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Abstract 

 
Genetic Programming (GP) is a method of automatically inducing S-expression in LISP to perform specified 
tasks. The problem of inducing programs can be reformulated as a search for a highly fit program in the space 
of all possible programs. This paper presents a framework in which the search space can be specified 
declaratively by a user. Its application in inducing sub-functions is detailed. The framework is based on a 
formalism of logic grammars and it is implemented as a system called LOGENPRO (the LOgic grammar based 
GENetic PROgramming system). The formalism is powerful enough to represent context-sensitive information 
and domain-dependent knowledge. This knowledge can be used to accelerate the learning speed and/or improve 
the quality of the programs induced. The system is also very flexible and programs in various programming 
languages can be acquired. 

Automatic discovery of sub-functions is one of the most important research areas in Genetic Programming. 
An experiment is used to demonstrate that LOGENPRO can emulate Koza's Automatically Defined Functions 
(ADF). Moreover, LOGENPRO can employ knowledge such as argument types in a unified framework. The 
experiment shows that LOGENPRO has superior performance to that of Koza's ADF when more domain-
dependent knowledge is available.  

 
1. Introduction 
 
Genetic Programming (GP) is a method of 
automatically inducing S-expression in LISP to 
perform specified tasks [3] [4]. The problem of 
inducing programs can be reformulated as a search for 
a highly fit program in the space of all possible 
programs [5]. This space is determined by the syntax 
of S-expression in LISP and the sets of terminals and 
functions. Thus, the search space is fixed once the 
terminals and functions are decided. 

This paper presents a framework in which the 
search space can be specified declaratively by a user 
and describes its application in inducing sub-
functions. For most complex problems, the problem 
representation has enormous influence on the 
difficulty of solving the problem using GP. Thus 
appropriate primitives and terminals must be 
determined to represent the problem. It is important 
and challenging that appropriate problem 
representation can be induced automatically because 
higher level primitives (sub-functions) can transform a 
hard problem into an easy one.  

This framework is based on a formalism of logic 
grammars and it is implemented as a system called 
LOGENPRO (the LOgic grammar based GENetic 
PROgramming system). The formalism is powerful 
enough to represent context-sensitive information and 
domain-dependent knowledge. This knowledge can be 
used to accelerate the learning speed and/or improve 

the quality of the programs induced. The formalism is 
also very flexible and programs in various 
programming languages can be acquired.  

We present the formalism of logic grammars and 
LOGENPRO in the next section. In section three, we 
demonstrate the application of various knowledge to 
accelerate the learning of sub-functions in the 
framework. Section four is the conclusion. 

 
2. The LOgic grammars based GENetic 

PROgramming  system (LOGENPRO) 
 
LOGENPRO can induce programs in various 
programming languages. This is achieved by 
accepting or choosing grammars of different 
languages in order to produce programs in these 
languages. Most modern programming languages are 
specified in the notation of context-free grammar 
(CFG). However, logic grammars are used in 
LOGENPRO because they are  much more powerful 
than that of CFG, but equally amenable to efficient 
execution. In this paper, the notation of definite clause 
grammars (DCG) is used [7]. The details of logic 
grammars are described in the Appendix. 

In LOGENPRO, populations of programs are 
genetically bred [1] [2] using the Darwinian principle 
of survival and reproduction of the fittest along with 
genetic operations appropriate for processing 
programs. LOGENPRO starts with an initial 
population of programs generated randomly, induced 



by other learning systems, or provided by the user. 
Logic grammars provide declarative descriptions of 
the valid programs that can appear in the initial 
population. A high-level algorithm of LOGENPRO is 
presented in table 1.  
 

Table 1: The high level algorithm of Logenpro 
 
 
1. Generate an initial population of programs.  
2. Execute each program in the current 

population and assign it a fitness value 
according  to the fitness function 

3. If the termination criterion is satisfied, 
terminate the algorithm. The best program 
found in the run of the algorithm is  
designated as the result. 

4. Create a new population of programs from 
the current population by applying the 
reproduction, crossover, and mutation 
operations. These operations are applied to 
programs selected by fitness proportionate or 
tournament selections. 

5. Rename the new population to the current 
population. 

6. Proceed to the next generation by branching 
back to the step 2. 

 
 
3. Learning sub-functions using 

LOGENPRO 
 
Automatic discovery of problem representation 
primitives is certainly one of the most challenging 
research areas in Genetic Programming. Automatically 
Defined Functions (ADF) is one of the approaches 
that have been proposed to acquire problem 
representation primitives automatically [3] [4]. In the 
ADF approach, each program in the population 
contains an expression, called the result producing 
branch, and definitions of one or more sub-functions 
which may be invoked by the result producing branch. 
The result producing branch is evaluated to produce 
the fitness of the program. A constrained syntactic 
structure and some special genetic operators are 
required for the evolution of the programs. To employ 
the ADF approach, the user must provide explicit 
knowledge about the number of available 
automatically defined sub-functions, the number of 
arguments of each sub-functions, and the allowable 
terminal and function sets for each sub-function.  

In this section, we demonstrate how to use 
LOGENPRO to emulate Koza's ADF approach. 
Koza's ADF has a limitation that all the variables, 
constants, arguments for functions, and values 
returned from functions must be of the same data type. 
This limitation leads to the difficulty of inducing even 
some rather simple and straightforward functional 
programs. In this experiment, LOGENPRO is 
expected to learn a sub-function that calculates dot 
product and employ this sub-function in the main 

program. In other words, it is expected to induce the 
following S-expression: 
(progn 
 (defun ADF0 (arg0 arg1) 
  (apply (function +) 
   (mapcar (function *) arg0 arg1))) 
 (+ (ADF0 X Y) (ADF0 Y Z))) 

 
Table 2: Logic grammar for the sub-function problem 

 
 
 start -> [(progn (defun ADF0 (arg0 arg1)], 
  s-expr2(number), [)], 
  s-expr(number), [)]. 
s-expr([list, number, ?n])  
 ->  [ (mapcar (function ], op2, [ ) ] ,  
  s-expr([list, number, ?n]), 
  s-expr([list, number, ?n]),[ ) ]. 
s-expr([list, number, ?n]) 
 -> term([list, number, ?n]). 
s-expr(number)  
 -> [ (apply (function ], op2, [ ) ] , 
  s-expr([list, number, ?n]),[ ) ]. 
s-expr(number)  
 -> [ ( ], op2, s-expr(number),  
  s-expr(number), [ ) ]. 
s-expr(number)  
 -> [ (ADF0 ],  
  s-expr([list, number, ?n]), 
  s-expr([list, number, ?n]), [ ) ]. 
term([list, number, n])  -> X. 
term([list, number, n])  -> Y. 
term([list, number, n])  -> Z. 
s-expr2([list, number, ?n]) 
 ->  [ (mapcar (function ], op2, [ ) ] ,  
  s-expr2([list, number, ?n]), 
  s-expr2([list, number, ?n]),[ ) ]. 
s-expr2([list, number, ?n]) 
 -> term2([list, number, ?n]). 
s-expr2(number)   
 -> [ (apply (function ], op2, [ ) ] , 
  s-expr2([list, number, ?n]),[ ) ]. 
s-expr2(number)  
 -> [ ( ], op2, s-expr2(number),  
  s-expr2(number), [ ) ]. 
term2([list, number, n])  -> arg0. 
term2([list, number, n])  -> arg1. 
op2  -> [ + ]. 
op2  -> [ - ]. 
op2  -> [ * ]. 
 

 
To induce a functional program using 

LOGENPRO, we have to determine the logic 
grammar, fitness cases, fitness functions and 
termination criterion. The logic grammar for learning 
functional programs is given in table 2. In this 
grammar, we employ the argument of the grammar 
symbol s-expr to designate the data type of the 
result returned by the S-expression generated from the 
grammar symbol. For example,  
  (mapcar (function +) X 
    (mapcar (function *) X Y)) 
is generated from the grammar symbol 
s-expr([list, number, n]) because it 
returns a numeric vector of size n. Similarly, the 
symbol s-expr(number) can produce 
(apply (function *) X) that returns a 
number. The terminal symbols +, -, and * represent 
functions that perform ordinary addition, subtraction 
and multiplication respectively.  

Ten random fitness cases are used for training. 
Each case is a 4-tuples ‹Xi, Yi, Zi, Ri›, where 
1≤ i≤10, Xi, Yi and Zi are vectors of size 3, and Ri is 
the corresponding desired result. The fitness function 
calculates the sum, taken over the ten fitness cases, of 
the absolute values of the difference between Ri and 
the value returned by the S-expression for Xi, Yi and 
Zi. A fitness case is said to be covered by an 
S-expression if the value returned by it is within 0.01 



of the desired value. A S-expression that covers all 
training cases is further evaluated on a testing set 
containing 1000 random fitness cases. LOGENPRO 
will stop if the maximum number of generations is 
reached or a S-expression that covers all testing fitness 
cases is found. 

For Koza's ADF framework, the terminal set T0 
for the automatically defined function (ADF0) is 
{arg0, arg1} and the function set F0 is {protected+, 
protected-, protected*, vector+, vector-, vector*,  
apply+, apply-, apply*}, taking 2, 2, 2, 2, 2, 2, 1, 1 
and 1 arguments respectively.  

The primitive functions protected+, protected- 
and protected* respectively perform addition, 
subtraction and multiplication if the two input 
arguments X and Y are both numbers. Otherwise, they 
return 0. The functions vector+, vector- and vector* 
respectively perform vector addition, subtract and 
multiplication if the two input arguments X and Y are 
numeric vectors with the same size, otherwise they 
return zero. The functions apply+, apply- and apply*  
respectively perform the following S-expressions if 
the input argument X is a numeric vector: 
 (apply (function protected+) X),  
 (apply (function protected-) X) and 
 (apply (function protected*) X),  
otherwise they return zero. 

The terminal set Tr for the result producing 
branch is {X, Y, Z} and the function set Fr is 
{protected+, protected-, protected*, vector+, vector-, 
vector*,  apply+, apply-, apply*, ADF0}, taking 2, 2, 
2, 2, 2, 2, 1, 1, 1 and 2 arguments respectively. The 
fitness cases, the fitness function and the termination 
criterion are the same as the ones used by 
LOGENPRO. We evaluate the performance of 
LOGENPRO and Koza's ADF using populations of 
100 and 1000 programs respectively. 
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Fig. 1. Fitness curves showing best fitness for the sub-function 
problem 
 

Thirty trials are attempted and the results are 
summarized in figures 1 and 2 Figure 1 shows, by 
generation, the fitness (error) of the best program in a 
population. These curves are found by averaging the 
results obtained in thirty different runs using various 
random number seeds and fitness cases. From these 

curves, LOGENPRO has superior performance to that 
of Koza's ADF. The curves in figure 2a show the 
experimentally observed cumulative probability of 
success, P(M, i), of solving the problem by generation 
i using a population of M programs. The curves in 
figure 2b show the number of programs I(M, i, z) that 
must be processed to produce a solution by generation 
i with a probability z of 0.99. The curve for  
LOGENPRO  reaches a minimum value of 4900 at 
generation 6.  On the other hand, the minimum value 
of I(M, i, z) for ADF is 5712000 at generation 41. 
This experiment clearly shows the advantage of 
LOGENPRO. By employing various knowledge about 
the problem being solved, LOGENPRO can find a 
solution much faster than ADF and the computation 
(i.e. I(M, i, z)) required by LOGENPRO is much 
smaller than that of ADF. 
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(b) 
 

Fig. 2. Performance curves showing (a) cumulative probability of 
success P(M, i) and (b) I(M, i, z) for the sub-function problem 
 

The idea of applying knowledge of data type to 
accelerate learning has been investigated 
independently by Montana [6] in his Strongly Typed 
Genetic Programming (STGP). He presents three 
examples involving vector and matrix manipulation to 
illustrate the operation of STGP. However, he has not 
compared the performance between traditional GP and 
STGP. Moreover, his STGP cannot be used with ADF 
nor to specify any domain specific knowledge. One 
advantage of LOGENPRO is that it can emulate the 



effects of STGP and ADF simultaneously and 
effortlessly. 
 
4. Conclusion 
 
Genetic Programming induces programs by searching 
a highly fit program in the space of all possible 
programs. We have proposed a framework that the 
search space can be declared explicitly. This 
framework is based on a formalism of logic grammars. 
To implement the framework, a system called 
LOGENPRO (the LOgic grammar based GENetic 
PROgramming system) has been developed. The 
formalism can represent context-sensitive information 
and domain-dependent knowledge.  

Automatic discovery of sub-functions is one of 
the most important research areas in Genetic 
Programming. In Koza's ADF, the user must provide 
explicit knowledge about the number of available sub-
functions, the number of arguments of each sub-
functions, and the allowable terminal and function sets 
for each sub-function. An experiment has been 
performed to demonstrate that LOGENPRO can 
emulate Koza's ADF and represent the knowledge 
easily. Moreover, LOGENPRO can employ other 
knowledge such as argument types in a unified 
framework. This experiment shows that LOGENPRO 
has superior performance to that of Koza's ADF when 
more domain-dependent knowledge is available.  
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6. Appendix 
 
A logic grammar (table 3) differs from a CFG in that 
the logic grammar symbols, whether terminal or non-
terminal, may include arguments. The arguments can 
be any term in the grammar. A term is either a logical 

variables, a function or a constant. A variable is 
represented by a question mark ? followed by a string 
of  letters and/or digits. A function is a grammar 
symbol followed by a bracketed n-tuple of terms and a 
constant is simply a 0-arity function. Arguments can 
be used in a logic grammar to enforce context-
dependency. Thus, the permissible forms for a 
constituent may depend on the context in which that 
constituent occurs in the program. Another application 
of arguments is to construct tree structures in the 
course of parsing, such tree structures can provide a 
representation of the semantics (meaning) of the 
program. 
 

Table 3: A simple logic grammar 
 

 
1:start -> [(*], exp(X), exp(X), [)]. 
2:start -> {member(?x,[X, Y])}, [(*], exp-1(?x), 
  exp-1(?x), [)]. 
3:start -> {member(?x,[X, Y])}, [(/], exp-1(?x), 
  exp-1(?x), [)]. 
4:exp(?x)   -> [(+ ?x 0)]. 
5:exp-1(?x) -> {random(0,1,?y)}, [(+ ?x ?y)]. 
6:exp-1(?x) -> {random(0,1,?y)}, [(- ?x ?y)]. 
7:exp-1(?x) -> [(+ (- X 11) 12)]. 
 

 
The terminal symbols, which are enclosed in 

square brackets, correspond to the set of words of the 
language specified. For example, the terminal 
[(+ ?x ?y)] creates the constituent 
(+ 1.0 2.0) of a program if ?x and ?y are 
instantiated respectively to 1.0 and 2.0. Non-terminal 
symbols are similar to literals in Prolog, 
"exp-1(?x)" in table 3 is an example of non-
terminal symbols. Commas denote concatenation and 
each grammar rule ends with a full stop. 

The right-hand side of a grammar rule may 
contain logic goals and grammar symbols. The goals 
are pure logical predicates for which logical 
definitions have been given. They specify the 
conditions that must be satisfied before the rule can be 
applied. For example, the goal 
member(?x, [X, Y]) in figure 1 instantiates the 
variable ?x to either X or Y if ?x has not been 
instantiated, otherwise it checks whether the value of 
?x is either X or Y. If the variable ?y has not been 
bound, the goal random(0, 1, ?y) instantiates ?y 
to a random floating point number between 0 and 1. 
Otherwise, the goal checks whether the value of ?y is 
between 0 and 1. The special non-terminal start 
corresponds to a program of the language. The number 
before each rule is a label for later discussions. It is 
not part of the grammar. 
 


