, this may be
one reason why RDO succeed. However, problems in Boolean domain do not corroborate
this hypothesis as the mean program size is mostly (except for problem IMUX6) much
smaller than the average size of found ideal solutions. Nevertheless, the growing size of
individuals (implying more nodes to process and more subtrees in a library) is an additional

explanation why evolution with RDO operator needs more time than the control setup.

Figure shows number of unique semantics (solid line) and unique fitness values
(dotted line) in each generation for RO, F04, NPAR4, and NMUXI11 problems. The
numbers are averaged from 200 independent runs. However, because some setups are
quite successful on some problems, each vertical line shows the generations where some
runs terminates and therefore further values must be averaged from smaller sample of

runs.

In fact, the number of unique fitness values should never be greater than the number
of semantics, but such results come from the used method of counting. Semantics are
compared with an epsilon threshold (see Definition , and therefore if the
difference between elements of semantics are less than 1.11E — 15 then both are treated as
identical. In contrast, fitness values are compared exactly with full available floating point
precision and therefore two fitness values which differ even much less than 1.11F — 15

would be treated as two distinct values.

The presented charts shows that the diversity of a population quickly decrease in the
first few generation and then it increases as fast as it drops previously. This observation is
common for each setup and each problem — every setup for every problem has a similar
‘hole’ in the first generations. Whats happen latter depends, however, both on a method
and a solved problem. For example, in case of RO problem, the graph clearly shows
that M+RDO 0.3 maintains much higher diversity through all generation than X 1.0. It
appears, that this observation is true also for many other problems (not shown in this
figure too) — even for F03, F04, and P3 problems where M+RDO 0.3 is worse than X 1.0
in the sense of the acquired success ratio.

Other observation is that in symbolic regression problems the number of unique seman-
tics is roughly equal to the number of unique fitness values. For the Boolean problem
this is not true because possible number of fitness values is much smaller (2°%*) than the
number of possible distinct semantics (2217”5). For most Boolean problems, M+RDO 0.3

setup achieves the highest fitness diversity in the first ten generations. In contrast, X
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Figure 6.4.2.: Number of individuals with unique semantics (solid line) and unique fit-
ness values (dotted line). Possible greater number of fitness values than
semantics come out of floating number comparison (details in text). Verti-
cal lines show generations in which some runs finished with an ideal solution
found, therefore values in letter generation are averaged from fewer number
of samples.
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6. Desired Semantics

1.0 sometimes increases this fitness diversity continuously through all generations like in
problem NPARG.

6.5. Discussion and Conclusions

This chapter described a novel approach which uses a property of instruction inversion
to calculate desired semantics for any part of a program and then searching a desired
building block fitting in that place. The proposed family of methods, exploiting this
property of instructions, are trying to build a final solution in a more smart way than
simple, ‘blind’ evolution. This is the main difference between desired building blocks
approach comparing to others which construct programs in a purely syntactically manner
disregarding the semantically analysis of the product.

We can look at the desired operators also from another angle — they try to narrow
the search space explored by the evolution. The approach based on desired semantics
may be seen as an attempt to comply with some hard constraints imposed (implicitly)
by the problem definition and to avoid wasting resources for testing solutions (programs)
that evidently violate them. For instance, in the proposed approach we have considered
as such constraints the requirement that every part enables the entire program to be an
ideal solution. However, in general the constraints can be defined freely — the goal is to
narrow the search space by giving some constraints which should never be violated by any
acceptable solution. Because the evolution has no idea how to cope with these constraints
(if it knew, then the ideal solution would appear instantly), then in each step it tries to
find a subprogram which violates the constraints as little as possible, hopping that this
comes to an end. The only difference between all proposed methods (RDO, SDO, CSDO,
EDO, and CEDO) lies in the choice of the subprogram which will be optimized in respect
to the constraint.

As we have seen, all operators proposed in this chapter optimize locally a parent indi-
vidual. Therefore it seems as a kind of memetic algorithms [94], however the local opti-
mization does not optimize fitness directly, but rather the adjustment of a subprogram
(subtree).

It is worth to notice, that even if the instructions are black boxes (so we have no idea
how to invert them), it is theoretically possible to estimate the desired semantics through
local optimization. If the elements of used semantics are independent (this is the case in
sampling semantics), it is possible (e.g., using gradient methods) to find local optima for
each element by analyzing the differences between final context behavior and the target
semantics. However such optimization seems computationally much too expensive and
thus the net effect of employing desired semantics would be probably negligible, if any.

Presented results clearly shows that the new proposed methods, especially setups like

M+RDO 0.3, have a big, statistical significant advantage over vanilla GP on a big set of
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different problems with varying difficulty. This is especially visible for problems from the
Boolean domains where M+RDO 0.3 was able to find almost always an ideal solution even
for problems for which X 1.0 never succeed.

This observation suggests that the proposed approach is extremely efficient for discrete
domains. For continuous domains, like in symbolic regression problems, further research
is necessary to improve the performance of seeking appropriate building blocks and, in
consequence, shorten the overall computational time. However, it is important to notice
that the current implementation is still very attractive for most tested symbolic regression
problems for which the performance measured in the number of successes obtained in a
unit of time is higher than for X 1.0 setup. Additionally, the median error committed by
M+RDO 0.3 is smaller than those by X 1.0 (the best control setup).

To verify the hypothesize of beneficial influence of semantic operators, we have per-
formed additional experiments combining the two best desired operators (RDO and SDO)
described in this chapter with semantic crossover (SASES — see Section and seman-
tic mutation (SSM — see Section [5.4), instead of previously used standard crossover (X)
or standard mutation (M). As before, we tested pairs of these operators with different
proportions. Also, for each combination of them we use either standard population ini-
tialization or the proposed semantic initialization (SEM — see Section . We compare
these setups with the previously presented: both in this chapter and in the preceding
chapter (see Section — therefore, there are 267 different setups in total.

Tables and shows Friedman ranks of success ratio and median error, respec-
tively. Again, to make these tables more compact, some part of worse setups from each
pair of breeding operators are skipped. For the complete rankings see Appendix [A]

As it is easily noticed, the best setups involves either RDO or SDO operator (to be
specific — the best 135 setups in the ranking of success ratio, and the best 125 setups
in the ranking of errors). The best success ratio gives setups with RDO 0.3-0.6 and
SDO 0.3-0.5 (the best setup with SDO has tenth position in the ranking). The smallest
error is committed by setups with RDO, especially with RDO 0.5-0.7. The best setup
with SDO (M+SDO 0.3) in this ranking (Table is on the 63" position. These general
observations corroborates remarks presented earlier in Section and shows the stable
recommendations for best setups (e.g., the range of the most profitable probabilities of
our desired semantics).

Moreover, the first five setups from both presented rankings (Tables and
use semantic population initialization (setups prefixed with ‘SEM|’). This may have sig-
nificant importance to the performance of our desired operators, as in the experiments
we construct the library of subprograms (subtrees) from a current population (see Sec-
tion . Therefore, the more diverse the population the more chance that the library
contains useful elements.

The best setups also use SSM instead of standard mutation. SASES is used as well,
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Setup Rank Setup Rank Setup Rank Setup Rank
SEM|SSM+RDO 0.5 62.94 M+SDO 0.4  77.58 (skipped 3 items) X4+EDO 04  174.31
SEM|X+RDO 0.4 66.51 SEM|SSM+RDO 0.3  77.64 SEM|X+SDO 0.5 85.47 (skipped 2 items)
SEM|M+RDO 0.5 69.26 SSM+SDO 0.4 77.92 (skipped 2 items) SASES+SSM 0.3 176.23
SEM|SASES+RDO 0.6 69.74 SASES+RDO 0.7  77.95 X+SDO 0.2 86.05 | SEM|SASES+SSM 0.3  179.15
SEM|X+RDO 0.6  69.90 SEM|SSM+RDO 0.9  79.12 (skipped 5 items) (skipped 7 items)
SASES+RDO 0.5 70.23 SEM|M+SDO 0.6 79.28 SASES+SDO 0.3 86.69 X 1.0 189.29
SSM+RDO 0.5 70.28 SEM|SSM+RDO 0.8  79.44 (skipped 20 items) SEM|X 1.0 189.42
SEM|SASES+RDO 0.4  71.44 SSM+SDO 0.3 79.58 SASES+SDO 0.6 91.03 SASES+SSM 0.4  189.56
M+RDO 0.3 71.63 SASES+RDO 0.4 79.64 (skipped 24 items) M+CEDO 0.2 189.72
SEM|SSM+SDO 0.3 171.67 SEM|M+SDO 0.2  79.86 SEM|RDO 1.0 102.51 | SEM|SASES+SSM 0.4  190.71
SSM+RDO 0.4  71.85 M+RDO 0.7 79.97 (skipped 6 items) M+CEDO 0.4 191.41
SEM|X+RDO 0.5 71.87 SEM|SASES+RDO 0.8 80.18 RDO 1.0 108.33 (skipped 3 items)
SEM|M+SDO 0.4 72.13 SEM|X+RDO 0.3 80.45 X+4+CSDO 0.2 108.77 X+SSM 0.1 193.18
SASES+RDO 0.6  72.26 M+RDO 0.2  81.10 (skipped 3 items) SASES+M 0.5 194.10
SEM|M+RDO 0.4 73.33 SSM+SDO 0.2 81.50 X+CSDO 0.1 111.38 SEM|X+M 0.1 194.46
M+SDO 0.3 173.78 M+RDO 0.8  81.62 M+CSDO 0.3 111.45 X+M 0.1 194.50
SEM|SASES+RDO 0.5  74.08 SSM+RDO 0.7  81.73 (skipped 3 items) X+M 0.2 195.15
SSM+RDO 0.6 74.19 M+SDO 0.6 81.79 M+CSDO 0.2 113.33 (skipped 2 items)
SEM|SSM+SDO 0.4  74.28 SEM|SASES+RDO 0.3  81.97 (skipped 15 items) M+EDO 0.3 197.60
SEM|SASES+RDO 0.7 74.38 | SEM|SASES+SDO 0.5 82.12 SEM|SDO 1.0 140.96 X+EDO 0.7  197.72
X+4+RDO 0.5 74.63 X+RDO 0.3 82.15 (skipped 2 items) SEM|X+M 0.2 198.38
SEM|SSM+RDO 0.6  74.65 M+RDO 0.6  82.36 SDO 1.0 151.58 (skipped 2 items)
M+RDO 0.4  74.73 SEM|SSM+SDO 0.2 82.37 (skipped 2 items) X+SSM 0.2 199.67
SEM|M+SDO 0.3 75.54 SEM|SASES+RDO 0.9 82.44 SASES+M 0.2 167.24 M+EDO 0.2 199.91
M+RDO 0.5  76.42 X+SDO 0.6 82.51 | SEM|SASES+SSM 0.1 167.49 (skipped 11 items)
SEM|SSM+RDO 0.7  76.47 SEM|X+SDO 0.4 82.94 SEM|SASES 1.0 168.51 CSDO 1.0 207.58
SEM|M+SDO 0.5 76.65 (skipped 2 items) X+CEDO 0.3 169.26 (skipped 37 items)
SEM|M+RDO 0.6  76.83 SEM|X+SDO 0.2  83.38 X+CEDO 0.1 169.68 CEDO 1.0 233.72
SEM|SSM+RDO 0.4 77.06 (skipped 3 items) SASES 1.0 169.83 EDO 1.0 234.15
X+RDO 0.4 77.13 X+SDO 0.5 84.36 SASES+SSM 0.1 170.36 M 1.0 234.37
SEM|M+RDO 0.3  77.14 SSM+RDO 0.2 84.59 SASES+M 0.1 170.92 SEM|SSM 1.0 234.68
SEM|SSM+SDO 0.5  77.28 SEM|SASES+SDO 0.3  84.85 X+EDO 0.1 172.42 SSM 1.0 235.23
M+SDO 0.5 77.47 SEM|SASES+SDO 0.4  84.97 (skipped 2 items) SEM|M 1.0 235.55

6. Desired Semantics

Table 6.14.: Friedman ranks of success ratio performance on all 39 problems (both symbolic regression and Boolean domain). Setups
with the best proportion of used operators are emphasized with a bold font. The worse setups for each combination of
operators may be skipped to safe space.
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6. Desired Semantics

however the results shows that SSM or standard mutation is more advantageous (especially
in minimizing median error). Nevertheless, the good results obtained by setups combining
many semantically based operators clearly demonstrate that such fusion is beneficial and
worth to recommend.

Finally, in Table we show a ranking of methods sorted by the achieved success
per hour. It demonstrates that the setup SEM|X4+RDO 0.4 has the highest mean com-
putational performance. It seems that, averaging over all our benchmark problems, this
setup requires the least time to found an ideal solution. More insight analysis shows that
RDO operator appears in the most efficient configurations, irrespective of the problem
domain. However, the best results comes from setups combining two semantic operators
(SEM|X+RDO for symbolic regression domain or SASES+RDO for the Boolean domain).

As we have mentioned several times in this chapter (e.g., in Section , the brute-
force search throughout the whole library for matching a given desired semantics is very
time consuming. However, we can imagine various variants of a ‘rough’ search of nearest
neighbor. Such procedure would consider only a small candidate list (a subset of all points)
generated with a (possibly simple) heuristics. The rationale of such methods would be
to speed up the computations with, if possible, limited deterioration of the overall results
(i.e., the distance to the closest point). Considering such algorithms can be particularly
justified when the main search is carried out by evolutionary algorithms, as they are
stochastic by nature. Such a rough method applied to desired semantics could work as

follow:

1. Select randomly one dimension (element) of the desired semantics with a known

value v (i.e., omit all the unknown elements: insignificant and inconsistent).

2. Generate a candidate list of k£ subtrees from the library which have semantics most

similar to v on the selected dimension.

3. Search linearly the candidate list, calculating the complete distance to the quested

desired semantics, and return the closest semantics from the list.

For example, if parameter k equals to 10% of the whole size of the library, this procedure
would lead to a ten times smaller number of subtrees (its semantics) which would have to
be analyzed.

In this thesis we are mainly interested in analyzing the effectiveness of the proposed
operators in general, and therefore we do not concentrate greatly on optimization issues.
However, as the presented results shows, the brute-force search still allows the desired
operators to be highly efficient. We hope, that applying some kind of ‘rough’ search could

potentially improve this performance even more.
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7. Functional Modularity

7.1. Introduction

In this chapter we analyze the properties of functional modularity, a concept introduced in
[71] for detecting and measuring modularity in problems of automatic program synthesis
by means of genetic programming. This content is based on our prior papers [70, [71], but
here we show more results and analysis concerning problems from our benchmark suite
presented in Section

State of the art research demonstrates that GP, similarly to other methods of automatic
program synthesis, suffers from lack of scalability. By this we mean that, given a problem
for which certain instances are easy to solve using GP, solving larger instances of the
same problem requires much more computational resources, or becomes insolvable (GP
fails to find an optimal solutions within a reasonable computing time). Scalability is very
desirable, because Canonical GP (presented in Section works well as long
as the task is easy, i.e., the sought expression is relatively straightforward and the number
of independent variables forming the input data is low. With larger problems, GP has

much more troubles and often fails.

Therefore, it seems desirable to design a method for automatic problem decomposition,
that decomposes the original problem into some subproblems which can be potentially
easier to solve than the single, large problem. After solving all the subproblems delineated
in this way, the ultimate solution could be then assembled from solutions found to these
subproblems. Delivering a method to such automatic problem decomposition is our far-

reaching research goal.

For this aim, we propose a specific methodology, which we refer to as functional mod-
ularity. As it will become clear in this chapter, this methodology also engages semantic
aspects of GP programs. However, as the proposed concepts and algorithms are generic
and do not depend on particular search algorithms nor search operators, we conduct our
investigations abstracting from evolutionary computation. The formalization as well as
experimental results presented in this chapter concern static, non-evolving samples of ran-
domly generated programs. Thus, in a broader perspective, this part of the thesis may be

considered as a study on statistical analysis of semantics of random programs.
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7. Functional Modularity
7.2. Defining and Exploiting Modularity

The No Free Lunch theorem states that no search algorithm is better than another one
when compared on a uniformly distributed population of all problems [136]. In this light,
superiority of some algorithms tested on real-world problems indirectly demonstrates that
some problems (problem instances) are more likely to occur in practice than others. This
propels the quest for properties that are common for the real-world problems (or some
classes of them) and that may be exploited by search algorithms, resulting in faster con-
vergence. Such properties, studied in the past, include fitness-distance correlation [51],
unimodality of the fitness landscape [93], and modularity [I30]. This chapter concerns the

last one.

The term ‘module’ is difficult to define without referring to a more specific background.
There is quite firm agreement that a module is a part of solution (i.e., something that
may be clearly delineated from the solution), such that it exhibits some form of indepen-
dence (full of partial) from the remaining parts of solution (referred to as contezt). That
independence is usually understood in terms of module’s contribution to solution’s perfor-
mance (fitness) [I33]. In an extreme case of a fully independent module, its contribution
does not depend on the context, in which case the problem becomes separable [130] and
the module may be optimized independently using any context. Such scenario is however
unlikely in the real world, where modules and contexts are usually interdependent, which
means that a module contributes to the overall fitness, but its contribution depends on
the context. This dependency can take on different forms and result in module’s observed
contribution that is more complex than, e.g., the simple additive model as used in NK
landscapes [53] or HIFF problems [132]. This complexity renders detection of modules
difficult. The other factor that makes it hard is the presence of multiple modules, which
is common in nontrivial problems, which gives rise to exponential explosion (see [130]
for an in-depth analysis of modularity and related topics, like compositionality, accretive

evolution, and the building block hypothesis).

The ability of a search algorithm to benefit from modularity is important, because a
large proportion of real-world problems turn out to have interdependent modules. De-
tection and proper exploitation of modularity prior to or during search may speed up
convergence, prevent code bloat, and cause the evolved solutions to be more robust. But
most importantly, modularity is essential for scalability, which is a particularly difficult

issue for genetic programming (GP), as demonstrated in past research [80].

If we agree that a module is a part of solution, then the strict definition of a module ob-
viously depends on the representation of solutions that the search algorithm operates on.
In genetic algorithms (GA) or evolutionary programming, where solutions are represented
as vectors of variables, module has a natural interpretation of a subset of variables. In the

tree-based GP, it is most common to equate a module with a subtree. Methods referring
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to this module definition include evolutionary module acquisition [2], automatically de-
fined functions [61], adaptive representations [I12], and hierarchical genetic programming
[5]. At this point it is worth to notice that the approaches proposed in past concerned
not only canonical tree-based GP, but also other representations like Cartesian Genetic
Programming [129]. However, what these previous approaches have in common is their
purely syntaz-based formulation of modularity; in this chapter, on the contrary, we aim at

supporting the analysis of modularity with program semantic.

7.3. Defining Modules for Variable-based Representations

In general, the concept of a module for vectors of variables (typical for GA) and the concept
of a module for variable-sized structures (typical for GP) are fundamentally different.
However, modularity for vector representations seems to be a good starting point for
introducing our idea of functional modularity. Thus, in following we briefly summarize a
recent study on modularity in GA, related to Harik’s work on learning gene linkage [40]
and Goldberg’s competent genetic algorithms [36].

In Watson’s and De Jong’s formulation [I30} 20], given a set of variables V', a module
is identified with a subset of variables M C V such that the linkage between variables
in M is tighter than the linkage between variables from M and the variables from the
context, i.e., V\M. The definition of linkage refers here to the notion of context-optimal
setting. The context-optimal setting is a combination of values of variables from M which
are optimal for at least one combination of values of context variables. Depending on
the algorithm, the considered set of contexts may contain all possible contexts [I33] or
a sample of them [20]. The more such context-optimal settings exists, the tighter is the
linkage between the module and the context.

Table shows an exemplary instance of Boolean problem with four variables. The
global optimum is 0000 with a maximal fitness value equal to 4. A module M consisting
of two first variables (i.e., M = {vg,v1}) has only two possible context-optimal settings:
00 and 11. For context -- 00 its context-optimal settings equals 00 (fitness 4), for --01 it is
also 00 (fitness 2), whereas for contexts -- 10 and - - 11 it is 11 (with fitness values equal to
2 and 3, respectively). A counterexample is a pair (vg,v3) with 4 context-optimal settings
(for context 00 - - it is 00, for 01 -- — 01, for 10-- — 10, for 11-- — 11). This means that
the pair (ve,vs3) has the tightest possible linkage with other variables and, because of this
full dependency, it does not constitute a module.

To summarize, we say that M is a module if the number of its context-optimal settings
is smaller than the number of all possible settings of variables in M. If there is only
one such optimal combination of variables then the module M is completely independent
from the context, which means that the problem is separable. It turns out that, under

assumption that the modules are hierarchically organized, it is possible to effectively and
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[vo vi] va vs  Flitness
0000 4
000 1 2
0 010 1
0 0 1 1 1
01 00 0
010 1 1
0110 0
01 11 0
1 0 0 O 0
1 0 0 1 0
1010 1
1 01 1 0
1 1 0 0 1
11 0 1 1
1110 2
1 1 1 1 3

|
|

Table 7.1.: An instance of Boolean problem with four binary variables vy ...vs. A pair of
variables vy and vy constitute a module M = {vg, v1 } with 2 distinct context-
optimal settings (underlined values), whereas the combination of ve and wvs
is not a module, because this pair has 4 context-optimal settings (underlined
values) — this equals the total number of possible settings of these variables.

robustly detect the modules without considering all possible contexts. This idea has
been exploited by Watson, Thierens, and de Jong, who designed the hierarchical genetic
algorithm (HGA) and have shown in [20] that it effectively solves a subclass of artificial
hierarchical modular problems [I9]. This result was obtained in the realm of Boolean
problems, where enumerating the settings of a set of variables is possible; an extension of

this approach to real-valued problems is still to come.

7.4. Functional Modularity

The aforementioned variable-based concepts of module and its context-optimal setting
cannot be directly transplanted into the GP domain. First of all, variables in optimization
problems lack natural counterparts in GP. Secondly, even if we identified a variable with,
e.g., a specific locus in a GP tree, and treated a set of such loci as a module, then
the interplay between such a module and the remaining part of the tree would be very
complex and, in general, could not be easily modeled using fitness contributions (e.g.,
additive fitness contributions as defined in famous benchmarks like NK landscapes and
HIFF [131]). Thirdly, adopting such a module definition still would not enable us to
borrow some concepts from HGA [20], as it would be computationally too expensive to

enumerate all possible settings of a module (a subtree in such case). And, last but not
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Figure 7.4.1.: A torch example.

least, the genotype-phenotype mapping in GP is many-to-one, i.e., different GP subtrees

may have the same semantics, so considering all of them seems superfluous.

However, we hypothesize that discovery of a module is possible without finding its opti-
mal settings. Using more general terms, we claim that a module in solution structure may
be detected based on the structure (some characteristics) of the solution space alone, even
if we do not know what is the best value (setting) for that module. To justify this claim,
let us consider an illustrative optimization task of designing a battery-powered torch, with
the optimized objective (fitness) being the time for which the torch’es brightness sustains a
predefined threshold (expected operating time). Let us delineate the two main torch parts:
the battery and the bulb (see Figure . For the sake of this thought experiment, the
battery will play the role of a module, while the bulb will act as the context.

The common-sense knowledge suggests that the design of the battery is (at least to some
extent) independent of the design of the bulb. Some battery designs are better than others,
and some of them may be considered optimal, meaning that they maximize the overall
quality (fitness) of the entire solution (torch). It is the case because these two components
interact in a quite straightforward way, i.e., there are only a few parameters of the interface
between them that matter (the voltage, the resistance of the bulb, the physical specification
of the contacts that connect the battery with the bulb). The internal implementation
details of battery and bulb are irrelevant as long as their external specification fit within

certain norms.

Let us now point out an important feature of modularity in this example. We do not
need to test the fitness of the torch to assess the quality of the battery it contains. There
may exist other quality measures, which are capable to evaluate the module in a way
that is consistent with the fitness function. For the above example, it might be the case
that measuring the loss of battery voltage after it has been short-circuited for a certain
time is sufficient to accurately estimate the expected operating time of the torch. Even if
such a perfectly consistent measure does not exist, then it is likely that we can find some
approximate surrogate for it, which is sufficiently correlated with the fitness function. The
existence of the former, fully consistent measure would imply separability, the existence of

the latter, approximate estimator — modular interdependence (see Section and [130]).
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This example illustrates the possibility of detecting a module in problem structure by
discovering the proper (structural) decomposition of solution and finding an appropriate
quality measure of this module. To distinguish such approach to defining and analyzing
modularity in GP from the more common purely structural, syntax-based methods, we
coin the term functional modularity.

Finding a fully consistent measure of module quality may be difficult or impossible, as
it subsumes separability, which is infrequent in real-world design problems and unrealistic
in GP context for the reasons listed at the beginning of this section. In general, the more
interdependent a module and its context are, the more complex the relation between such
measures and the fitness function. In such circumstances, rather than making a qualitative
decision about module existence, it may be better to quantify the degree of modularity of a
particular module candidate. Analogously, it seems more reasonable to consider multiple
quality measures and evaluate their utilities for module search, than pursuing the search
for the ultimate best-of-all quality measure that may never be found. These observations

motivated our formal definition of the functional module introduced in following.

7.5. Formalization

Let X be the set of all programs (solution space of the problem of consideration), and let

f: X — R be a mazrimized fitness function.

Definition 6. A binary decomposition function (decomposition for short) is any invertible

function ¢ : X — P x C that decomposes a solution into two components, i.e., such that:
Vo € X : q(z) = (p.c), ¢ '(p,c) ==, (7.5.1)

where p is called a part of x and c is the context of x in the ¢ meaning. P and C are the

sets of all possible (g-compatible) parts and contexts, respectively.

In following, we assume that ¢ is given and fixed, therefore, when needed, p and c are
written as p(z) and c(z) to emphasize that they are obtained from solution z. For the
decomposition ¢ to be non-trivial, p(z) # x and ¢(z) # x must hold.

In general, elements of X, P and C are programs. Or, if one would like to reserve the
term ‘program’ to the piece of code that solves the entire problem, then the elements of P
and C should be called subprograms. The solution decomposition function g must observe
the constraints imposed by the syntax of the language used for representing solutions, so
that at least the parts constitute independently executable pieces of code. However, in the
simple case of type-less Koza-style GP considered in this thesis, the distinction between
X, P and C is almost negligible — they all are sets of trees that may be generated given
the set of terminals and set of functions (nonterminals) (see Section . The technical
difference is that P may be restricted to smaller trees than X (so P C X), and C is a set
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of degenerated trees, i.e. trees with a removed subtree (it is common in GP to mark the

missing subtree with the ‘#’ symbol, as in the following example: x - (x + #)).

Definition 7. A part quality function is any real-valued function fp : P — R assigning a

real value to a given part.

A part quality function will be identified with a subgoal that parts are supposed to
optimize, analogously to the way solutions optimize the fitness function f (though it is
worth noticing that such a subgoal does not have to be explicitly known). We assume
positive preference ordering on fp, i.e., we aim at mazimizing its value.

To enable practical realization we need to constrain fp to some implementable form.
As solution parts p € P are programs, two following classes of part quality functions seem
natural: syntactic and semantic ones.

By syntactic part quality function we mean a function fp that relies exclusively on the
code of program p, i.e., how it looks. Such quality functions are appropriate for, among
others, problems that are decomposable due to independency between particular compo-
nents of program input, fed into a GP tree via terminals. A simple example could be here
a bivariate symbolic regression aimed at finding the 3v? + 2v3 function: a decomposition
into two univariate problems constrained to particular variables (vi,wvs) is here obvious.
fp should in such a case prefer parts (program fragments) that use only some of the
terminals (say, v1), letting the remaining terminals (here: vg) to be used in the context.
Such decomposition related to structure of program’s input data is sometimes possible
thanks to domain knowledge; however, for many real-world problems this particular type
of decomposability cannot be assumed.

As opposed to the syntax-based modularity framing, a nice property of the functional
approach to modularity is its applicability to other, non-syntactic properties of parts. We
focus here on specific class of such functions, which we call semantic part quality functions.

Such functions investigate how a program works in order to assess its quality.

Definition 8. A semantic part quality function is a function fp : P — R measuring the

similarity between the semantics of the part and certain fixed semantics sp:

fr(p) = similarity(s(p), sp), (7.5.2)

where s(p) is a sampling semantics of part p, and similarity(si, s2) is a similarity measure

defined, e.g., like in Formula [3.4.2 on page 35|

Each semantic part quality function is completely defined by the assumed similarity
measure (see Section and a subgoal represented by the associated semantics sp. Under
the assumption that the similarity measure is fixed, there is one-to-one correspondence
between the semantic part quality function fp and the semantics sp. This is an analogous

situation to the fitness function f defined as a similarity between actual semantics of an
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7. Functional Modularity

individual and the target semantics defined by a problem (cf. Formula that defines

the most common way of evaluating individuals in GP).

Definition 9. A monotonicity degree (monotonicity for short) m(fp, f) of fp with respect
to f is a real-valued function that measures some form of monotonicity (strict, weak, or
partial) between the values returned by fp and the values returned by f, on an assumed

set of programs and under certain assumed decomposition function.

In other words, monotonicity measures how much the quality of the part (in fp sense)
is correlated with the fitness function f. In some cases, such correlation could be cal-
culated analytically for the entire population of solutions X. However, in the following
experiments, we will estimate these indicators from samples of random programs.

Here, we equate monotonicity with the Spearman’s rank correlation coefficient. Thanks
to this, we can abstract from the metric scale of fitness and focus on the actual ordering
of f and fp values. Technically, this measure is equivalent to the Pearson’s correlation
coefficient with ranks substituted for f and fp:

m(fe. f) = px(RIpRS) = — 3 (Rf(z) - RPRSp(p(z)) — Rp), (7.53)

ORfORfP yex

where R fp and R f are, respectively, raw scores of fp and f converted to ranks (calculated
within a sample of certain size). ory and ory, denote the standard deviations of R fp
and R f, respectively. Other reasonable definitions of monotonicity include Kendall’s tau,

gamma statistic, and ordinal contingency [43].

Definition 10. An optimal part quality function fp is any part quality function with the

hlghest HlOIlOtOIliCitY:
l -_— . . .4
fP arg ¥ H:PlaXR m(fPa f) (‘ b )

Definition 11. A problem given by solution space X and fitness function f is a-modular
under the assumed solution decomposition function ¢ : X — P x C' and monotonicity

degree function m(fy, f) iff
m(fp, f) > a. (7.5.5)

Let us now illustrate these notions in terms of the torch example presented earlier.
In that case, X is the population of all possible torch designs and f is the torch fitness
measure as defined in our thought experiment. The solution decomposition function ¢
decomposes a torch x € X into a battery p = p(x) and a bulb ¢ = ¢(z), and the sets
P and C have the interpretation of, respectively, the populations of all batteries and all
bulbs that are g-compatible with the torch design, i.e., batteries and bulbs that may be
assembled into a torch using ¢~ 1. The fp functions are different battery quality measures:

some of them are monotone with respect to f (e.g., the initial battery voltage), some of
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them not (e.g., battery color). The torch design problem is a-modular if there exist a
battery (part) quality function fp that has monotonicity > «.

To summarize, a problem is a-modular if two conditions are fulfilled:

1. There exists a way of decomposing the candidate solutions of the problem into parts

(solution decomposition function ¢).
2. For the given ¢, there exists a part quality function with monotonicity > a.

The rationale behind such definition of functional modularity is obviously motivated by
the potential benefits from problem decomposition. Its exploitation could proceed as in
the following scenario (though other approaches are conceivable). If we knew the solution
decomposition function ¢ and the corresponding optimal part quality function fp, and if
its monotonicity with respect to f was sufficiently high, we could decompose the problem
using ¢. Then, we could use fj to search for an optimal part p*; this search would take
place in the solution space P, which we expect to be smaller than X (which is true for,
e.g., decomposition functions that split entire programs into program fragments, as in the
following section). Finally, having found p* (or its good approximation), we could constrain
the search in X by considering only solutions z such that = ¢~ (p*, ¢), i.e., searching only
the space of contexts. If the space X is combinatorial, this implies exponential reduction
of search space cardinality, and thus potentially immense gains in the expected runtime
of a search algorithm.

Let us note that in the extreme case of part quality function being perfectly monotonous
with respect to f (i.e., m(fp, f) = 1), such proceeding would guarantee finding the optimal
solution, provided we could find p*. On the other hand, this is a degenerate case: perfect
correlation between part quality function fp and fitness function f would imply that f
does not depend on context; fp would account for (explain) all the variability of f across
solutions in X. In such a case, context could be ignored, so no problem decomposition in

the semantic sense would take place.

7.6. Experiments

In a long run, we are interested in exploiting the modularity for the sake of improv-
ing search convergence and other properties of the search algorithm and/or the evolved
solutions. However, prior to exploiting modularity, it is essential to verify whether an
assumed way of problem decomposition reveals modularity in the considered problem. In
other words, as mentioned earlier, the necessary precondition for modularity exploitation is
modularity detection. Thus, in the experimental part of this chapter we investigate mainly
the distribution of monotonicity within different GP problems and its relationships with

fitness, without actually running the evolution. More technically, all the results quoted in
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part context part context

(a) (b)

Figure 7.6.1.: Examples of applying decomposition function defined as ¢(z) = (‘the left-
most child of the root node of z’, ‘the remaining part of z”).

following have been obtained by computing appropriate statistics from a random sample
of GP individuals.

We carry out all computation for all 39 problems from our benchmark suite (Section.
We expect different structures of modularity to emerge for such range of problems. For
example, we anticipate even parity (PAR) to exhibit weaker modularity than other Boolean
problems due to hypothesized ‘ruggedness’ of its fitness landscape, resulting from extreme
sensitivity to the states of single variables (flipping any input variable flips the desired
output value).

In this chapter, to partition a program into a part p and a context ¢, we employ de-
composition function ¢ defined as ¢(z) = (‘the leftmost child of the root node of z’, ‘the
remaining part of x’) (see Formula[7.5.1). For instance, the result of decomposition func-
tion applied to a tree defining expression (x - z) + sin(z + x) is ¢ ((z - ) +sin(z + x)) =
(p,c) = ((x-x), (#+sin(z + x))), where # denotes an empty tree branch — see Fig-
ure If a root node has only one child, then the context contains only this root,
e.g. q(sin(x 4+ z)) = (p,c) = ((z + ), sin(#)) — see Figure If a program contains
only one node and thus the leftmost child of the root is absent, we ignore the individual
and generate another one in its place.

Even if we assume a fixed form of semantic similarity used by semantic part quality

function (see Formula|7.5.2)), the number of all semantic quality functions is typically very
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Algorithm 7.1 Generating random subgoals

1: procedure RANDOMSUBGOALS(N) > N — number of subgoals
2 S < SPECIALSUBGOALS() > add special, domain specific semantics
3 fori+~1...N do > add N random semantics
4 repeat

5: repeat

6 x <— RAMPED-HALF-AND-HALF(2, 15)

7 until root node of = has at least one child

8 (p,c) + DECOMPOSE(z) > using ¢ as defined in text
9: s <= SEMANTICS(p)
10: V=D S > sum of all elements of semantics s
11: until s ¢ S and v < 10%
12: S+ SuU{s}
13: return S > subgoals are identified by semantics

14: end procedure

Algorithm 7.2 Generating sample of random individuals

1: procedure SAMPLE-OF-INDIVIDUALS(V) > N — number of samples
2 P+ > set of generated individuals
3 T« 0
4: d<«0 > number of generated duplicates
5: fori+ 1...N do
6 repeat
7 repeat
8 x < RAMPED-HALF-AND-HALF(2, 15)
9: until root node of x has at least one child
10: (p, c) + DECOMPOSE(z) > using ¢ as defined in text
11: Sz < SEMANTICS(z)
12: sp <= SEMANTICS(p)
13: if (sz,sp) € T then
14: d<d+1
15: if d=3- N then > if too many duplicates were generated
16: return P > return current set P (|P| < N)
17: else
18: continue > skip this duplicated individual x
19: Vg <= D Szii > sum of all elements of semantics s,
20: Up <= D i Spii > sum of all elements of semantics s,
21: until v, < 10" and v, < 10
22: P+ PU{z}
23: T+ TU{(5z,5p)} > remember the unique pair of semantics
24: return P

25: end procedure
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large: there are as many of them as there are possible semantics (sp in Formula [7.5.2)).
Because, for most problems it is impossible or impractical to enumerate all of them,
we investigate a set S of thousand unique semantics generated as follows. Firstly, we
create random individuals using the Ramped Half-and-Half method (see Algorithm
, with depths varying from 2 to 15. Then we decompose each program using
the decomposition function ¢ and we compute the semantics of the part obtained in this
way. If this semantics is unique, then we add it to the set of the part quality functions.
We repeat this process to obtain 1000 unique semantics. When applying this procedure
to the symbolic regression domain, we filter out semantics with large magnitudes — more
specifically, we have accepted a semantics as a candidate for sp only if the sum of absolute
values of all its elements is less than 10'°.

Additionally, for each considered benchmark problem, we added several special seman-

tics to S (the set of part quality functions):

e target semantics — i.e., the expected semantics of an ideal solution to a given prob-

lem,

e for symbolic regression domain: semantic with all elements equal to v, where v €
{£1,£2,+5,£10,4+100, £1000}, i.e., 12 selected semantics in total,

e for Boolean domain: two semantics with all elements equal to either true (1) or false

0).

FEach additional semantics, except the target one, has all elements equal to the same
predefined value. For example, the semantics with values equal to +100 for each fitness
case will be denoted as ‘+100 semantics’ in following.

We added these additional semantics to the set S before generating random ones, there-
fore we have in total 1012 part quality functions for each symbolic regression problem and
1003 for each Boolean problem. Algorithm [7.1] presents the entire procedure for generating
subgoals.

Ideally, one would estimate monotonicity of each subgoal by enumerating all possible so-
lutions in X (see Formula (7.5.3]). This is unfortunately computationally infeasible. Thus,
we estimate monotonicity from a sample of up to 1,000,000 individuals. Algorithm [7.2]
shows the procedure for generating this sample of individuals.Technically, we generate ran-
dom GP programs using the Ramped Half-and-Half method (Algorithm , with depths
varying from 2 to 15. Individuals with program semantics or part semantics (obtained by
decomposition function ¢ defined above) having large magnitude are rejected (technically,
if a sum of absolute values of semantics elements is > 10'%). The procedure of generating
random programs is almost identical to the one used in generating random subgoals de-
scribed in Algorithm but with an additional condition imposed on semantics of entire

programs.
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Our objective is to gather one million programs with unique combination of program
semantics and part semantics. However, some semantics of randomly generated programs
are much more frequent than others. Also, for some problems generating so many seman-
tically unique individuals is impossible (when the total number of all possible semantics
is much less than one million, e.g., for problem IPAR4) or very unlikely. Therefore, we
give up after generating three million duplicates, i.e., random individuals which have been
already generated. Because of this, the monotonicity degree for some problems will be

estimated from smaller number of programs.

Boolean Domain Issue

The symmetry of the space of Boolean functions is an important feature that must not
be ignored in this study. The choice of instructions is that the a priori probabilities of
generating an individual with semantic s(z) and that of generating an individual with se-
mantic s(z) are in general very close. In particular, for the specific set of instructions used
later in problems with prefix ‘N’ (NPAR, NMUX, NMAJ, and NCMP), these probabilities
are exactly the same. Obviously, the same can be said about the semantics of parts, s(p)
and % As a consequence, an individual that contributes positively to monotonicity of
a subgoal sp, necessarily contributes negatively to monotonicity of subgoal 5p. Over the
entire sample, these contributions can almost compensate each other and cause the result-
ing monotonicities to be very close to zero, making it difficult to observe any interesting
regularities.

To compensate for this, we employ a de-symmetrized fitness function (cf. Formula|3.4.4)):
f(z) = max{similarity(s(z),t), similarity(s(x),t)}, (7.6.1)

where t is a target semantics of a problem and £ is target semantics of the negated version
of the original problem ¢.

So, we consider the original and the negated task equivalent, and an individual is re-
warded either for optimizing ¢ or optimizing ¢, whatever it is better at. We adopt an

analogous modification to part quality functions fp (cf. Formula|7.5.2)):

fr(p) = max{similarity(s(p), sp), similarity(s(p),sp)}.

7.7. Results

7.7.1. Monotonicity Distribution

Figures and present the monotonicity of subgoals for several problems selected

from the benchmark suite presented in Section [£.2 on page 38 The subgoals have been

ordered according to the increasing value of monotonicity. Some special subgoals are

marked with vertical lines. The plots for the remaining benchmarks problems, presented
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Figure 7.7.1.: Monotonicity of all subgoals for selected symbolic regression problems esti-
mated from 1,000,000 random individuals. Vertical lines mark special sub-
goals: target semantics (dashed line), zeros (dotted), +100 or —100 (solid
line annotated with + or — respectively).

in Appendix [A] look very similar to these shown here.

It is easy to notice that, for all problem instances, monotonicity significantly varies
across subgoals. However, there is evident difference between symbolic regression and
Boolean tasks. For the former, most subgoals have monotonicity above the average, and
relatively few of them have monotonicity near to zero. The share of subgoals with negative
monotonicity is small, and usually does not exceed 4% of the total number of subgoals
(max is 4.15% for F05). For Boolean problems, the situation is fundamentally different.
In particular, highly-monotonous subgoals are infrequent. Also, quite many subgoals are
‘deceptive’ in the sense that they have remarkably negative monotonicity. However, we
hypothesize that such a large number of subgoals with monotonicity below zero results
from the de-symmetrization procedure applied to all Boolean problems.

This result indicates that, in the space of semantics of parts (subgoals), there are points
(‘good’ subgoals) with the property that if the semantic of the part becomes more similar
to one of them, then the fitness of the entire program is likely to increase. And conversely,
there are also ‘bad’ subgoals with the inverse property. In other words, the ‘good’ sub-
goals are the subgoals for which the target’s fitness landscape (reflecting the similarity of
program to target semantics) and the subgoal’s fitness landscape (reflecting the similarity
of part to subgoal) can be aligned one to another in a way that causes them look similar.

The ‘bad’ subgoals miss such property.
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Figure 7.7.2.: Monotonicity of all subgoals for selected Boolean problems estimated from
1,000,000 random individuals. Vertical lines mark special subgoals: equal
to target semantics (dashed line) or zeros (dotted).

For all tested problems, the subgoal equivalent to the target semantics has high mono-
tonicity. This suggests that it is quite easy to construct a context which does not change
the semantics produced by a part, or which modifies it only slightly. In an extreme case,
if a part solves the problem alone, it is likely that also a whole program solves it. This is
especially visible for the Boolean domain — such subgoals have the highest monotonicity
for all tasks, because it is very easy there to construct a context that either propagates an
unmodified result produced by the part or (due to the de-symmetrization) just negates it.
Because of this phenomenon, we observe a prominent peak of monotonicity at the right-
most end of all charts in Figure [7.7.2] The monotonicities of lower-ranked subgoals (more
to the left in the charts) are remarkably lower. However, this decline is more prominent
for problems like CMP or PAR, and are less sudden for others (MAJ and MUX).

In terms of a-monotonicity (Formula , RO is approximately 0.38-modular as the
maximum monotonicity over all subgoals amounts here to 0.3795. This is the most modular
problem from the symbolic regression domain. IPAR6 problem has the maximal subgoal
(here equivalent to the target semantics) monotonicity around 0.54 (precisely: 0.5403),
which is the highest value of all Boolean tasks. However, the second subgoal for that
problem has monotonicity equal to 0.2142 which is more than twice less than the subgoal

equivalent to the target semantics.

Table [7.2] presents ranges and standard deviations of subgoal monotonicity values for all
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Problem min mazx stdev Problem min mazx stdev
Fo1 -0.0745  0.3625 0.0757 ICMP6 -0.0812 0.3979 0.0446
F02 -0.0624 0.3645 0.0721 ICMPS -0.1451 0.4434 0.0707
F03 -0.0690  0.3652 0.0732 IMAJ5 -0.1078 0.3611 0.0675
F0o4 -0.0607  0.3649 0.0709 IMAJ6 -0.0574 0.3863 0.0648
FO05 -0.1620 0.3757 0.1174 IMAJ7 -0.2345 0.4668 0.1118
F06 -0.0776  0.3606 0.0768 IMUX11  -0.2500 0.4425 0.1051
FO7 0.0106  0.3695 0.0691 IMUX6 -0.1413 0.3504 0.0675
FO8 -0.0068  0.3639 0.0719 IPAR4 -0.0600 0.2125 0.0324
F09 0.0524 0.3344 0.0521 IPAR5 -0.1295 0.4462 0.0532
F10 0.0496  0.3401 0.0523 IPARG -0.1764 0.5403 0.0647
F11 0.0415 0.3292 0.0511 NCMP6 -0.0886  0.3613 0.0452
F12 -0.0775  0.3236  0.0842 NCMP8 -0.1424 0.3889 0.0585
P1 -0.0872  0.3374 0.0812 NMAJ5 -0.1210 0.1737 0.0313
P2 -0.1507  0.3783 0.1120 NMAJ6 -0.1201  0.3199 0.0634
P3 -0.0655 0.3653 0.0714 NMAJ7 -0.1150 0.2426 0.0585
RO -0.1612  0.3795 0.1177 NMUX11 -0.2274 0.2981 0.0840
R1 -0.0228  0.3737 0.0681 NMUX6 -0.1094 0.1857 0.0223
R2 -0.0151  0.3578 0.0636 NPAR4 -0.0688 0.1554 0.0531
R3 -0.0935  0.3379 0.0837 NPARS -0.1125 0.2555 0.0636

NPARG6 -0.1483 0.3342 0.0661

Table 7.2.: Minimal and maximal values, and standard deviations of subgoal monotonicity
for all problems.
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Figure 7.7.3.: 2D rank histograms of relation between fitness and value of the best part
quality functions for selected symbolic regression problems. Each column is
normalized — for each fitness the most frequent part quality value is shown
in black.

39 problems. The figures confirm that the structure of monotonicity substantially varies
between different problems. This table shows both the variation of maximal monotonicity,
and the dispersion of quality among sampled subgoals. For instance, F05, P2, and RO are
symbolic regression problems with the most varying monotonicity. For Boolean domain,
IMAJ7, IMUX11, and NMUX11 have the highest variance among subgoals. This may
indicate that those problems are more modular and give more hope for being automatically
decomposed.

On the other hand, all symbolic regression problems have quite similar values of the
maximal monotonicity which varies from 0.3236 for F12 to 0.3795 for RO, but about half
of them have monotonicity around 0.36. This distinguishes this group of problems from the
Boolean domain because for them the maximal monotonicity varies from 0.1554 (NPAR4)
to 0.5403 (IPARG). This suggests substantial difference in modularity of our benchmark

problems.

7.7.2. Relation Between Part Quality and Fitness

Previous section describes the values of monotonicity for all tested subgoals. Here we
present in more detail particular subgoals and the relation between the fitness of an en-

tire program and the quality of its part, as measured with respect to these subgoals.
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Figure 7.7.4.: 2D rank histograms of relation between fitness and value of the best part
quality functions for selected Boolean problems. Each column is normalized
— for each fitness the most frequent part quality value is shown in black.

Figures [7.7.9] and [7.7.4] show the best found part quality functions for a set of selected

problems. Each chart is a two-dimensional histogram presenting the relation between the

ranks of fitness and the ranks of part quality values. Darker shades represent more frequent
combinations in our set of randomly generated problems. For clarity, we normalized each
column, so that the most frequent value of part quality for each fitness bin is printed in
black. In this way, the gray shades range from white to black for each program semantics
(column), no matter frequent that program’s semantic is (note that, e.g., individuals with
high fitness appear very rarely in the sample of random individuals). Histograms for the

remaining problems, not shown here but presented in Appendix [A] look very similar to
those in Figures [7.7.3] and [7.7-4]

In these histograms, visible dark horizontal lines stretching through the whole range
of fitness represent programs with a common part (therefore with the same part quality)
which are very frequent in the sample of random individuals. However, the interesting fact
is that contexts in these programs are able to ‘ignore’ the output produced by the part
and produce final output resulting in such varying fitness value. Therefore, existence of
horizontal lines means, that such ‘independent’ contexts, obtained by the decomposition
functions used in our experiments (see Section , are quite common. On the other
hand, vertical bright lines denote individuals with very infrequent fitness values. Because

there are very few programs with such unique fitnesses, after the normalization, columns
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representing such fitness bins are almost white with only several dark points.

In general, it would be advantageous if the left-top triangle of presented histograms
was white and only right-bottom part of them was darker. In such case, optimizing the
part quality function would be equivalent to narrow the possible range of fitness from the
bottom. In other words, it would mean that the better part quality the better minimal
possible fitness of individual. On the contrary, if there is a lot of dark areas above the
diagonal it is likely that individuals with good part quality have bad fitness at the same
time. This means that better part quality does not necessary imply better programs. If
individuals laid only on the diagonal, it would suggest that a problem is separable and it
could be solved just by optimizing the part quality function.

Histograms generated for the symbolic regression problems (Figure [7.7.3)) show that
improving the very bad part quality values effectively improves the whole program. This
is not surprising, as the worst individuals often returns huge values, and individuals with
parts returning smaller values have both better part quality value and, very likely, better
fitness. This happens, because parts of good programs usually have to produce outputs
with smaller values so the context could transform them to the desired final values. After
the initial phase, the part quality function not always could put the search easily on the
right track as for FO7 or R1 problems. Often, the trace generated by the part quality
function is a bit more deceptive like for F05 or P1, and sometimes it is almost neutral like
for F10 where the trace is blurred.

For all Boolean problems it is characteristic that the diagonal is very distinct. This
happens because the best subgoal equals the target semantics, as discussed in the previous
section. Moreover, it seems that most sampled individuals not laying on the diagonal are
localized below it, in the desirable bottom-right part of histogram. However, the de-
symmetrization process has a big influence of this effect. Therefore, utilizing the concept
of functional modularity as described in this chapter probably needs to exploit some form
of de-symmetrization procedure.

Another interesting observation is that the histograms for most Boolean problems are
checked. This effect is caused by the fact that it is much more likely that a random program
generated from functions used in our setup (as described in Section has an
even number of ones in its semantics. Generating such program is about 3—4 times more

probably than creating a random individual with an odd number of ones in its semantics.

Figure [7.7.5 on the following page] shows examples of the worst subgoals, i.e. subgoals

with the minimal monotonicity. At first glance it could seem that some of them are quite
good. For instance, the relation between fitness and part quality for problems F10 or F05
forms a kind of funnel, and it looks like promoting individuals with a particular value of
part quality (not the maximal) is advantageous. However, this will work only for the worst
individuals and, in contrast to the better subgoals, does not differentiate better programs

for which we observe almost ideal horizontal line.
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Figure 7.7.5.: 2D rank histograms of relation between fitness and value of the worst part
quality functions (i.e. with minimal monotonicity) for selected problems.
Each column is normalized — for each fitness the most frequent part quality
value is shown in black.

7.7.3. Relation Between Monotonicity and Fitness

Section [7.7.]] focused on the global, unconditional, distribution of monotonicity in the
sample of subgoals. The objective of the analysis presented in following is to relate those
results to the fitness of complete solutions. More technically, we verify whether the well-

performing solutions are more modular than the other ones.

We do that by analyzing in more detail the sample used for the estimation of mono-
tonicity. For each individual z, we extract its part p, calculate its semantics s(p), and find
a part quality function which best scores p, i.e. such subgoal sp that is most similar to
s(p) (see Equation . This results in each individual having one subgoal assigned to
it. Finally, we can associate a fitness of a program with the monotonicity of the subgoal
assigned to it. Figures[7.7.6and [7.7.7] present two dimensional histograms of this relation.
Again, for clarity each column is normalized as in previous section. Additionally, we plot
in red the mean values of monotonicity for each fitness group.

Almost all presented graphs show that in average the better individuals the better
subgoal is most similar to a part of this individual. This observation confirms that the

monotonicity measure actually quite well scores the semantic part quality functions. In
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2D rank histograms of relation between fitness and monotonicity assigned to
individuals. Each column is normalized — for each fitness group the most
frequent monotonicity is shown in black. Mean monotonicity for each fitness
group is drawn by red line.
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2D rank histograms of relation between fitness and monotonicity assigned to
individuals. Each column is normalized — for each fitness group the most
frequent monotonicity is shown in black. Mean monotonicity for each fitness
group is drawn by red line.
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other words, subgoals with higher monotonicity more often rate highly fit individuals than
the worse.

However, it is important to remember than only small number from the random pro-
grams have high fitness. Therefore, the results presented in most right part of the charts
are calculated from very few samples (sometimes just a single observation) and cannot be
statistically significant . We observe there a high variation of the mean monotonicity —
sometimes ending with a high peak or drastic drop. Nevertheless, for most benchmark
problems the tendency of increasing monotonicity with increasing fitness is quite well vis-
ible. To problems with a noticeable but temporary decrease in monotonicity for better
half of fitness values belong: F08-F12, P1, P2, RO, R3. For these problems we observe
quite well mean monotonicity for the middle value of fitness, then some decrease followed
again by subsequent increase in value.

For Boolean problem, the positive correlation between fitness and average monotonicity
is even better visible. The exception is for two problems NPARS5 and NPARG for which it
seems that the negative tendency takes place for the most fitness value range. Another ob-
vious observation is a remarkable bifurcation of the monotonicity that follows the pattern
of alternating fitness values (for most Boolean problems the bins of fitness contain just a
single fitness value). This artefact arises from the different frequency of an even number
of ones in semantics of randomly generated programs, as discussed in the previous section.
A bit different fluctuation of monotonicity for IMUX11 comes from the aggregation of

fitness values in particular histogram bins.

7.8. Discussion and Conclusions

The experimental results authorize us to formulate the following claims:

1. For some problem, different subgoals tend to have significantly different monotonic-

ity.

2. Problem instances display different structure of monotonicity, meant as the charac-

teristics of the distribution of monotonicity across the subgoals.

3. For most problem, the monotonicity of solution’s closest subgoal positively correlates

with its fitness.

We can hypothesize that some problems tend to be less modular (close-to-uniform distri-
bution of monotonicity), and some more modular (significantly non-uniform distribution
of monotonicity). This gives hope for delineating the class of semantically modular prob-
lems. For such problems, decomposition based on functional modularity is likely to provide
better scalability and enable solving problems that remain intractable using contemporary

computational resources.
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Many questions and research issues pertaining to this study remain open. As requiring
a human to provide the appropriate decomposition function ¢ is far from realistic in most
real-world scenarios, a complete decomposition algorithm should be able to discover it
autonomously. In particular, for the sake of clarity, in this chapter we used a specific
decomposition function ¢ that defines part as the left-hand subtree of the root node.
It should be emphasized that this form of decomposition has potential drawbacks: the
context is forced to aggregate the output produced by the part with the values returned
by the context using a single operation. The existence of ideal solutions for the problems
considered in this thesis implies that such aggregation is possible, yet not necessarily for all
possible subgoals. Moreover, even if for some subgoal there exists an optimal context that
makes the entire solution ideal, then from the viewpoint of search effort of an evolutionary
run (measured, e.g., as the expected number of evaluations needed to find the optimum),
some subgoals and some contexts may be easier to optimize than others.

We hypothesize that using other decomposition functions ¢ can alleviate this difficulty.
A simple example of such function could be g that defines part as the left-hand child
of left-hand child of the root, and context as the remaining part of the tree. In such a
case, context would have two operations at its disposal to combine the output of the part
with the values computed by the context, and it could use different right-hand arguments
for these operations. Therefore, there would be more ‘degrees of freedom’ in the search
process and it should be easier to evolve an optimal context.

It is interesting to note that this line of reasoning leads in the end to decomposition
functions ¢ that define part as the leftmost leaf of the tree. Such decomposition definitely
gives a lot to say to the context, so that the abovementioned risk of the context not being
able to incorporate the semantics of the part is neglectable. However, a part defined in
such a way is very unlikely to have any impact on the overall semantics of the entire
tree. Thus, we conclude that using different decomposition functions allows us to control
the trade-off between the difficulty of optimizing the context and the contribution of part
semantics to the entire solution.

Another question pertains to computational efficiency: in terms of the expected time
required to find the optimal solution, does it pay off to decompose the problem into
two subproblems and solve them independently, given the extra overhead imposed by
the analysis of monotonicity? And if yes, then when? Finally, a more complete theory
supporting this approach would be of much help.

The above experimental analysis is a proof-of-concept demonstrating that functional
modularity may be helpful for characterizing the compositionality and difficulty of a prob-
lem. Knowing the structure of modularity for a particular problem is the first step for
effective exploitation of monotonicity, which we will pursue in future research.

Here however, we show a preliminary experiments only to convince that the presented

concept of functional modularity may be exploited in practice. To this aim, we additionally
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Setup Rank Setup Rank Setup Rank
B0.05|X+M 0.1 20.47 B0.20|X4+M 0.3 33.35 | B0.30|X+M 0.2  45.58
B0.10|X 1.0 20.91 B0.15|X+M 0.5  33.46 | B0.20|X+M 0.7  45.79

B0.05|X 1.0 21.21 X+M 0.5 35.26 | B0.30|X+M 0.3  46.03
B0.10|X+M 0.1 21.55 B0.10|X4+M 0.6  35.28 X+M 0.9  47.78
B0.05|X4+M 0.2 22.42 B0.25|X 1.0 35.29 | B0.25|X+M 0.7  48.42

B0.05|X4+M 0.3 22.77 B0.20|X+M 0.4  36.09 | B0.30|X+M 0.6  48.88
B0.10|X4+M 0.2 2296 | B0.25|X4+M 0.1 36.79 | B0.30|X+M 0.4  48.90
B0.10|X4+M 0.3 23.09 B0.15|X4+M 0.6  37.72 | B0.30|X+M 0.5  48.96
B0.15|X+4+M 0.1 24.73 B0.25|X+M 0.2 37.72 | B0.20|X+M 0.8  49.04
B0.15|X4+M 0.2 25.76 B0.05|X4+M 0.7  37.76 | B0.15|X+M 0.9  49.38
X+M 0.2 25.82 B0.20|X4+M 0.5  37.87 | B0.30|X+M 0.7  50.74

B0.20|X 1.0 26.08 X+M 0.6  38.87 | B0.05|X+M 0.9 51.18
B0.05|X4+M 0.4  26.12 B0.10|X4+M 0.7  39.99 | B0.10|X+M 0.9  51.23
X 1.0 26.67 B0.30|X 1.0 40.87 | B0.30|X+M 0.8  51.42
B0.15|X+M 0.3  26.85 | B0.30|X+M 0.1 41.24 M 1.0 51.69
B0.20|X+M 0.1 27.14 B0.25|X+M 0.3  41.26 | B0.20|X+M 0.9  52.08
B0.10|X+M 0.4  27.53 X+M 0.7 41.73 | B0.25|X+M 0.8  52.68

X+M 0.1 27.77 B0.20|X+M 0.6 42.19 B0.05|M 1.0 52.76
B0.15|X 1.0 28.06 B0.15|X4+M 0.7  42.26 | B0.25|X+M 0.9  53.76
B0.05|X4+M 0.5  29.68 B0.25|X+M 0.6  43.26 B0.10|M 1.0 54.59
B0.20|X+M 0.2 30.13 B0.05|X+M 0.8  43.74 | B0.30|X+M 0.9  55.18
X+M 0.3 30.36 X+M 0.8  43.74 B0.20|M 1.0 55.82
B0.10|X+M 0.5  30.45 B0.25|X+M 0.5  43.81 B0.15|M 1.0 56.45
B0.15|X4+M 0.4  31.10 B0.25|X+M 0.4  45.26 B0.25\M 1.0 57.36
X+M 0.4  31.76 B0.10|X+M 0.8  45.29 B0.30|M 1.0 58.08
B0.05|X+M 0.6  32.36 B0.15|X+M 0.8 45.38

Table 7.3.: Friedman ranks of success ratio performance on all 39 problems.

run simple genetic programming evolution with parameters as in previous chapters (for
details see Section . The only difference, we introduce here, is that we calculate the
fitness used in selection phase as a weighted sum of the ‘original’ fitness f and the best
part quality function fp. Technically, during the evolution we used a minimized fitness
computed as:

fitness(z) = (1 — «) - d(s(x),t) + o - d(s(p), sp), (7.8.1)

where d(s(x),t) is the ‘original’ fitness value of individual = (i.e., the distance between
actual semantics of the individual x and the target semantics ¢t — see Formula
[page 35)), s(p) is semantics of the part of individual « (the part is acquired by applying the
binary decomposition function ¢ defined in Section , and sp is the best subgoal found
for each problem individually. We tested six values of a: a € {0.05,0.1,0.15,0.2,0.25,0.3}.

For each problem from the Boolean domain, the best subgoal (i.e., the most monotone)
always equals to the target semantics. For problems from symbolic regression domain, the
best subgoal is one from the randomly generated. The only exception is problem P2 for
which the most monotone subgoal is also equivalent to the target semantics (at least, in the
generated random sample there was no better subgoal than the target — see Section

for description how these subgoals were generated).
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Table presents a ranking of setups which exploit functional modularity (denoted as
Ba|X + M B) and which do not, i.e., the control setups X + M § (« is the weight used
in Equation and f is the probability of applying mutation operator). As it is easily
noticed, setups rewarding individuals which have good parts performs a bit better than
the control experiment. The difference between ranks of the best setup B0.05/X+M 0.1
and the best control setup X4+M 0.2 is not statistical significant (using Holm’s post-hoc
procedure).

It is important to remind, that this experiment is just a proof-of-concept which actually
demonstrates the usefulness of the functional modularity applied even in such simplistic
way. However, to use the functional modularity in practice, there is a need to devise a
more suitable methods for exploiting this concept. This will be the goal of our further

research.
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8. Conclusions

8.1. Summary

Automatic creation of computer programs (understood on different levels of abstraction —
from simple algebraic expressions to programs written in languages like C++ or Java) is a
means to solve many practical problems (see Section[2.3). Therefore genetic programming,
a leading approach that provides such possibility, is an important tool to help deal with
them. However, despite the number of successes achieved by GP, this methodology still
exhibits a few weaknesses that need to overcome.

We tried to demonstrate in this thesis that semantic approaches could make a break-
through in GP and lead to qualitatively better results. A number of presented experimental
results provide evidence that our proposed semantic extensions of genetic programming
can indeed outperform standard GP on most benchmark problems in a significant manner.
This conclusion concerns not only success ratio, which reflects how likely is a method to
produce a perfect result. It is important to notice that, even if GP is unable to perfectly
solve a task, it still can be a useful technique for approximating solutions for these prob-
lems. Also in this respect, i.e., in terms of the errors committed on the training and tests
sets, the semantic-aware methods proposed in this thesis usually yield better results than

standard GP.

8.2. Contributions

The main contributions of this thesis may be summarized as follows:

e Presentation of different types of program semantics and their characterization from
the viewpoint of genetic programming. From the wide range of possibilities, we
decided to concentrate on the sampling semantics, because it offers a reasonable
compromise between precision (meant as the extent to which semantics reflects the
behavior of a program) and handiness (meant as easy in which it can be analyzed and
handled in algorithms, e.g., compared). We proposed an appropriate formalization
of this notion.

[Chapter [3]

e Proposition and formalization of the concept of desired semantics. We proposed five

methods to exploit this concept. We consider these semantic extensions of GP one
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of the main contributions of this dissertation.
[Chapter [6]

e Proposition of the functional modularity concept. We introduced a formalization

that enables semantic decomposition of a problem into smaller subproblems. We
demonstrated selected properties of this formalism, primarily the monotonicity de-
gree. The promising results attained in this part of the dissertation form a proof-of-
concept that brings convincing rationale for feasibility of this concept.

[Chapter [7]

Proposition of a method for semantically unique initialization of initial population.

We showed that this method usually helps evolution in attaining better results.

[Chapter [5 Section

Formation of quite a big benchmark suite comprising 39 problems (19 symbolic re-
gression tasks, and 20 logic function synthesis task). The problems in the suite vary
in difficulty, with some of them being quite hard, as demonstrated in the experimen-

tal part of this thesis.
[Chapter

Experimental verification of the effectiveness of all proposed methods. We performed
both comparative experiments as well as experiments aimed at investigating the
properties of the new methods proposed here. It turns out that particularly our
RDO and SDO operators are highly profitable, especially for the problems in the
Boolean domain. The presented results demonstrate also that simultaneous use of

multiple semantic extensions is even more beneficial.

[Chapter [6]

The original proposition of Success per hour metric (see Section [4.5.1)), used to mea-
sure the performance of algorithms. The attractive feature of this metric consists in
its practical perspective: it provides realistic estimate of the expected computational

effort using contemporary hardware.

[Chapter 4] Section |4.5.1]

Practical demonstration of the importance of the assortment of fitness cases. We
showed that the selection of the input data (examples) for a training set has essen-
tial influence on the achieved performance of GP algorithms. In our experiments,
the success ratio of some types of GP algorithms for some benchmarks varied im-
mensely, up to from 12% to 100%, depending only on the set of selected fitness cases.
Therefore, we conclude that in GP, a task should be identified not only by a target

function and a range of possible input variables, but also by a strictly defined, fixed



8.3. Future Work

set of fitness cases.
[Chapter [4] Section [4.4]

e A software implementation of both the proposed and selected existing semantic ex-
tensions to GP. The implementation is quite well optimized to minimize the runtime.
Thanks to the employed cache mechanism, the evaluation of evolved programs is even
six times faster than the default evaluation method implemented in the ECJ pack-
age [83].

[Chapter [4] Section

e Preliminary results of a practical application of functional modularity. We performed
experiments that tested a simple method based on that concept. Results showed that
it is possible to identify a good part quality function that improves results obtained

by an evolutionary process.

[Chapter [7} Section

e Experimental verification of the performance achieved by Nguyen et al.’s [126], [99]
semantic crossover (SASES) and semantic mutation (SSM) operators on our bench-
mark suite. These results gave us a point of reference for performance assessment of

our semantic extensions.

[Chapter [5 Section [5.3| and

8.3. Future Work

A number of various well-performing semantic extensions to genetic programming, pro-
posed in this thesis as well as elsewhere, shows that considering semantics of evolved
programs in addition to syntax is profitable. Therefore, it seems that methods that iden-
tify and exploit such semantic aspects of programs form a very promising direction in the
GP research.

We especially believe that our innovative approach of desired semantics and other meth-
ods developed in this spirit will lead to essential breakthrough in the field of genetic pro-
gramming. There are several directions in which this research can develop. In the variant
of operators presented in Chapter [6] we used the desired semantics in a very strict way,
searching the library for the part that exactly matches the desired values (i.e., the values
that make the entire program return the correct output). However, to exploit the pre-
sented idea, exact desired values are not necessary. It may be profitable to only narrow
the space of the considered parts in such way that the genetic operators could choose
‘semantically well fitting’ part to be inserted into the parent individual. In other words,
we hypothesize that a method that relies on inexact, approximate concept of desired se-
mantics can still be more effective than standard GP operators, which essentially perform

quite a haphazard juggling of code pieces. This hypothesis, if true, would have another
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important consequence: our approach could be also applied to problems where the in-
structions are not invertible. Our next goal is to investigate such problems and develop
methods that can operate effectively in such more demanding environments.

Another interesting research endeavor would be to investigate the relation between the
size of evolved programs and the success of evolutionary run. In particular, it may be in-
teresting to confront the averaged best-of-run sizes of individuals from successful runs (i.e.
perfect solutions for a given problem) with those from unsuccessful runs (i.e. programs
which do not solve the stated problem). The presented results, especially for the experi-
ments involving our desired semantics operators (e.g., RDO or SDO) from Section m
suggest that such analysis could help to explain why some runs failed.

Yet another direction of possible research is to design an algorithm exploiting the concept
of functional modularity (see Chapter [7]) in a practical manner. The initial experiments
presented in this thesis assumed that one is given a good part quality function in advance.
However, in practice this is rarely the case: without some extra insight into domain knowl-
edge, defining solution parts and the corresponding part quality functions is challenging.
Determining part quality functions in an additional preliminary stage, though possible, is
computationally quite demanding. We postulate therefore that such functions should (and
could) be found on-line during actual evolutionary process. Therefore, we will endeavor
to design such a method and demonstrate it applicability and performance.

Last but not least, we plan also to propose alternative definitions of sampling semantics,
desired semantics of a context, and other formalisms, tailored to other types of genetic
programming. Particularly, our methods seem to be quite easily adaptable to linear genetic
programming [6] and cartesian genetic programming [92]. It would be interesting to verify
whether such analogs of the methods presented here would be equally effective in such

alternative programming environments.
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A. Appendix

In this thesis we presented some results of performed experiments. The attached CD
contains much more details in form of tables and graphs (over 40,000 files). The content of

CD is divided according to the chapters and sections where the experiments were described:

- Chapter 5 — Semantically-oriented Search Operators
- Section 5.2 — Population Initialization

- Section 5.3 — Crossover

- Section 5.4 — Mutation

- Section 5.5 — Summary

- Chapter 6 — Desired Semantics

- Section 6.4 — Results

L Section 6.5 — Discussion and Conclusions

-~ Chapter 7 — Functional Modularity
- Section 7.7.1 — Monotonicity Distribution
- Section 7.7.2 — Relation Between Part Quality and Fitness

- Section 7.7.3 — Relation Between Monotonicity and Fitness

L Section 7.8 — Discussion and Conclusions
The CD includes:

e Tables (as tzt and csv files):

Success ratio,

— Success per hour,

— Mean time [ms],

— Mean size of individuals (averaged over all runs and all generations),
— Mean depth of individuals (averaged over all runs and all generations),
— Mean success generation — in which generation an ideal was found,

— Mean best-of-run error,

— Median best-of-run error,

— Mean best-of-run hits,

— Mean best-of-run test error,
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A. Appendix

— Median best-of-run test error,
— Mean best-of-run size,
— Mean best-of-run depth.

e Rankings (with results of Holm’s post-hoc statistical procedure comparing both the

best setup and the best control setup) of:

Success ratio,

Median best-of-run error,

Median best-of-run test error,

Success per hour.

e Graphs showing changes in time of:

— Diversity — unique number of semantics (solid line) and unique fitness values
(dotted line),

— Size — minimal and maximal value, and three quartiles are shown,

— Error — minimal value, and three quartiles are shown (only in “Section 6.4 —
Results”).
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