
Learning First-order Relations from Noisy Databases using Genetic
Algorithms

Man Leung Wong
Department of Computing & Decision Sciences
Lingnan University, Tuen Mun
Hong Kong
mlwong@ln.edu.hk

Kwong Sak Leung
Department of Computer Science
The Chinese University of Hong Kong
Hong Kong
ksleung@cse.cuhk.edu.hk

Abstract

In knowledge discovery from databases, we emphasize the need for learning from huge, incomplete and
imperfect data sets (Piatetsky-Shapiro and Frawley, 1991). To handle noise in the problem domain, existing
learning systems avoid overfitting the imperfect training examples by excluding insignificant patterns. The
problem is that these systems use a limiting attribute-value language for representing the training examples and
induced knowledge. Moreover, some important patterns are ignored because they are statistically insignificant.
This paper describes a system called GLPS that combines Genetic Algorithms and a variation of FOIL
(Quinlan, 1990) to learn first-order concepts from noisy training examples. The performance of GLPS is
evaluated on the chess endgame domain. A detail comparison to FOIL is accomplished and the performance of
GLPS is significantly better than that of FOIL. This result indicates that the Darwinian principle of natural
selection is a plausible noise handling method which can avoid overfitting and identify important patterns at the
same time.

1. Introduction

In knowledge discovery from databases, we emphasize the need for learning from huge, incomplete and
imperfect data sets (Piatetsky-Shapiro and Frawley, 1991). Existing inductive learning systems employ noise-
handling mechanisms to cope with different kinds of data imperfections such as noise, insufficiently covered
example space, inappropriate description language and missing values in the training examples (Dzeroski and
Lavrac, 1993).

However, these learning systems use attribute-value language for representing the training examples
and induced knowledge and allow a finite number of objects in the universe of discourse. This representation
limits them to learn only propositional descriptions in which concepts are described in terms of values of a fixed
number of attributes. Recently, there has been increasing interests in systems that induce first-order logical
expressions. In this formalism, domain knowledge represented in the forms of relations can be used in the
induced relational descriptions of concepts. For example, FOIL (Quinlan, 1990) efficiently learns function free
Horn clauses, a useful subset of first-order predicate logic. It uses a top-down, divide and conquer approach
guided by information-based heuristics to produce a concept description that covers all positive examples and
excludes all negative examples.

Nevertheless, only a few relation learning systems such as FOIL and LINUS (Dzeroski and Lavrac,

1993) address the issue of learning from imperfect data. This paper describes a system called GLPS that
combines a variation of FOIL and Genetic Algorithms to learn first-order concept from noisy examples. It gives
an empirical comparison of GLPS and FOIL in the domain of learning illegal chess endgame positions from
noisy examples. Section 2 of this paper presents a high level description of GLPS, followed by the description
of the mechanism used to generate the initial population of concepts. One of the genetic operators, crossover, is
detailed in section 4. Section 5 presents the noise handling methods of FOIL and GLPS. The experiment results
are presented in the section 6. The last section is the conclusion.

2. Genetic Logic Programming System (GLPS)

The task of inducing first-order concept can be formulated as a search problem (Mitchell, 1982) in a hypotheses
space of first-order concepts. Various approaches differ mainly in the search strategy used and the heuristics
used to guide the search. Since the search space is extreme large, strong heuristics are required in order to
manage the problem. Most first-order concept learning systems are based on a greedy search strategy. The
systems generate a sequence of first-order concepts from general to specific ones (or from specific to general)

until a consistent target concept is found. Each concept in the sequence is obtained by specializing or
generalizing the previous one. For example, FOIL applies the hill climbing search strategy guided by an
information-gain heuristics to search concepts from general to specific ones. However, these strategy and
heuristics are not always applicable because they may trap the systems in a local maxima.

An alternate search strategy is Genetic Algorithm (GA) which performs parallel searches implicitly
(Holland, 1975; Goldberg, 1989). Genetic Algorithm perform both exploitation of the most promising solutions
and exploration of the search space. It is featured to tackle hard search problems and thus it may be applicable to
first-order concept induction.

In GLPS, populations of first-order concepts are genetically bred using the Darwinian principle of

survival and reproduction of the fittest along with genetic crossover operation appropriate for mating first-order
concepts. GLPS starts with an initial population of first-order concepts generated randomly, induced by other
learning systems, or provided by the user. In this paper, the initial concepts are learned by a variation of FOIL.
For concept learning, each individual concept in the population is measured in terms of how well it covers
positive examples and excludes negative examples.

The initial concepts in generation 0 are normally incorrect and have poor performance. However, some

individuals in the population will be fitter than the others. The Darwinian principle of reproduction and survival
of the fittest and the genetic operation of sexual crossover are used to create new offspring population of
concepts from the current population. The reproduction operation involves selecting a concept from the current
population and allowing it to survive by copying it into the new population. The selection is based on either
fitness (fitness proportionate selection) or tournament (tournament selection).

The genetic process of crossover is used to create two offspring concepts from the parental concepts

selected by either fitness proportionate or tournament selection. The parental concepts are usually of different
sizes and structures and the offspring concepts are composed of clauses, literals from their parents. These
offspring concepts are typically of different sizes and structures from their parents. The new generation replaces
the old generation after the reproduction and crossover operations are performed on the old generation. Fitness
of each concept in the new generation is estimated and the above process is iterated over many generations until
the termination criterion is satisfied.

This algorithm will produce populations of concepts which tend to exhibit increasing average fitness in

producing correct answers for the training examples. GLPS
returns the best concept found in any generation of a run as the
result.

3. Generate the initial population

The fundamental difficulty in GLPS is to represent first-order
concepts appropriately so that initial population can be generated
easily and the genetic operator such as crossover and
reproduction can be performed effectively. A first-order concept
can be represented as a forest of AND-OR trees. The leaves of an
AND-OR tree are positive or negative literals generated using the
predicate symbols and terms of the problem domain. For
example, the AND-OR tree in figure 1 represents the following
first-order concept description:

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x)
C2: cup(?x) :- paper_cup(?x)

In the experiment presented in this paper, an initial population of first-order concepts are induced by a

variation of FOIL using a portion of the training examples. Then a forest of AND-OR trees can be generated
randomly for each concept learned.

AND

OR

cup(?x)

AND

paper-cup(?x)

c1

insulate-heat(?x)

stable(?x) liftable(?x)

c2

Figure 1: An AND-OR Tree

4. Crossover of first-order concepts

Components of a first-order concept that are subjected to
crossover are the whole concept, rules, clauses and antecedent
literals. In GLPS, terms of literals cannot be exchanged. Thus
crossover components are referred to by a list of numbers. The
list can have at most three elements:

1. {} refers to the whole concept.
2. {m} refers to the mth rule in the concept. A rule has

one or more clauses.
3. {m, n'} refers to a clause or a number of clauses of the

mth rule in the concept where n' is a node number of
the corresponding sub-tree. For instance, let the mth
rule has Nm clauses which are arranged in an OR-tree
(Figure 2). Each leaf in the tree represents a clause. In
the example, the tree has six clauses, i.e. Nm = 6.
There are 11 nodes in the tree, and the number of
nodes is denoted by N'm. n' in the list {m, n'} is
between 0 and N'm-1. Thus, { m, n'} represents a
clause if n' corresponds to a leaf node. It refers to a set
of clauses if n' corresponds to an internal node in the
tree.

4. {m, n, l'} refers to a literal or a set of literals of the nth

clause of the mth rule where l' is also a node number
of the corresponding sub-tree. For example, let the
clause has Lm,n antecedent literals. These literals are
arranged in an AND-tree (Figure 3). Each leaf in the
tree represents an antecedent literal and there are 5
antecedent literals, i.e. Lm, n = 5. Let the number of
nodes in an AND tree be L'm,n which is 9 for the
above tree. The third number in {m, n, l'} can have
value between 0 and L'm, n-1. {m, n, l'} represents a
literal if l' refers to a leaf node. It is a set of literals if l' refers to an internal node.

There are four kinds of crossover points represented by the above lists of numbers. Two crossover
points are compatible if their representations (i.e. lists) have the same number of elements. In GLPS, crossover
between two parental concepts can only occur at compatible crossover points. Consider the first-order concept
Pa represented in Horn clauses:

C1: cup(?x) :- insulate_heat(?x), stable(?x), small(?x)
C2: stable(?x) :- bottom(?x, ?b), flat(?b)
C3: stable(?x) :- bottom(?x, ?b), concave(?b)

and the concept Pb

C1': cup(?x) :- insulate_heat(?x), stable(?x)
C2': stable(?x) :- bottom(?x, ?b), flat(?b), concave(?b), has_support(?x)

The AND-OR trees of Pa and Pb are depicted in figures 4 and 5 respectively. If the crossover points

are empty lists {}, the offsprings are identical to their parent and the crossover operation degenerates to

OR

OR OR

OR

OR

• • •

• •

•

0

1

2

3 4

5 6

7 9 10

8

Figure 2: An OR Tree

AND

AND

AND AND

•

• • • •

0

1

2 5

3 4 6 7

8

Figure 3: An AND Tree

reproduction. For this reason, GLPS has not reproduction operation which can be emulated by crossover. There
is a parameter P0 which controls the probability of reproduction. The parameter P1 controls the probability that
a list of one element is generated. If the crossover points are {1} and {1} respectively, the offsprings are:

C1: cup(?x) :- insulate_heat(?x), stable(?x), small(?x)
C2': stable(?x) :- bottom(?x, ?b), flat(?b), concave(?b), has_support(?x)

and
C1': cup(?x) :- insulate_heat(?x), stable(?x)
C2: stable(?x) :- bottom(?x, ?b), flat(?b)
C3: stable(?x) :- bottom(?x, ?b), concave(?b)

The parameter P2 determines the probability that a list of two elements is generated. If the crossover points are
{1, 1} for Pa and {1, 0} for Pb, the offsprings are

C1: cup(?x) :- insulate_heat(?x), stable(?x), small(?x)
C2': stable(?x) :- bottom(?x, ?b), flat(?b), concave(?b), has_support(?x)
C3: stable(?x) :- bottom(?x, ?b), concave(?b)

and
C1': cup(?x) :- insulate_heat(?x), stable(?x)
C2: stable(?x) :- bottom(?x, ?b), flat(?b)

The parameter P3 determines the probability that a list of three elements is created. If the crossover points are
{1, 2, 0} for Pa and {1, 0, 1} for Pb, the offsprings are

C1: cup(?x) :- insulate_heat(?x), stable(?x), liftable(?x)
C2: stable(?x) :- bottom(?x, ?b), flat(?b)
C3: stable(?x) :- bottom(?x, ?b), flat(?b)

and
C1': cup(?x) :- insulate_heat(?x), stable(?x)
C2': stable(?x) :- bottom(?x, ?b), concave(?b), concave(?b), has_support(?x)

Rule for cup(?x) Rule for stable(?x)

bottom(?x,?b)

AND

c2

0

1 2

flat(?b)

cup(?x)
0

c1

small(?x)

insulate-heat(?x)

0

1
2

3 4

c1

stable(?x)

AND

AND

OR

stable(?x)

0

1
2

c3c2

AND

1

c3

bottom(?x, ?b) co

Figure 4: And-Or tree of concept Pa

5. Noise handling in FOIL and GLPS

In FOIL, the noise handling mechanism is the encoding length restriction. The idea is that the number of bits
required to encode the clause should never exceed the total number of bits needed to indicate explicitly the
positive training examples covered by the clause. Thus, if a clause covers r positive examples out of n examples

in the training set. The number of bits available to encode the clause is log2 (n) + log2(
n
r

⎛
⎝
⎜ ⎞

⎠
). If there are no

bits available for adding another literal, but the clause has more than 85% accuracy, it is retained in the induced
set of clauses, otherwise it is deleted. This heuristics avoids overfitting the training examples because
insignificant literals are excluded from clauses of the inducing concept. The obtained concept description is
smaller, simpler, more accurate and more comprehensible. Since GLPS employs a variation of FOIL to find the
initial population of concepts. It uses the same noise handling mechanism of FOIL. Currently, no other noise
handling method has been implemented.

6. Experiments

A preliminary implementation of GLPS is developed in CLOS (Common Lisp Object System). It has been
tested on various CLOS implementations and hardware platforms, including CMU Common Lisp on
SparcStation, LUCID Common Lisp on DecStation and MCL on Macintosh. This section discusses the
performance of GLPS on learning concepts from imperfect data. The chess endgame domain is taken from
Quinlan (Quinlan, 1990) and the results are compared to the results obtained by FOIL. The latest version of
FOIL (FOIL6) is used in this comparison.

In this domain, the target concept illegal(?WKf, ?WKr, ?WRf, ?WRr, ?BKf, ?BKr) states whether the

position where the white king at (?WKf, ?WKr), the white rook at (?WRf, ?WRf) and the black king at (?BKf,
?BKr) is not a legal white-to-move position. In FOIL6 and GLPS, the background knowledge is represented by
two predicates, adjacent(?X, ?Y) and less_than(?W, ?Z), indicating that rank/file ?X is adjacent to rank/file ?Y
and rank/file ?W is less than rank/file ?Z respectively. The training set contains 1000 examples (336 positive
and 664 negative examples). The testing set has 10000 examples (3240 positive and 6760 negative examples).
Since the current implementation of GLPS does not accept declarations of argument type in predicates. The
arguments of the background and target predicates are not typed, in order to ease the comparison between
GLPS and FOIL.

Different amounts of noise are introduced into the training examples in order to study the performances

of both systems in learning concepts in noisy environment. To introduce n% of noise into an argument ?X of the
examples, the value of the argument ?X is replaced by a random value of the same type from a uniform
distribution, independent to noise in other arguments. For the class variable, n% positive examples are labeled
as negative ones while n% negatives examples are labeled as positive ones. Noise in an argument is not
necessarily incorrect because it is chosen randomly, it is possible that the correct argument value is selected. In

contrast, noise in classification implies that this example is incorrect. Thus, the probability for an example to be

Rule for cup(?x)
cup(?x)

0
c1'

stable(?x)

AND

c1'

0

1 2

insulate-heat(?x)

Rule for stable(?x) stable(?x)
0

c2'

has-support

AND

AND AND

c2'

0

1

2 3

4

5 6
bottom(?x, ?b) flat(?b) concave(?b)

Figure 5: And-Or tree of concept Pb

0% 5% 10% 15% 20% 30% 40%

Noise level

0.5

0.6

0.7

0.8

0.9

1

1.1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

FOIL6
GLPS

Figure 6: Comparison between GLPS and FOIL

incorrect is 1 −{[(1 − n%) + n% *
1
8

]6 * (1 − n%)}. In this experiment, the percentages of introduced noise

are 5%, 10%, 15%, 20%, 30% and 40%. Thus, the probabilities for an example to be incorrect are respectively
27.36%, 48.04%, 63.46%, 74.78%, 88.74% and 95.47%. Background knowledge and testing examples are not
corrupted with noise.

A chosen level of noise is first introduced in the training set. First-order concept descriptions are then

induced from the training set using GLPS and FOIL6. Finally, the classification accuracy of the learned
concepts is estimated on the testing set. For GLPS, the initial population of concepts are induced by a variation
of FOIL using a portion of the training examples. The parameters P0, P1, P2 and P3 are 0.0, 0.1, 0.3 and 0.6
respectively. The population size is 10 and the maximum number of generations for each experiment is 50.
Since GLPS is a non-deterministic learning system, the process is repeated for five times on the same training
set and the average of the five results is reported as the classification accuracy of GLPS.

Ten runs of the above experiments are performed on different training examples. The results of ten

runs are summarized in figure 6. From this experiment, the classification accuracy of both systems degrades
seriously as the noise level increases. Nevertheless, the classification accuracy of GLPS is better than that of
FOIL by at least 5% at the 99.995% confidence interval at all noise levels (except the noise level of 0%.) The
largest difference reaches 24% at the 20% noise level. This result is surprising because both systems use the
same noise handling mechanism. One possible explanation of the better performance of GLPS is that the
Darwinian principle of survival and reproduction of the fittest is a good noise handling method. It avoids
overfitting noisy examples, but at the same time, it can finds interesting and useful patterns from these noisy
examples.

7. Conclusion

In this paper, we describe how to combine Genetic Algorithms and FOIL in learning first-order concepts. The
performance of GLPS in a noisy domain is evaluated by using the chess endgame problem. A detailed
comparison to FOIL has been conducted. The experiment demonstrates that GLPS is a promising alternative to
other famous inductive logic programming systems and sometimes is superior for handling noisy data.

Reference

Dzeroski, S. and Lavrac, N. (1993). Inductive Learning in Deductive Databases. IEEE Transactions on
Knowledge and Data Engineering; 5, 939-949.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The University of Michigan
Press.
Mitchell, T. M. (1982). Generalization as Search. Artificial Intelligence; 18, 203-226.
Piatetsky-Shapiro, G. and Frawley, W. J. (1991). Knowledge Discovery in Databases. Menlo Park, CA: AAAI
Press.
Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.

