
Evolving Readable Perl

Mark S. Withall

Department of Computer Science

Loughborough University

Leics. LE11 3TU, UK

m.s.withall2@lboro.ac.uk

Chris J. Hinde

Department of Computer Science

Loughborough University

Leics. LE11 3TU, UK

c.j.hinde@lboro.ac.uk

Roger G. Stone

Department of Computer Science

Loughborough University

Leics. LE11 3TU, UK

r.g.stone@lboro.ac.uk

1 INTRODUCTION

A program is informally deemed readable, for the pur-

pose of this experiment, if it is easy for a person to

follow the steps that the program takes to solve the

problem. In this experiment, readability is achieved

by constraining the available syntax for generating so-

lutions.

The Genetic Programming (GP) system created uses

the target language Perl because it is an interpreted,

untyped, robust procedural language which has good

error handling and recovery.

2 GENETIC PROGRAM

The genotype and phenotype have been separated to

make genetic manipulation simpler. Each program is

represented as a �xed-length integer array and then

mapped onto Backus-Naur Form (BNF). The program

statements used are shown in Figure 1a. The BNF is

designed to minimise the size of the genome that de-

scribes a program. The mapping, between the geno-

type and phenotype, is similar to Grammatical Evolu-

tion[2].

The GP was tested using the symbolic regression prob-

lem X
4 +X

3 +X
2 +X [1]. A population size of 500

and mutation rate of 1 gene in 5000 were used for the

test problem. The population was initialised randomly

and each test run was of 100 generations. The �tness

values for the programs were given as the absolute dif-

ference between the target value and the actual value.

3 RESULTS AND CONCLUSIONS

All results were of the correct order (X4) and 5 out

of the 8 test runs produced entirely correct solutions.

An example of an optimal program is given in Figure

1b.

The results of the experiment were encouraging. As

a comparison the solution evolved by Koza[1] is given

in Figure 1c, which is only really understandable by

LISP users.

STMT FORMAT

Assign X = Y

Add X = Y + Z

Sub X = Y � Z

Mul X = Y � Z

If if(X cmp Y)f

For for X(0::Y)f

End g

Header

$x = $ARGV[0];

$res = 0;

Evolved Code

$res = $x * $x;

$x = $x + $res;

$res = $x * $res;

$res = $res + $x;

Footer

print "$res";

(a) (b)

(+X(*(+X(*(*(+X(-(COS(-XX))(-XX)))X)X))X))

(c)

Figure 1: (a) List of program statements used. (b) Ex-

ample of code produced to solve the problem. (c) LISP

result from Koza[1].

Acknowledgements

Thanks to everybody and all their friends.

References

[1] Koza J.R. (1992). Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. MIT Press.

[2] Ryan C. O'Neill M. & Collins J.J. (1998). Gram-

matical Evolution: Evolving Programs for an Ar-

bitrary Language. Lecture Notes in Computer

Science 1391. First European Workshop on Ge-

netic Programming 1998.

