
Combining Genetic Programming and Inductive Logic Programming using 
Logic Grammars 

 
Man Leung Wong 

Department of Computing and Decision 
Sciences 

Lingnan University, Tuen Mun 
Hong Kong 

mlwong@ln.edu.hk 
 

Kwong Sak Leung 
Department of Computer Science and 

Engineering 
The Chinese University of Hong Kong 

Hong Kong 
ksleung@cse.cuhk.edu.hk 

 
Abstract 

 
Genetic Programming (GP) and Inductive Logic Programming (ILP) have received increasing interest recently. 
Since their formalisms are so different, these two approaches cannot be integrated easily though they share 
many common goals and functionalities. A unification will greatly enhance their problem solving power. In this 
paper, a framework to combine GP and ILP is presented. The framework is based on a formalism of logic 
grammars and a system called LOGENPRO (the LOgic grammar based GENetic PROgramming system) is 
developed. It is so flexible that programs in different programming languages such as LISP, Prolog, and C can 
be induced. 

The performance of LOGENPRO in inducing logic programs from noisy examples is also evaluated. A 
detailed comparison to FOIL and mFOIL has been conducted. The experiment demonstrates that LOGENPRO 
is a promising alternative to other inductive logic programming systems and sometimes is superior for handling 
noisy data.  

 
1. Introduction 
 
Genetic Programming [4] [5] and Inductive Logic 
Programming [8] have received increasing interest 
recently. Genetic Programming (GP) is a method of 
automatically inducing S-expression in LISP to 
perform specified tasks. Inductive Logic Programming 
(ILP) investigates the construction of logic programs 
from examples and background knowledge. Since 
their formalisms are so different, these two approaches 
cannot be integrated easily although their properties 
and goals are similar. If they can be combined in a 
common framework, then many of the techniques and 
theories obtained in one approach can be applied in 
the other one.  

In this paper, a framework that can combine GP 
and ILP is presented. This framework is based on a 
formalism of logic grammars and a system called 
LOGENPRO (the LOgic grammar based GENetic 
PROgramming system) is developed. It is very flexible 
and programs in various programming languages such 
as LISP, Prolog, Fuzzy Prolog and C can be induced. 

The next section presents the formalism of logic 
grammars. Section three is a description of 
LOGENPRO. The fourth section describes a 
combination of LOGENPRO and FOIL [8] that learns 
logic programs and is followed by a conclusion. 
 
2. Logic grammars 
 
The LOgic grammars based GENetic PROgramming 
system (LOGENPRO) can induce programs in various 
programming languages such as LISP and Prolog. It 
accepts logic grammars of different languages and 

produce programs in these languages. Logic grammars 
are context sensitive and are the generalizations of 
context free grammar (CFG). Their expressivenesses 
are much more powerful than that of CFG, but equally 
amenable to efficient execution. In this paper, logic 
grammars [6] will be described in a notation similar to 
that of definite clause grammars (DCG). The logic 
grammar in table 1 will be used throughout sections 
two and three. Instead of using a grammar for a logic 
programming language, a grammar for S-expression in 
Lisp is employed to illustrate flexibility that various 
programming languages can be specified by logic 
grammars. The grammar for a logic programming 
language can be found in section 4.   

A logic grammar differs from a CFG in that the 
logic grammar symbols, whether terminal or non-
terminal, may include arguments. The arguments can 
be any term in the grammar. A term is either a logical 
variable, a function or a constant. A variable is 
represented by a question mark ? followed by a string 
of  letters and/or digits. A function is a grammar 
symbol followed by a bracketed n-tuple of terms and a 
constant is simply a 0-arity function. Arguments can 
be used in a logic grammar to enforce context-
dependency. Thus, the permissible forms for a 
constituent may depend on the context in which that 
constituent occurs in the program. Another application 
of arguments is to construct tree structures in the 
course of parsing, such tree structures can provide a 
representation of the semantics (meaning) of the 
program. 

The terminal symbols, which are enclosed in 
square brackets, correspond to the set of words of the 
language specified. For example, the terminal 



[(+ ?x ?y)] creates the constituent 
(+ 1.0 2.0) of a program if ?x and ?y are 
instantiated respectively to 1.0 and 2.0. Non-terminal 
symbols are similar to literals in Prolog, 
"exp-1(?x)" in table 1 is an example of non-
terminal symbols. Commas denote concatenation and 
each grammar rule ends with a full stop. 

 
Table 1: A simple logic grammar 

 
 
1:start -> [(*], exp(X), exp(X), [)]. 
2:start -> {member(?x,[X, Y])}, [(*], exp-1(?x), 
  exp-1(?x), [)]. 
3:start -> {member(?x,[X, Y])}, [(/], exp-1(?x), 
  exp-1(?x), [)]. 
4:exp(?x)   -> [(+ ?x 0)]. 
5:exp-1(?x) -> {random(0,1,?y)}, [(+ ?x ?y)]. 
6:exp-1(?x) -> {random(0,1,?y)}, [(- ?x ?y)]. 
7:exp-1(?x) -> [(+ (- X 11) 12)]. 
 

 
The right-hand side of a grammar rule may 

contain logic goals and grammar symbols. The goals 
are pure logical predicates for which logical 
definitions have been given. They specify the 
conditions that must be satisfied before the rule can be 
applied. For example, the goal 
member(?x, [X, Y]) in figure 1 instantiates the 
variable ?x to either X or Y if ?x has not been 
instantiated, otherwise it checks whether the value of 
?x is either X or Y. If the variable ?y has not been 
bound, the goal random(0, 1, ?y) instantiates ?y 
to a random floating point number between 0 and 1. 
Otherwise, the goal checks whether the value of ?y is 
between 0 and 1. The special non-terminal start 
corresponds to a program of the language. The number 
before each rule is a label for later discussions. It is 
not part of the grammar. 

 
3. The LOgic grammars based GENetic 

PROgramming system (Logenpro) 
 
The problem of inducing programs can be 
reformulated as a search for a highly fit program in the 
space of all possible programs in the language 
specified by  the logic grammar. In LOGENPRO, 
populations of programs are genetically bred [2] [3] 
using the Darwinian principle of survival and 
reproduction of the fittest along with genetic 
operations appropriate for processing programs. 
LOGENPRO starts with an initial population of 
programs generated randomly, induced by other 
learning systems, or provided by the user. Logic 
grammars provide declarative descriptions of the valid 
programs that can appear in the initial population. A 
high-level algorithm of LOGENPRO is presented in 
table 2.  

One of the contributions of LOGENPRO is in the 
representations of programs in different programming 
languages appropriately so that initial population can 
be generated easily and the genetic operators such as 
reproduction, mutation and crossover can be 
performed effectively. A program can be represented 
as a derivation tree that shows how the program has 
been derived from the logic grammar. LOGENPRO 

applies deduction to randomly generate programs and 
their derivation trees in the language declared by the 
given grammar. These programs form the initial 
population. For example, the program 
(* (+ X 0) (+ X 0)) can be generated by 
LOGENPRO given the logic grammar in table 1. Its 
derivation tree is depicted in figure 1.  

 
Table 2: The high level algorithm of LOGENPRO 

 
 
1. Generate an initial population of programs.  
2. Execute each program in the current 

population and assign it a fitness value 
according  to the fitness function 

3. If the termination criterion is satisfied, 
terminate the algorithm. The best program 
found in the run of the algorithm is  
designated as the result. 

4. Create a new population of programs from 
the current population by applying the 
reproduction, crossover, and mutation 
operations. These operations are applied to 
programs selected by fitness proportionate or 
tournament selections. 

5. Rename the new population to the current 
population. 

6. Proceed to the next generation by branching 
back to the step 2. 

 
 

Alternatively, initial programs can be induced by 
other learning systems such as FOIL [8] or given by 
the user. LOGENPRO analyzes each program and 
creates the corresponding derivation tree. If the 
language is ambiguous, multiple derivation trees can 
be generated. LOGENPRO produces only one tree 
randomly. 

 
 

start

[(*] exp(x) exp(x) [)]

[(+ ?x 0)] 
?x/X

[(+ ?x 0)] 
?x/X  

 
 

Fig. 1. A derivation tree of a program 
 

Another contribution is the efficient algorithm for 
performing crossover between two derivation trees. 
The crossover is a sexual operation that starts with two 
parental programs and their corresponding derivation 
trees. Before performing any crossover, LOGENPRO 
check whether the offspring produced is valid 
according to the grammar. Thus, only valid offspring 



are produced and the genetic operation can be 
achieved effectively and efficiently. 
 
4. Learning logic programs from 

imperfect data 
 
Various approaches for ILP differ mainly in the search 
strategy and the heuristics used to guide the search. 
However, only a few ILP systems such as FOIL [8] 
and mFOIL [1] address the issue of learning from 
imperfect data which is significant in Knowledge 
discovery from databases [7]. Wong and Leung [9] 
have developed the Genetic Logic Programming 
System (GLPS) that can induce logic programs from 
noisy examples using Genetic Algorithms.  

This section describes the application of 
LOGENPRO to learn logic programs from noisy and 
imperfect training examples. An empirical comparison 
of LOGENPRO with FOIL (the publicly available 
version of FOIL, version 6.0 , is used in the 
experiment) and mFOIL [1] in the domain of learning 
illegal chess endgame positions from noisy examples 
is presented. mFOIL is based on FOIL that has 
adapted several features from the CN2 learning 
algorithm, such as the use of the Laplace and m-
estimate as a search heuristic and the use of 
significance testing as a stopping criterion. Moreover, 
mFOIL uses beam search and can apply mode and 
type information to reduce the search space. In the 
experiment, the value of the m parameter of mFOIL is 
set to 0.01, the beam width is 5 and the significance 
threshold is 0. These values were found to be 
appropriate for the chess endgame problem. 

In this experiment, LOGENPRO employs a 
variation of FOIL to find the initial population of logic 
programs. Thus, it uses the same noise handling 
mechanism of FOIL. The variation is called BEAM-
FOIL because it uses a beam search method rather 
than the greedy search strategy of FOIL. BEAM-FOIL 
produces a number of different logic programs when it 
terminates and the best program among them is the 
solution of the problem. The logic programs created 
by BEAM-FOIL are used by LOGENPRO to initialize 
the first generation. In order to study the effect of 
genetic operations performed by LOGENPRO on the 
initial programs produced by BEAM-FOIL, a 
comparison between them is also presented. 

 
Table 3: The logic grammar for the chess endgame problem 

 
 
start -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> consq, [:-], antes, [.]. 
consq ->  
 [illegal(WKf, WKr, WRf, WRf, BKf, BKr)]. 
antes -> antes, [,], antes. 
antes -> ante. 
ante ->  
 {member(?x,[WKf, WKr, WRf, WRf, BKf, BKr])}, 
 {member(?y,[WKf, WKr, WRf, WRf, BKf, BKr])}, 
 literal(?x, ?y). 
literal(?x, ?y) -> [?x = ?y]. 
literal(?x, ?y) -> [ ~ ?x = ?y]. 
literal(?x, ?y) -> [ adjacent(?x, ?y) ]. 
literal(?x, ?y) -> [ ~adjacent(?x, ?y) ]. 
literal(?x, ?y) -> [ less_than(?x, ?y) ]. 
literal(?x, ?y) -> [ ~less_than(?x, ?y) ]. 
 

 
In the chess endgame, the setup is white king and 

rook versus black king [8]. The target predicate 
illegal(WKf, WKr, WRf, WRr, BKf, BKr
) states whether the position where the white king is 
at (WKf, WKr), the white rook at (WRf, WRr) 
and the black king at (BKf, BKr) is not a legal 
white-to-move position. The background knowledge is 
represented by two predicates, adjacent(X, Y) 
and less_than(W, Z), indicating that rank/file X 
is adjacent to rank/file Y and rank/file W is less than 
rank/file Z respectively. LOGENPRO uses the logic 
grammar in table 3 for this problem. In the grammar, 
[adjacent(?x, ?y)] and 
[less_than(?x, ?y)] are terminal symbols. 
The logic goal 
member(?x, [WKf, WKr, WRf, WRr, BKf,
 BKr]) will instantiate logic variable ?x of the 
grammar to either WKf, WKr, WRf, WRr, BKf, or BKr, 
the logic variables of the target logic program. 

The training set contains 1000 examples (336 
positive and 664 negative examples). The testing set 
has 10000 examples (3240 positive and 6760 negative 
examples). Different amounts of noise are introduced 
into the training examples in order to study the 
performances of these systems in learning concepts 
from noisy environment. To introduce n% of noise 
into argument X of the examples, the value of 
argument X is replaced by a random value of the same 
type from a uniform distribution, independent to noise 
in other arguments.  For the class variable,  n% 
positive examples are labeled as negative ones while 
n% negatives examples are labeled as positive ones. 
Noise in an argument is not necessarily incorrect 
because it is chosen randomly, it is possible that the 
correct argument value is selected. In contrast, noise in 
classification implies that this example is incorrect. 
Thus, the probability for an example to be incorrect is 

1−{[(1− n%) + n% *
1
8

]6 * (1− n%)}. In this 

experiment, the percentages of introduced noise are 
5%, 10%, 15%, 20%, 30% and 40%. Thus, the 
probabilities for an example to be noisy are 
respectively 27.36%, 48.04%, 63.46%, 74.78%, 
88.74% and 95.47%. Background knowledge and 
testing examples are not corrupted with noise.  

A chosen level of noise is first introduced in the 
training set. Logic programs are then induced from the 
training set using LOGENPRO, FOIL, mFOIL, and 
BEAM-FOIL. Finally, the classification accuracy of 
the learned logic programs is estimated on the testing 
set. For BEAM-FOIL, the size of beam is ten and thus 
ten logic programs are returned by it. The population 
size for LOGENPRO is 10 and the maximum number 
of generations is 50. In fact, different population sizes 
have been tried and the results are still satisfactory 
even for a very small population. This observation is 
interesting and it demonstrates the advantage of 
combining inductive logic programming and genetic 
programming using the proposed framework. The 
fitness function evaluates the number of training 



examples misclassified by each individual in the 
population. Fifty runs of the above experiments are 
performed on different training examples. The results 
of the three systems are summarized in figure 2. 

From this experiment, the classification accuracy 
of these systems degrades seriously as the noise level 
increases. The results were statistically evaluated 
using the paired t-test. For each noise level, each pair 
of systems was compared to determine if their 
difference in accuracy were statistically significant at 
the 99.95% confidence interval. The classification 
accuracy of LOGENPRO is better than that of FOIL. 
The differences are significant at the 99.95% 
confidence interval at all noise levels (except the noise 
level of 0%). The largest difference reaches 24% at the 
20% noise level. Similarly, the accuracy of 
LOGENPRO is significantly better than that of 
mFOIL and BEAM-FOIL when the noise level is on 
or below 30%. On the other hand, the accuracy of 
mFOIL and BEAM-FOIL is better than that of 
LOGENPRO at the 40% noise level. But, the 
differences are not significant at the 99.95% 
confidence interval. It implies that the genetic 
operations of LOGENPRO can actually improve the 
logic programs provided by  BEAM-FOIL.  

 

0 0.05 0.1 0.15 0.2 0.3 0.4

Noise level

0.5

0.6

0.7

0.8

0.9

1

1.1

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

FOIL
LOGENPRO
BEAM-FOIL
mFOIL

 
 

Fig. 2. Comparison between LOGENPRO, FOIL, mFOIL, and 
BEAM-FOIL 

 
The result is surprising because LOGENPRO uses 

the same noise handling mechanism of FOIL. One 
possible explanation of the better performance of 
LOGENPRO is that the Darwinian principle of 
survival and reproduction of the fittest is a good noise 
handling method. It avoids overfitting noisy examples, 
but at the same time, it can finds interesting and useful 
patterns from noisy and imperfect examples. 
 
5. Conclusion 
 
We have proposed a framework for combining 
Genetic Programming and Inductive Logic 
Programming. This framework is based on a 
formalism of logic grammars. To implement the 
framework, a system called LOGENPRO (LOgic 
grammar based GENetic 

PROgramming) has been developed. The performance 
of LOGENPRO in inducing logic programs from 
imperfect training examples is evaluated using the 
chess endgame problem. A detailed comparison to 
FOIL and mFOIL has been conducted. Together with 
many other experiments we have completed with 
similar results, this experiment illustrates that 
LOGENPRO is a promising alternative to other 
inductive logic programming systems and sometimes 
is superior for handling noisy data. 
 
6. Reference 
 
[1] Dzeroski, S. and Lavrac, N. (1993). Inductive 

Learning in Deductive Databases. IEEE 
Transactions on Knowledge and Data 
Engineering, 5, pp. 939-949. 

[2] Goldberg, D. E. (1989). Genetic Algorithms in 
Search, Optimization, and Machine Learning. 
MA: Addison-Wesley. 

[3] Holland, J. H. (1975). Adaptation in natural and 
artificial systems. Ann Arbor: The University of 
Michigan Press. 

[4] Koza, J. R. (1992). Genetic Programming: on the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: MIT Press. 

[5] Koza, J. R. (1994). Genetic Programming II: 
Automatic Discovery of Reusable Programs. 
Cambridge, MA: MIT Press. 

[6] Pereira, F. C. N. and Warren, D. H. D. (1980). 
Definite Clause Grammars for Language Analysis 
- A Survey of the Formalism and a Comparison 
with Augmented Transition Networks. Artificial 
Intelligence, 13, pp. 231-278.  

[7] Piatetsky-Shapiro, G. and Frawley, W. J. (1991). 
Knowledge Discovery in Databases. Menlo Park, 
CA: AAAI Press. 

[8] Quinlan, J. R. (1990). Learning logical definitions 
from relations. Machine Learning, 5, pp. 239-266. 

[9] Wong, M. L. and Leung, K. S. (1995). Genetic 
Logic Programming and Applications. IEEE 
Expert. Accepted to be published. 

 
 


