
Applying logic grammars to induce sub-functions in
genetic programming

Man Leung Wong

Department of Computing and Decision
Sciences

Lingnan University, Tuen Mun
Hong Kong

mlwong@ln.edu.hk

Kwong Sak Leung
Department of Computer Science and

Engineering
The Chinese University of Hong Kong

Hong Kong
ksleung@cse.cuhk.edu.hk

Abstract

Genetic Programming (GP) is a method of automatically inducing S-expression in LISP to perform specified
tasks. The problem of inducing programs can be reformulated as a search for a highly fit program in the space
of all possible programs. This paper presents a framework in which the search space can be specified
declaratively by a user. Its application in inducing sub-functions is detailed. The framework is based on a
formalism of logic grammars and it is implemented as a system called LOGENPRO (the LOgic grammar based
GENetic PROgramming system). The formalism is powerful enough to represent context-sensitive information
and domain-dependent knowledge. This knowledge can be used to accelerate the learning speed and/or improve
the quality of the programs induced. The system is also very flexible and programs in various programming
languages can be acquired.

Automatic discovery of sub-functions is one of the most important research areas in Genetic Programming.
An experiment is used to demonstrate that LOGENPRO can emulate Koza's Automatically Defined Functions
(ADF). Moreover, LOGENPRO can employ knowledge such as argument types in a unified framework. The
experiment shows that LOGENPRO has superior performance to that of Koza's ADF when more domain-
dependent knowledge is available.

1. Introduction

Genetic Programming (GP) is a method of
automatically inducing S-expression in LISP to
perform specified tasks [3] [4]. The problem of
inducing programs can be reformulated as a search for
a highly fit program in the space of all possible
programs [5]. This space is determined by the syntax
of S-expression in LISP and the sets of terminals and
functions. Thus, the search space is fixed once the
terminals and functions are decided.

This paper presents a framework in which the
search space can be specified declaratively by a user
and describes its application in inducing sub-
functions. For most complex problems, the problem
representation has enormous influence on the
difficulty of solving the problem using GP. Thus
appropriate primitives and terminals must be
determined to represent the problem. It is important
and challenging that appropriate problem
representation can be induced automatically because
higher level primitives (sub-functions) can transform a
hard problem into an easy one.

This framework is based on a formalism of logic
grammars and it is implemented as a system called
LOGENPRO (the LOgic grammar based GENetic
PROgramming system). The formalism is powerful
enough to represent context-sensitive information and
domain-dependent knowledge. This knowledge can be
used to accelerate the learning speed and/or improve

the quality of the programs induced. The formalism is
also very flexible and programs in various
programming languages can be acquired.

We present the formalism of logic grammars and
LOGENPRO in the next section. In section three, we
demonstrate the application of various knowledge to
accelerate the learning of sub-functions in the
framework. Section four is the conclusion.

2. The LOgic grammars based GENetic

PROgramming system (LOGENPRO)

LOGENPRO can induce programs in various
programming languages. This is achieved by
accepting or choosing grammars of different
languages in order to produce programs in these
languages. Most modern programming languages are
specified in the notation of context-free grammar
(CFG). However, logic grammars are used in
LOGENPRO because they are much more powerful
than that of CFG, but equally amenable to efficient
execution. In this paper, the notation of definite clause
grammars (DCG) is used [7]. The details of logic
grammars are described in the Appendix.

In LOGENPRO, populations of programs are
genetically bred [1] [2] using the Darwinian principle
of survival and reproduction of the fittest along with
genetic operations appropriate for processing
programs. LOGENPRO starts with an initial
population of programs generated randomly, induced

by other learning systems, or provided by the user.
Logic grammars provide declarative descriptions of
the valid programs that can appear in the initial
population. A high-level algorithm of LOGENPRO is
presented in table 1.

Table 1: The high level algorithm of Logenpro

1. Generate an initial population of programs.
2. Execute each program in the current

population and assign it a fitness value
according to the fitness function

3. If the termination criterion is satisfied,
terminate the algorithm. The best program
found in the run of the algorithm is
designated as the result.

4. Create a new population of programs from
the current population by applying the
reproduction, crossover, and mutation
operations. These operations are applied to
programs selected by fitness proportionate or
tournament selections.

5. Rename the new population to the current
population.

6. Proceed to the next generation by branching
back to the step 2.

3. Learning sub-functions using

LOGENPRO

Automatic discovery of problem representation
primitives is certainly one of the most challenging
research areas in Genetic Programming. Automatically
Defined Functions (ADF) is one of the approaches
that have been proposed to acquire problem
representation primitives automatically [3] [4]. In the
ADF approach, each program in the population
contains an expression, called the result producing
branch, and definitions of one or more sub-functions
which may be invoked by the result producing branch.
The result producing branch is evaluated to produce
the fitness of the program. A constrained syntactic
structure and some special genetic operators are
required for the evolution of the programs. To employ
the ADF approach, the user must provide explicit
knowledge about the number of available
automatically defined sub-functions, the number of
arguments of each sub-functions, and the allowable
terminal and function sets for each sub-function.

In this section, we demonstrate how to use
LOGENPRO to emulate Koza's ADF approach.
Koza's ADF has a limitation that all the variables,
constants, arguments for functions, and values
returned from functions must be of the same data type.
This limitation leads to the difficulty of inducing even
some rather simple and straightforward functional
programs. In this experiment, LOGENPRO is
expected to learn a sub-function that calculates dot
product and employ this sub-function in the main

program. In other words, it is expected to induce the
following S-expression:
(progn
 (defun ADF0 (arg0 arg1)
 (apply (function +)
 (mapcar (function *) arg0 arg1)))
 (+ (ADF0 X Y) (ADF0 Y Z)))

Table 2: Logic grammar for the sub-function problem

 start -> [(progn (defun ADF0 (arg0 arg1)],
 s-expr2(number), [)],
 s-expr(number), [)].
s-expr([list, number, ?n])
 -> [(mapcar (function], op2, [)] ,
 s-expr([list, number, ?n]),
 s-expr([list, number, ?n]),[)].
s-expr([list, number, ?n])
 -> term([list, number, ?n]).
s-expr(number)
 -> [(apply (function], op2, [)] ,
 s-expr([list, number, ?n]),[)].
s-expr(number)
 -> [(], op2, s-expr(number),
 s-expr(number), [)].
s-expr(number)
 -> [(ADF0],
 s-expr([list, number, ?n]),
 s-expr([list, number, ?n]), [)].
term([list, number, n]) -> X.
term([list, number, n]) -> Y.
term([list, number, n]) -> Z.
s-expr2([list, number, ?n])
 -> [(mapcar (function], op2, [)] ,
 s-expr2([list, number, ?n]),
 s-expr2([list, number, ?n]),[)].
s-expr2([list, number, ?n])
 -> term2([list, number, ?n]).
s-expr2(number)
 -> [(apply (function], op2, [)] ,
 s-expr2([list, number, ?n]),[)].
s-expr2(number)
 -> [(], op2, s-expr2(number),
 s-expr2(number), [)].
term2([list, number, n]) -> arg0.
term2([list, number, n]) -> arg1.
op2 -> [+].
op2 -> [-].
op2 -> [*].

To induce a functional program using

LOGENPRO, we have to determine the logic
grammar, fitness cases, fitness functions and
termination criterion. The logic grammar for learning
functional programs is given in table 2. In this
grammar, we employ the argument of the grammar
symbol s-expr to designate the data type of the
result returned by the S-expression generated from the
grammar symbol. For example,
 (mapcar (function +) X
 (mapcar (function *) X Y))
is generated from the grammar symbol
s-expr([list, number, n]) because it
returns a numeric vector of size n. Similarly, the
symbol s-expr(number) can produce
(apply (function *) X) that returns a
number. The terminal symbols +, -, and * represent
functions that perform ordinary addition, subtraction
and multiplication respectively.

Ten random fitness cases are used for training.
Each case is a 4-tuples ‹Xi, Yi, Zi, Ri›, where
1≤ i≤10, Xi, Yi and Zi are vectors of size 3, and Ri is
the corresponding desired result. The fitness function
calculates the sum, taken over the ten fitness cases, of
the absolute values of the difference between Ri and
the value returned by the S-expression for Xi, Yi and
Zi. A fitness case is said to be covered by an
S-expression if the value returned by it is within 0.01

of the desired value. A S-expression that covers all
training cases is further evaluated on a testing set
containing 1000 random fitness cases. LOGENPRO
will stop if the maximum number of generations is
reached or a S-expression that covers all testing fitness
cases is found.

For Koza's ADF framework, the terminal set T0
for the automatically defined function (ADF0) is
{arg0, arg1} and the function set F0 is {protected+,
protected-, protected*, vector+, vector-, vector*,
apply+, apply-, apply*}, taking 2, 2, 2, 2, 2, 2, 1, 1
and 1 arguments respectively.

The primitive functions protected+, protected-
and protected* respectively perform addition,
subtraction and multiplication if the two input
arguments X and Y are both numbers. Otherwise, they
return 0. The functions vector+, vector- and vector*
respectively perform vector addition, subtract and
multiplication if the two input arguments X and Y are
numeric vectors with the same size, otherwise they
return zero. The functions apply+, apply- and apply*
respectively perform the following S-expressions if
the input argument X is a numeric vector:
 (apply (function protected+) X),
 (apply (function protected-) X) and
 (apply (function protected*) X),
otherwise they return zero.

The terminal set Tr for the result producing
branch is {X, Y, Z} and the function set Fr is
{protected+, protected-, protected*, vector+, vector-,
vector*, apply+, apply-, apply*, ADF0}, taking 2, 2,
2, 2, 2, 2, 1, 1, 1 and 2 arguments respectively. The
fitness cases, the fitness function and the termination
criterion are the same as the ones used by
LOGENPRO. We evaluate the performance of
LOGENPRO and Koza's ADF using populations of
100 and 1000 programs respectively.

0 10 20 30 40

Generation

0

20

40

60

80

100

120

140

B
es

t F
itn

es
s

GP with ADF: Population = 1000
Logenpro: Population = 100

Fig. 1. Fitness curves showing best fitness for the sub-function
problem

Thirty trials are attempted and the results are
summarized in figures 1 and 2 Figure 1 shows, by
generation, the fitness (error) of the best program in a
population. These curves are found by averaging the
results obtained in thirty different runs using various
random number seeds and fitness cases. From these

curves, LOGENPRO has superior performance to that
of Koza's ADF. The curves in figure 2a show the
experimentally observed cumulative probability of
success, P(M, i), of solving the problem by generation
i using a population of M programs. The curves in
figure 2b show the number of programs I(M, i, z) that
must be processed to produce a solution by generation
i with a probability z of 0.99. The curve for
LOGENPRO reaches a minimum value of 4900 at
generation 6. On the other hand, the minimum value
of I(M, i, z) for ADF is 5712000 at generation 41.
This experiment clearly shows the advantage of
LOGENPRO. By employing various knowledge about
the problem being solved, LOGENPRO can find a
solution much faster than ADF and the computation
(i.e. I(M, i, z)) required by LOGENPRO is much
smaller than that of ADF.

0 10 20 30 40

Generation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ob

ab
ili

ty
 o

f S
uc

ce
ss

GP with ADF: Population = 1000
Logenpro: Population = 100

(a)

0 10 20 30 40

Generation

1000

10000

100000

1000000

10000000

In
di

vi
du

al
s t

o
be

 p
ro

ce
ss

ed

GP with ADF: Population = 1000
Logenpro: Population = 100

(b)

Fig. 2. Performance curves showing (a) cumulative probability of
success P(M, i) and (b) I(M, i, z) for the sub-function problem

The idea of applying knowledge of data type to
accelerate learning has been investigated
independently by Montana [6] in his Strongly Typed
Genetic Programming (STGP). He presents three
examples involving vector and matrix manipulation to
illustrate the operation of STGP. However, he has not
compared the performance between traditional GP and
STGP. Moreover, his STGP cannot be used with ADF
nor to specify any domain specific knowledge. One
advantage of LOGENPRO is that it can emulate the

effects of STGP and ADF simultaneously and
effortlessly.

4. Conclusion

Genetic Programming induces programs by searching
a highly fit program in the space of all possible
programs. We have proposed a framework that the
search space can be declared explicitly. This
framework is based on a formalism of logic grammars.
To implement the framework, a system called
LOGENPRO (the LOgic grammar based GENetic
PROgramming system) has been developed. The
formalism can represent context-sensitive information
and domain-dependent knowledge.

Automatic discovery of sub-functions is one of
the most important research areas in Genetic
Programming. In Koza's ADF, the user must provide
explicit knowledge about the number of available sub-
functions, the number of arguments of each sub-
functions, and the allowable terminal and function sets
for each sub-function. An experiment has been
performed to demonstrate that LOGENPRO can
emulate Koza's ADF and represent the knowledge
easily. Moreover, LOGENPRO can employ other
knowledge such as argument types in a unified
framework. This experiment shows that LOGENPRO
has superior performance to that of Koza's ADF when
more domain-dependent knowledge is available.

5. Reference

[1] Goldberg, D. E. (1989). Genetic Algorithms in

Search, Optimization, and Machine Learning.
MA: Addison-Wesley.

[2] Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor: The University of
Michigan Press.

[3] Koza, J. R. (1992). Genetic Programming: on the
Programming of Computers by Means of Natural
Selection. MA: MIT Press.

[4] Koza, J. R. (1994). Genetic Programming II. MA:
MIT Press.

[5] Mitchell, T. M. (1982). Generalization as Search,
Artificial Intelligence, 18, pp. 203-226.

[6] Montana, D. J. (1993). Strongly Typed Genetic
Programming. Bolt, Beranek, and Newman
Technical Report no. 7866.

[7] Pereira, F. C. N. and Warren, D. H. D. (1980).
Definite Clause Grammars for Language Analysis
- A Survey of the Formalism and a Comparison
with Augmented Transition Networks, Artificial
Intelligence, 13, pp. 231-278.

6. Appendix

A logic grammar (table 3) differs from a CFG in that
the logic grammar symbols, whether terminal or non-
terminal, may include arguments. The arguments can
be any term in the grammar. A term is either a logical

variables, a function or a constant. A variable is
represented by a question mark ? followed by a string
of letters and/or digits. A function is a grammar
symbol followed by a bracketed n-tuple of terms and a
constant is simply a 0-arity function. Arguments can
be used in a logic grammar to enforce context-
dependency. Thus, the permissible forms for a
constituent may depend on the context in which that
constituent occurs in the program. Another application
of arguments is to construct tree structures in the
course of parsing, such tree structures can provide a
representation of the semantics (meaning) of the
program.

Table 3: A simple logic grammar

1:start -> [(*], exp(X), exp(X), [)].
2:start -> {member(?x,[X, Y])}, [(*], exp-1(?x),
 exp-1(?x), [)].
3:start -> {member(?x,[X, Y])}, [(/], exp-1(?x),
 exp-1(?x), [)].
4:exp(?x) -> [(+ ?x 0)].
5:exp-1(?x) -> {random(0,1,?y)}, [(+ ?x ?y)].
6:exp-1(?x) -> {random(0,1,?y)}, [(- ?x ?y)].
7:exp-1(?x) -> [(+ (- X 11) 12)].

The terminal symbols, which are enclosed in

square brackets, correspond to the set of words of the
language specified. For example, the terminal
[(+ ?x ?y)] creates the constituent
(+ 1.0 2.0) of a program if ?x and ?y are
instantiated respectively to 1.0 and 2.0. Non-terminal
symbols are similar to literals in Prolog,
"exp-1(?x)" in table 3 is an example of non-
terminal symbols. Commas denote concatenation and
each grammar rule ends with a full stop.

The right-hand side of a grammar rule may
contain logic goals and grammar symbols. The goals
are pure logical predicates for which logical
definitions have been given. They specify the
conditions that must be satisfied before the rule can be
applied. For example, the goal
member(?x, [X, Y]) in figure 1 instantiates the
variable ?x to either X or Y if ?x has not been
instantiated, otherwise it checks whether the value of
?x is either X or Y. If the variable ?y has not been
bound, the goal random(0, 1, ?y) instantiates ?y
to a random floating point number between 0 and 1.
Otherwise, the goal checks whether the value of ?y is
between 0 and 1. The special non-terminal start
corresponds to a program of the language. The number
before each rule is a label for later discussions. It is
not part of the grammar.

