
Learning Recursive Functions from Noisy Examples using 
Generic Genetic Programming 

 
Man Leung Wong Kwong Sak Leung 

Department of Computing and Decision Sciences Department of Computer Science and Engineering 
Lingnan University, Tuen Mun 

Hong Kong 
The Chinese University of Hong Kong 

Hong Kong 
mlwong@ln.edu.hk ksleung@cse.cuhk.edu.hk 

 
 

ABSTRACT 
One of the most important and 
challenging areas of research in 
evolutionary algorithms is the 
investigation of ways to successfully 
apply evolutionary algorithms to larger 
and more complicated problems. In this 
paper, we apply GGP (Generic Genetic 
Programming) to evolve general 
recursive functions for the even-n-parity 
problem from noisy training examples. 
GGP is very flexible and programs in 
various programming languages can be 
acquired. Moreover, it is powerful 
enough to handle context-sensitive 
information and domain-dependent 
knowledge. A number of experiments 
have been performed to determine the 
impact of noise in training examples on 
the speed of learning. 

1. Introduction 
One of the most important and challenging areas of research 
in evolutionary algorithms is the investigation of ways to 
apply them to larger and more complicated problems. One 
approach to make a large problem more tractable is to 
discover problem representations automatically. Koza 
(1994) uses the even-n-parity problem to demonstrate 
extensively that his approach of hierarchical Automatically 
Defined Functions (ADFs) can facilitate the solving of the 
problem.  

Koza shows that the even-7-parity problem can be solved 
using GP with hierarchical ADFs. He finds that about 
1440000 functions, I(M, i, z), should be evaluated to obtain 

at least one solution with 99% probability. In each fitness 
calculation, 128 fitness cases must be evaluated. Thus, 
1440000*128 = 184320000 fitness cases should be 
processed. Unfortunately, the solutions found can only solve 
the even-n-parity problem with a particular value of n. If a 
different value of n is used, GP with hierarchical ADFs must 
be applied again to find other programs that can solve the 
new even-n-parity problem.  

Clearly, the solution found is not general enough to solve 
all instances of the even-n-parity problem for all n ≥  0. In 
this paper, we apply a novel Generic Genetic Programming 
(GGP) approach to evolve general recursive functions for 
the even-n-parity problem from noisy training examples. 
The next section describes the GGP approach which is 
powerful enough to handle context-sensitive information 
and domain-dependent knowledge. The even-n-parity 
problem is discussed in Section 3. The subsequent section 
describes a number of experiments that evaluate the impact 
of noise in training examples on the rate of inducing general 
recursive functions. Section 5 is the conclusion. 

2. Generic Genetic Programming 
(GGP) 
Program induction generates a computer program that can 
produce the desired behavior for a given set of situations. 
Two of the approaches in program induction are Inductive 
Logic Programming (Dzeroski and Lavrac 1993; 
Muggletion 1992) and Genetic Programming (Koza 1992, 
1994; Kinnear 1994). These approaches are restrictive 
because Inductive Logic Programming (ILP) can only learn 
logic programs and Genetic Programming (GP) usually 
evolves S-expressions in Lisp. 

Moreover, since their formalisms are so different, these 
two approaches cannot be integrated easily although their 
properties and goals are similar. If they can be combined in 
a common framework, then many of the techniques and 
theories obtained in one approach can be applied in the other 
one. The combination can greatly enhance the information 
exchange between these fields.  

Generic Genetic Programming (GGP) is a novel 
approach that combines GP and ILP (Wong and Leung 



1995b). GGP is a generalization and extension of GLPS 
(Wong and Leung 1995a). GLPS (the Genetic Logic 
Programming System) can induce logic programs from 
noisy examples using Genetic Algorithms (Goldberg 1989; 
Holland 1975). Using GGP, programs in various 
programming languages such as Lisp, Prolog, and Fuzzy 
Prolog can be evolved (Wong and Leung 1995b). The 
approach is also powerful enough to handle context-
sensitive information and domain-dependent knowledge 
which can be used to accelerate the learning speed and/or 
improve the quality of the programs (Wong and Leung 
1995c). 

GGP can induce programs in various programming 
languages. This is achieved by accepting or choosing 
grammars of different languages to produce programs in 
these languages. Most modern programming languages are 
specified in the notation of context-free grammar (CFG). 
However, logic grammars are used in GGP because they are 
more powerful than that of CFG, but equally amenable to 
efficient execution. In this paper, the notation of definite 
clause grammars (DCG) is used (Pereira and Warren 1980). 
The details of logic grammars and the representation method 
are described in the Appendixes. On the other hand, the 
genetic operators are detailed in (Wong and Leung 1996). 

In GGP, populations of programs are genetically bred 
using the Darwinian principle of survival and reproduction 
of the fittest along with genetic operations appropriate for 
processing programs. GGP starts with an initial population 
of programs generated randomly, induced by other learning 
systems, or provided by the user. Logic grammars provide 
declarative descriptions of the valid programs that can 
appear in the initial population. A high-level algorithm of 
GGP is presented in table 1.  

 
Table 1 The high level algorithm of GGP 
 
1. Generate an initial population of programs.  
2. Execute each program in the current population and 

assign it a fitness value according  to the fitness 
function 

3. If the termination criterion is satisfied, terminate the 
algorithm. The best program found in the run of the 
algorithm is  designated as the result. 

4. Create a new population of programs from the current 
population by applying the reproduction, crossover, and 
mutation operations. These operations are applied to 
programs selected by fitness proportionate or 
tournament selections. 

5. Rename the new population to the current population. 
6. Proceed to the next generation by branching back to the 

step 2. 
 
2.1 Learning logic programs 
To illustrate that GGP can learn logic programs, we perform 
an experiment and compare the performance of GGP and 
FOIL in inducing logic programs in  the domain of the chess 
endgame problem (Quinlan 1990). 

In this domain, the target predicate illegal(WKf, 
WKr, WRf, WRr, BKf, BKr) states whether the 
position where the white king is at (WKf, WKr), the white 
rook at (WRf, WRr) and the black king at (BKf, BKr) is not 
a legal white-to-move position. The background knowledge 
is represented by two predicates, adjacent(X, Y) and 
less_than(W, Z), indicating that rank/file X is adjacent 
to rank/file Y and rank/file W is less than rank/file Z 
respectively. GGP uses the logic grammar in table 2 for this 
problem. In this grammar, [adjacent(?X, ?Y)] and 
[less_than(?X, ?Y)] are terminal symbols. The logic 
goal member(?X, [WKf, WKr, WRf, WRr, BKf, 
BKr]) will instantiate ?X to either WKf, WKr, WRf, WRr, 
BKf, or BKr. The logic variables of the target logic program 
are WKf, WKr, WRf, WRr, BKf, and BKr. 

 
Table 2 The logic grammar for the chess endgame 
problem 
 
start  -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> 
  consq, [:-], antes, [.]. 
consq  -> 
  [illegal(WKf,WKr,WRf,WRf,BKf,BKr)]. 
antes  -> antes, [,], antes. 
antes  -> ante. 
ante   -> 
  {member(?X, 
   [WKf,WKr,WRf,WRf,BKf,BKr])}, 
  {member(?Y, 
   [WKf, WKr, WRf, WRf, BKf, BKr])}, 
  literal(?X, ?Y). 
literal(?X, ?Y) -> [?X = ?Y]. 
literal(?X, ?Y) -> [ ~ ?X = ?Y]. 
literal(?X, ?Y) -> 
  [ adjacent(?X, ?Y) ]. 
literal(?X, ?Y) -> 
  [ ~ adjacent(?X, ?Y) ]. 
literal(?X, ?Y) -> 
  [ less_than(?X, ?Y) ]. 
literal(?X, ?Y) -> 
  [ ~ less_than(?X, ?Y) ]. 
 

 
The training set contains 1000 examples (336 positive 

and 664 negative examples). The testing set has 10000 
examples (3240 positive and 6760 negative examples). 
Different amount of noise is introduced into the training 
examples in order to study the performance of both systems 
in learning programs from noisy environment. To introduce 
n% of noise into argument X of the examples, the value of 
argument X is replaced by a random value of the same type 
from a uniform distribution, independent to noise in other 
arguments.  For the class variable,  n% positive examples 
are labeled as negative ones while n% negatives examples 
are labeled as positive ones. In this experiment, the 
percentages of noise introduced are 5%, 10%, 15%, 20%, 



30% and 40%. Thus, the probabilities for an example to be 
noisy are respectively 27.36%, 48.04%, 63.46%, 74.78%, 
88.74% and 95.47%. Background knowledge and testing 
examples are not corrupted with noise.  

A chosen level of noise is first introduced in the training 
set. Logic programs are then induced from the training set 
using GGP and FOIL. Finally, the classification accuracy of 
the learned programs is estimated on the testing set. For 
GGP, the initial population of programs are induced by a 
variation of FOIL using a portion of the training examples. 
The population size is 10 and the maximum number of 
generations for each experiment is 50. Since GGP is a non-
deterministic learning system, the process is repeated for 
five times on the same training set and the average of the 
five results is reported as the classification accuracy of GGP. 

Many runs of the above experiment are performed on 
different training examples. The average results of ten runs 
are summarized in figure 1.  

 

0 0.05 0.1 0.15 0.2 0.3 0.4

Noise level

0.5

0.6

0.7

0.8

0.9

1

1.1

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

FOIL
GGP

 
Figure 1 Comparison between GGP and FOIL 

 
The performance of both systems are compared using 

paired t-test. From this experiment, the classification 
accuracy of both systems degrades seriously as the noise 
level increases. Nevertheless, the classification accuracy of 
GGP is better than that of FOIL by at least 5% at the 
99.995% confidence interval at all noise levels (except the 
noise level of 0%). The largest difference reaches 24% at the 
20% noise level. One possible explanation of the better 
performance of GGP is that the Darwinian principle of 
survival and reproduction of the fittest is a good noise 
handling method. It avoids overfitting noisy examples, but at 
the same time, it can finds interesting and useful patterns 
from these noisy examples. The experiment demonstrate that 
GGP is a promising alternative to other inductive logic 
programming systems and sometimes is superior for 
handling noisy data. 
2.2 Learning programs in Fuzzy Prolog 
The goal of this experiment is to induce a Fuzzy Prolog 
program that describes the fuzzy relation can-reach 
intensionally. Li and Liu (Li and Liu 1980) described the 
detailed definitions of the syntax and semantics of Fuzzy 
Prolog. Consider the fuzzy network in figure 2, this network 
represents the fuzzy relation linked-to(X, Y) that 

denotes node X is directly linked to node Y with truth value 
f, where f ∈ (0, 1]. In this network, the edges represent the 
instances of the linked-to relation and the number on an 
edge is the truth value of the corresponding instance. For 
example, the truth value of the instance linked-to(0, 
1) is 0.9. 

 
 

0

1 3

2

4 6

87

5

0.9 0.8

0.85 0.9

0.8

0.88

0.7

0.9 0.95

0.95

 
 

Figure 2 A fuzzy network 
 

A fuzzy relation is associated with a n-ary fuzzy 
predicate and can be described extensionally as a set of 
ordered pairs. Thus the relation linked-to(X, Y) can 
be represented as: 

linked-to(X, Y) =  
   {(<0,1>, 0.9),  (<0,3>, 0.8),  
    (<1,2>, 0.85), (<3,2>, 0.9), 
    (<3,4>, 0.8),  (<4,5>, 0.88), 
    (<4,6>, 0.7),  (<6,8>, 0.95),  
    (<7,6>, 0.9),  (<7,8>, 0.95)} 
The first element of an ordered pair is a n-tuple of 

constants that satisfies the associated fuzzy predicate. The 
second element of the ordered pair is the corresponding truth 
value. Other fuzzy relations can be obtained from the fuzzy 
network. One of them is can-reach(X, Y) which is 
represented explicitly as: 

can-reach(X, Y)= 
{(<0,1>, 0.9),   (<0,2>, 0.765), 

  (<0,3>, 0.85),  (<0,4>, 0.72),  
  (<0,5>, 0.648), (<0,6>, 0.567),  
  (<0,8>, 0.510), (<1,2>, 0.85), 
  (<3,2>, 0.9)    (<3,4>, 0.8),  
  (<3,5>, 0.72),  (<3,6>, 0.63),  
  (<3,8>, 0.567), (<4,5>, 0.88), 
  ((4,6>, 0.7),   (<4,8>, 0.63),  
  (<6,8>, 0.95),  (<7,6>, 0.9),  
  (<7,8>, 0.95) } 
The negative instances of this relation can be found using 

the close world assumption (Li and Liu 1990). Thus, the set 
of negative instances is: 



{(<0,0>, 0), (<0,7>, 0), (<1,0>, 0), 
 (<1,1>, 0), (<1,3>, 0), (<1,4>, 0), 
 (<1,5>, 0), (<1,6>, 0), (<1,7>, 0),  
 (<1,8>, 0), (<2,0>, 0), (<2,1>, 0),  
 (<2,2>, 0), (<2,3>, 0), (<2,4>, 0),  
 (<2,5>, 0), (<2,6>, 0), (<2,7>, 0),  
 (<2,8>, 0), (<3,0>, 0), (<3,1>, 0),  
 (<3,3>, 0), (<3,7>, 0), (<4,0>, 0), 
 (<4,1>, 0), (<4,2>, 0), (<4,3>, 0),  
 (<4,4>, 0), (<4,7>, 0), (<5,0>, 0), 
 (<5,1>, 0), (<5,2>, 0), (<5,3>, 0),  
 (<5,4>, 0), (<5,5>, 0), (<5,6>, 0),  
 (<5,7>, 0), (<5,8>, 0), (<6,0>, 0),  
 (<6,1>, 0), (<6,2>, 0), (<6,3>, 0),  
 (<6,4>, 0), (<6,5>, 0), (<6,6>, 0),  
 (<6,7>, 0), (<7,0>, 0), (<7,1>, 0),  
 (<7,2>, 0), (<7,3>, 0), (<7,4>, 0),  
 (<7,5>, 0), (<7,7>, 0), (<8,0>, 0),  
 (<8,1>, 0), (<8,2>, 0), (<8,3>, 0),  
 (<8,4>, 0), (<8,5>, 0), (<8,6>, 0), 
 (<8,7>, 0), (<8,8>, 0)} 
The 19 positive and 62 negative instances are used as the 

fitness cases. The fitness function finds the sum, taken over 
all 81 fitness cases, of the absolute values of the difference 
between the desired truth value and the truth value returned 
by the generated program. A fitness case is said to be 
covered by a program if the truth value returned is within 
0.05 of the desired value. GGP terminates if the maximum 
number of generations of 25, is reached or a Fuzzy Prolog 
program that covers all fitness cases is found. The logic 
grammar for this problem is shown in table 3. The 
background knowledge is represented by the fuzzy relation 
linked-to(X, Y) and the predicate random(0, 1, 
?A) is a logic goal. 

 
Table 3  The logic grammar for the can-reach problem 
start  -> clauses. 
clauses -> clauses, clauses. 
clauses -> clause. 
clause -> {random(0, 1, ?A)}, 
   consq,[<-(?A)], antes,  
   [.]. 
consq  -> [can-reach(X, Y)]. 
antes  -> antes, [,], antes. 
antes  -> ante. 
ante  ->  
  {member(?A,[W, X, Y, Z])}, 
  {member(?B,[W, X, Y, Z])}, 
  literal(?A, ?B). 
literal(?A, ?B) ->  
   [ linked-to(?A, ?B) ]. 
literal(?A, ?B) -> 
   [ can-reach(?A, ?B) ]. 

A number of trials have been performed using a 
population size of 100. Correct programs can be found in all 
trials. The following correct simplified program is found in 
one trial: 

can-reach(X, Y)<- (1) 

   linked-to(X, Y). 
can-reach(X, Y)<- (0.9) 
   linked-to(X, Z), 
   can-reach(Z, Y). 

3. The Even-n-parity Problem 
The boolean even-n-parity function of n boolean input 
arguments returns true (T) if an even number of the 
arguments are true, otherwise it returns false (nil). Koza 
(1994) uses GP with ADFs to induce hierarchical functions 
from training examples (fitness cases) to solve the problem. 
The training set contains all 2n combinations of the n 
boolean input arguments. The standardized fitness of an S-
expression is the sum of the error between the value returned 
by the S-expression and the correct value of the even-n-
parity function. 

Since all 2n fitness cases, for a particular value of n, are 
used as the training examples, it is unclear whether GP can 
discover the regularities of the even-n-parity problem and 
induce a general function. Moreover, GP can only solve an 
instance of the even-n-parity problem for a particular value 
of n. If a different value n is required, GP must be used 
again to induce another function for the new instance of the 
problem. A better solution is a recursive function that solves 
all instances of the problem for all n ≥  0.  

A general recursive function is given below:  
(defun parity (L) 
 (if (null L) 
   T  
   (AND  
     (OR (first L)  
         (parity (rest L))) 
     (NAND (first L)  
           (parity (rest L)))))) 
To evolve recursive functions using GGP, we have to 

determine the terminals, the primitive functions, the fitness 
cases, the fitness function, and the termination criterion. The 
terminal set is {L, T, nil} where L is the input argument of 
the recursive function to be learned, T and nil are boolean 
truth values. The argument L is a list of boolean values and 
any number of boolean values can exist in the list L. The set 
of primitive functions is {AND, OR, NAND, NOR, ifnil, 
first, rest, parity} 

The boolean functions AND, OR, NAND, and NOR take 
two boolean input arguments and return one boolean value. 
The function ifnil takes three arguments. The first 
argument must be an S-expression that returns a list of 
boolean values. The last two arguments must be S-
expressions that produce boolean output values. The 
function ifnil checks whether the first input argument 
returns an empty list. If the list is empty, ifnil returns the 
boolean value of the second S-expression as the output value 
of the function, otherwise it returns the boolean value of the 
third S-expression. 

The primitive function first takes a list of boolean 
values as its argument and returns the first boolean value of 
the list if the list is not empty. Otherwise, the function 
generates an exception signal to indicate that an illegal 
operation has been attempted to get the first element from an 



empty list. The primitive function rest must take a list of n 
boolean values, for any value of n ≥  0, as its argument. If 
the input list is not empty, it returns a list containing the last 
n-1 elements of the input list, otherwise, the function 
generates an exception signal to indicate an illegal action 
has been tried. The primitive function parity takes a list 
of boolean values as its input and returns a boolean value. 
This function recursively calls the recursive function being 
evolved by GGP. 

There are three data types: BOOLEAN, LIST, and 
SMALLER-LIST, that can be used to specify the primitive 
functions. The data type LIST contains lists of n boolean 
values, for any value of n ≥  0. The data type SMALLER-
LIST contains lists of m boolean values for any value of m < 
n. The logic grammar for this problem is given in table 4. 

In this grammar, we employ the argument of the non-
terminal grammar symbol s-expr to designate the data 
type of the result returned by the S-expression generated 
from the grammar symbol. For example, the S-expression 
(AND (OR T nil) (NAND nil T)) returning a boolean value 
can be generated from the non-terminal grammar symbol 
s-expr(BOOLEAN). Similarly, the non-terminal grammar 
symbol s-expr(LIST) can produce the S-expression  (rest 
(rest L)) that returns a list of boolean values. 

The terminal grammar symbols [T], [nil], and [L] 
in rules 12, 13, and 17 of the grammar form the terminal set 
of the problem. The terminal grammar symbols [AND], 
[OR], [NAND], and [NOR] in rules 20, 21, 22, and 23 
represent primitive functions that perform ordinary boolean 
operations. Rule 14 of the grammar specifies that these 
primitive functions take two boolean input arguments and 
return one boolean value. 

The terminal symbol [first] in rule 16 represents the 
primitive function that returns the first element of a list of 
boolean values. Rule 16 also specifies that the primitive 
function takes a list of boolean values as its argument and 
returns a boolean value. The terminal symbol [rest] in 
rule 19 represents the primitive function that takes a list of n 
boolean values as its argument and returns a list containing 
the last n - 1 elements of the input list. Rule 19 also declares 
the arity of the function and the data types of its argument 
and output value. 

Since an item of the SMALLER-LIST data type is also a 
list of boolean values, it should belong to the LIST data 
type. This fact is specified in rule 18. This example shows 
that a hierarchy of data types can be declared easily using 
grammar rules. 

The primitive function represented by the terminal 
symbol [parity] in rule 15 must take a list of the 
SMALLER-LIST data type. This rule avoids a non-
terminating recursive function such as: (defun parity (L) 
(ifnil L T (parity L))) to be evolved by GGP. 

Table 4 The logic grammar for the even-n-parity 
problem 
 
11:start    ->  
 [ (defun parity (L) ],  
 [ (ifnil L T ], 
 s-expr(boolean), [ )) ]. 
12:s-expr(BOOLEAN) -> [ T ]. 
13:s-expr(BOOLEAN) -> [ nil ]. 
14:s-expr(BOOLEAN) -> 
 [ ( ],op, s-expr(BOOLEAN),  
 s-expr(BOOLEAN), [ ) ]. 
15:s-expr(BOOLEAN) -> 
 [ ( ], [ parity ], 
 s-expr(SMALLER-LIST), [ ) ]. 
16:s-expr(BOOLEAN) -> 
 [ ( ], [ first ], s-expr(LIST), 
 [ ) ]. 
17:s-expr(LIST)  -> [ L ]. 
18:s-expr(LIST)  -> 
 s-expr(SMALLER-LIST). 
19:s-expr(SMALLER-LIST) -> 
 [ ( ],[ rest ], 
 s-expr(LIST),[ ) ]. 
20:op    -> [ AND ]. 
21:op    -> [ OR ]. 
22:op    -> [ NAND ]. 
23:op    -> [ NOR ]. 
 

 
The idea of applying knowledge of data type to 

accelerate learning has been investigated independently by 
Montana (1994) in the Strongly Typed Genetic 
Programming (STGP). The previous paragraphs show that 
knowledge of data types can be represented easily using 
logic grammars and thus GGP can emulate the effect of 
STGP easily as a type of knowledge among many others. 

The first rule of the grammar represents the domain-
specific knowledge that the recursive function to be evolved 
must return T if the input argument L is an empty list, and 
the outermost statement of the function must be the correct 
base statement. The results of the experiments are discussed 
in the next section. 

4. Experiments 
Three experiments have been conducted. They differ in the 
fitness cases used. In each experiment, the population size is 
500 and the maximum number of generations is 50. The 
probabilities of performing crossover and mutation are 
respectively 0.7 and 0.1. The maximum depth of derivation 
trees generated in the initial population is 12. The maximum 
depth of trees produced by crossover and mutation is also 
12. All experiments are repeated for 60 times. 

The first experiment evaluates the ability of GGP in 
inducing recursive functions for the even-n-parity problem. 
The even-0-, 2-, and 3- parity problems are used in the 
training process. The training set contains all 13 fitness 
cases from these even-parity problems. The standardized 



fitness value of an evolved function is the total number of 
misclassifications on the 13 fitness cases. The evolution 
terminates if the maximum number of generations of 50 is 
reached or a function that classifies all fitness cases 
correctly is found. In order to avoid the problem caused by 
inefficient functions, an execution time limit is enforced. 
After executing 100 primitive functions, if the evolved 
function fails to find a result for a fitness case, it will be 
terminated. In this case, it is assumed that the function will 
misclassify the corresponding fitness case. 

It is possible that an evolved function will generate 
exceptions during its execution for some fitness cases, 
because it is illegal to perform the first/rest operation on an 
empty list. If the function produces an exception, it is 
assumed that it will misclassify the corresponding fitness 
cases. 

In the 60 trials, GGP successfully evolves 16 functions 
that classify all fitness cases correctly. The generated 
functions are then tested on the even-i-parity problems, 
where i ∈ {0, 1, 2, 4, 5, 6, 7, 8, 9, 10}. All of them can 
successfully solve all the problems. They are further 
analyzed manually and it is found that these 16 functions are 
correct recursive functions for the general even-n-parity 
problem. 

The I(M, i, z) for z of 99% reaches a minimum value of 
335000 at generation 9 (Koza 1992). Since there are 13 
fitness cases in the training set, 335000*13 = 4355000 
fitness cases should be processed. Thus, GGP can find a 
general, recursive function for the even-n-parity problem 
very efficiently. On the other hand, GP with hierarchical 
ADFs evaluates 184320000 fitness cases to find a function 
that solves the even-7-parity problem only. In other words, 
GGP can solve the even-7-parity problem about 42 times 
faster than GP with hierarchical ADFs. 

The second experiment evaluates the ability of GGP in 
inducing recursive functions for the even-n-parity problem 
from noisy training examples. The even-0-, 2-, and 3- parity 
problems are used in the training process. The training set 
contains all 13 fitness cases from these even-parity 
problems. To introduce noise into the training examples, one 
of them is randomly selected and the result of the selected 
example is modified from T to nil or from nil to T.  The 
fitness function and the termination criterion are the same as 
those of the first experiment.  

GGP successfully evolves 12 correct recursive functions 
for the general even-n-parity problem. The I(M, i, z) for z of 
99% reaches a minimum value of 450000 at generation 9. 
Since there are 13 fitness cases in the training set, 
450000*13 = 5850000 fitness cases should be processed. It 
is found that 1.34 times effort must be used if a noisy 
training set is employed compared to the first experiment. 
On the other hand, GGP can solve the even-7-parity problem 
about 32 times faster than GP with hierarchical ADFs. 

The third experiment is similar to the second experiment. 
The only difference between them is that 2 of the 13 training 
examples are changed to introduce more noise into the 
training examples. The selected examples are modified from 
T to nil or from nil to T. 

GGP successfully evolves 5 correct recursive functions 
for the general even-n-parity problem. The I(M, i, z) for z of 

99% reaches a minimum value of 765000 at generation 16. 
Since there are 13 fitness cases in the training set, 
765000*13 = 9945000 fitness cases should be processed. By 
comparing with the result of the second experiment, it is 
found that 1.7 times effort must be used if there is more 
noise in the training set. On the other hand, GGP can solve 
the even-7-parity problem about 18.53 times faster than GP 
with hierarchical ADFs. 

5. Conclusion 
In this paper, we described a method of evolving 

recursive functions for the even-n-parity problem from noisy 
training examples. Three experiments have been performed 
to study the impact of noise in training examples on the 
speed of learning recursive functions. The numbers of 
fitness cases processed to induce general recursive functions 
with 99% probability are summarized in table 5. These 
experiments demonstrated that GGP can evolve recursive 
functions from noisy training examples. However, more 
computation effort is required if more noise exists in 
training examples. 
 
Table 5 The numbers of fitness cases processed to induce 
general recursive functions with 99% probability 

The first experiment  
(0% noise) 

4355000 

The second experiment  
(7.7% noise) 

5850000 

The third experiment  
(15.4% noise) 

9945000 

 
For future work, we will use the techniques of the 

inductive learning systems such as THESYS (Summers 
1977) and ADATE (Olsson 1995) so that GGP can induce 
recursive functional programs more efficiently. 

Acknowledgments 
The research is sponsored by the RGC Earmarked research 
grant of UGC reference number CUHK 486/95E. 

Appendix A: Logic Grammars 
Logic grammars are the generalizations of CFGs. Their 
expressiveness is much more powerful than those of CFGs, 
but equally amenable to efficient execution (Pereira and 
Warren 1980). The logic grammar for some simple 
S-expressions is given in table 6. 

A logic grammar differs from a CFG in that the logic 
grammar symbols, whether terminal or non-terminal, may 
include arguments. The arguments can be any term in the 
grammar. A term is either a logic variable, a function or a 
constant. A variable is represented by a question mark '?' 
followed by a string of  letters and/or digits. A function is a 
grammar symbol followed by a bracketed n-tuple of terms 
and a constant is simply a 0-arity function. Arguments can 
be used in a logic grammar to enforce context-dependency. 
Thus, the permissible forms for a constituent may depend on 
the context in which that constituent occurs in the program. 



Another application of arguments is to construct tree 
structures in the course of parsing, such tree structures can 
provide a representation of the semantics of the program. 

 
Table 6 A logic grammar 
 
1:start -> 
 [(*], exp(W), exp(W), exp(W),  
 [)]. 
2:start -> 
 {member(?x,[W, Z])}, [(*],  
 exp-1(?x), exp-1(?x), exp-1(?x), 
 [)]. 
3:start -> 
 {member(?x,[W, Z])}, [(+],  
 exp-1(?x), exp-1(?x), exp-1(?x), 
 [)]. 
4:exp(?x) -> [(/ ?x 1.5)]. 
5:exp-1(?x) -> {random(1,2,?y)},  
   [(/ ?x ?y)]. 
6:exp-1(?x) -> {random(3,4,?y)},  
   [(- ?x ?y)]. 
7:exp-1(W) -> [(+ (- W 11) 12)]. 
 

 
The terminal symbols, which are enclosed in square 

brackets, correspond to the set of words of the language 
specified. For example, the terminal [(- ?x ?y)] creates 
the constituent (- 1.0 2.0) of a program if ?x and ?y 
are instantiated respectively to 1.0 and 2.0. Non-terminal 
symbols are similar to literals in Prolog; exp-1(?x) in 
table 6 is an example of non-terminal symbol. Commas 
denote concatenation and each grammar rule ends with a full 
stop.  

The right-hand side of a grammar rule may contain logic 
goals and grammar symbols. The goals are pure logical 
predicates for which logical definitions have been given. 
They specify the conditions that must be satisfied before the 
rule can be applied. For example, if the variable ?y has not 
been bound, the goal random(1, 2, ?y) in table 6 
instantiates ?y to a random floating point number between 1 
and 2. Otherwise, the goal checks whether the value of ?y is 
between 1 and 2.  

Domain-dependent knowledge can be represented in 
logic goals. For example, consider the following grammar 
rule: 

a-useful-program -> 
 first-component(?X), 
 {is-useful(?X, ?Y)}, 
 second-component(?Y). 

This rule states that a useful program is composed of two 
components. The first component is generated from the non-
terminal first-component(?X). The logic variable ?X 
is used to store semantic information about the first 
component produced. The logic goal then determines 
whether the first component is useful according to the 
semantic information stored in ?X. Domain-dependent 
knowledge about which program fragments are useful is 
represented in the logical definition of this predicate. If the 

first component is useful, the logic goal is-
useful(?X, ?Y) is satisfied and some semantic 
information is stored into the logic variable ?Y. This 
information will be used in the non-terminal second-
component(?Y) to guide the search for a good program 
fragment as the second component of a useful program. 

The special non-terminal start corresponds to a 
program of the language. In table 6, some grammar symbols 
are shown in bold-face to identify the constituents that 
cannot be manipulated by genetic operators. For example, 
the last terminal symbol [)] of the second rule is revealed 
in bold-face because every S-expression must end with a ')', 
and thus it is not necessary to modify the ')' symbol. The 
number before each rule is a label for later discussions and 
is not part of the grammar. 

Appendix B: Representations of 
programs 
One of the fundamental contributions of GGP is in the 
representations of  programs in different programming 
languages appropriately so that initial population can be 
generated easily and the genetic operators such as 
reproduction, mutation, and crossover can be performed 
effectively. A program can be represented as a derivation 
tree that shows how the program has been derived from the 
logic grammar. GGP applies deduction to randomly generate 
programs and their derivation trees in the language declared 
by the given grammar. These programs form the initial 
population. For example, the program 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can be 
generated by GGP given the logic grammar in table 6. It is 
derived from the following sequence of derivations: 
start => [(*] exp(W) exp(W) exp(W) [)] 
 => [(*] [(/ W 1.5)] exp(W) exp(W) 
    [)] 
 => [(*] [(/ W 1.5)] [(/ W 1.5)] 
    exp(W) [)] 
 => [(*] [(/ W 1.5)] [(/ W 1.5)] 
    [(/ W 1.5)] [)] 
 => (* (/ W 1.5)(/ W 1.5)(/ W 1.5)) 

This sequence of derivations can be represented as the 
derivation tree depicted in figure 3.  

 
 

[(*] exp(W) exp(W) exp(W) [)]

start

 [(/ ?x 1.5)]
{?x/W}

 [(/ ?x 1.5)]
{?x/W}

 [(/ ?x 1.5)]
{?x/W}  

 
Figure 3 A derivation tree of the S-expression in Lisp (* 
(/ W 1.5) (/  W 1.5) (/ W 1.5)) 

 
The bindings of logic variables are shown in italic font 

and enclosed in a pair of braces. The sub-trees enclosed in a 
rectangular are frozen. In other words, they are generated by 



bold-faced grammar symbols and they cannot be modified 
by genetic operators. 

One advantage of logic grammars is that they specify 
what is a legal program without any explicit reference to the 
process of program generation and parsing. Furthermore, a 
logic grammar can be translated into an efficient logic 
program that can generate and parse the programs in the 
language declared by the logic grammar (Pereira and 
Warren 1980). In other words, the process of program 
generation and parsing can be achieved by performing 
deduction using the produced logic program. Consequently, 
the program generation and analysis mechanisms of GGP 
can be implemented using a deduction mechanism based on 
the logic programs translated from the grammars. In the 
following paragraphs, we discuss the method of 
implementing GGP using a Prolog-like logic programming 
language.  

The differences between the logic programming language 
used and Prolog are listed as follows: 

• A variable is represented by a question mark ? 
followed by a string of  letters and/or digits. 

• The elements of a list can be separated by either 
commas or spaces. For example, [a b c] and 
[a, b, c] are equivalent. 

• A pair of '|' is used to represent a frozen terminal 
symbol. For example, the symbol [)] in the 
second rule of the grammar in table 6 is translated 
into |)|. 

• A pair of braces encloses a sequence of logic goals 
appearing in a logic grammar. 

• If there are a number of clauses C1, C2, ..., Cn that 
match a goal G, the ordering of evaluating these 
clauses is determined randomly. 

Using the difference list approach (Sterling and Shapiro 
1986), a grammar rule of the form: 

A0 -> A1, A2, ..., An. 
is translated into a logic program clause of the form: 

A0' :- A1', A2', ..., An'. 
in the logic programming language. Here, if Ai , for some i 
between 0 and n, is a non-terminal with M arguments, then 
Ai' is a literal with M+3 arguments. The predicate symbols 
of Ai and Ai' are the same. For example, Ai is translated 
into exp(?X, ?Tree, ?Sj, ?Sj+1), for some j,  if 
Ai is exp(?X). The literal 
exp(?X, ?Tree, ?Sj, ?Sj+1) states that the 
sequence of symbols between ?Sj and ?Sj+1 is a sentence 
of the category represented by the non-terminal symbol 
exp(?X). The derivation tree of the sentence is stored in 
the logic variable ?Tree. 

A terminal symbol such as [a b c] is translated to a 
literal with 3 arguments: 
connect([a b c], ?Sj, ?Sj+1), for some j. The 
predicate connect is defined as: 

connect(?A, ?S0,?S1):-
 append(?A, ?S1, ?S0). 

This predicate declares that the list of symbols stored in 
the logic variable ?A can be found in the sequence of 
symbols between ?S0 and ?S1.  

If Ak, for some k between 1 and n, is a pair of braces 
enclosing a sequence of pure logic goals, i.e., Ak has the 
form of {G0, G1, ...., Gm}, then Ak' is obtained 
from Ak by removing the pair of braces. 

For example, the grammar depicted in table 6 can be 
translated into the logic program presented in table 7. In the 
clause 1' of the logic program shown in table 7, the 
compound term tree(start, [(*], ?E1, ?E2, 
frozen(?E3), |)|) indicates that it is a tree with a 
root labeled as start. The children of the root include the 
terminal symbol [(*], a tree created from the non-terminal 
exp(W), another tree created from the non-terminal 
exp(W), a frozen tree generated from the non-terminal 
exp(W), and the frozen terminal |)|. 

Thus, a derivation tree can be generated randomly by 
issuing the following query: 

?- start(?T, ?S, []). 
This goal can be satisfied by deducing a sentence that is 

in the language specified by the grammar. One solution is: 
?S = [(* (/ W 1.5) (/ W 1.5)  
      (/ W 1.5))] 

and the corresponding derivation tree is: 
?T = tree(start, [(*],  
  tree(exp(W), [(/ W 1.5)]), 
  tree(exp(W), [(/ W 1.5)]), 
  frozen(tree(exp(W),  
  [(/ W 1.5)])), |)|) 
This is exactly a representation of the derivation tree 

shown in figure 3. In fact, the bindings of all logic variables 
and other information are also maintained in  the derivation 
trees to facilitate the genetic operations that will be 
performed on the derivation trees.  

Alternatively, initial programs can be induced by other 
learning systems such as FOIL (Quinlan 1990) or given by 
the user. GGP analyzes each program and creates the 
corresponding derivation tree. If the language is ambiguous, 
multiple derivation trees can be generated. GGP produces 
only one tree randomly.  

Using the logic program in table 7, a given program such 
as (* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can be 
analyzed using the following query: 

?-start(?T,  
[(* (/ W 1.5) (/ W 1.5) (/ W 1.5))],  
[]). 
The given program is correct if the above goal can be 

satisfied and the corresponding derivation tree will be bound 
to the logic variable ?T. Since the logic grammar in table 6 
is ambiguous, the corresponding logic program may produce 
multiple derivation trees for a given program. Since the 
search strategy of the underlying deduction mechanism 
selects randomly one clause to explore with backtracking 
from all unifiable clauses, the sequence of generating the 
derivation trees of a particular program is also random. 
Consequently, GGP takes the first tree returned from the 
query to represent the given program. 

 



Table 7 A logic program obtained from translating the 
logic grammar presented in table 6 
 
1':start(tree(start,[(*],?E1,?E2,  
    frozen(?E3), |)|), ?S0, ?S5) 
 :- connect([(*], ?S0, ?S1), 
    exp(W, ?E1, ?S1, ?S2), 
    exp(W, ?E2, ?S2, ?S3), 
    exp(W, ?E3, ?S3, ?S4), 
    connect([)], ?S4, ?S5). 
2':start(tree(start, 
    {member(?x, [W, Z])},  
    [(*], ?E1, ?E2, frozen(?E3), 
    |)|),?S0, ?S5) 
 :- member(?x, [W, Z]),  
    connect([(*], ?S0, ?S1), 
    exp-1(?x, ?E1, ?S1, ?S2),  
    exp-1(?x, ?E2, ?S2, ?S3), 
    exp-1(?x, ?E3, ?S3, ?S4),  
    connect([)], ?S4, ?S5). 
3':start(tree(start,  
    {member(?x, [W, Z])},  
    [(+], ?E1, ?E2, frozen(?E3),  
    |)|),?S0, ?S5) 
 :- member(?x, [W, Z]),  
    connect([(+], ?S0, ?S1), 
    exp-1(?x, ?E1, ?S1, ?S2),  
    exp-1(?x, ?E2, ?S2, ?S3), 
    exp-1(?x, ?E3, ?S3, ?S4),  
    connect([)], ?S4, ?S5). 
4':exp(?x, tree(exp(?x),  
  [(/ ?x 1.5)]),?S0, ?S1) 
 :- connect([(/ ?x 1.5)],?S0,?S1). 
5':exp-1(?x, tree(exp-1(?x),  
    {random(1,2,?y)},  
    [(/ ?x ?y)]),?S0, ?S1) 
 :- random(1, 2, ?y),  
    connect([(/ ?x ?y)], ?S0, ?S1). 
6':exp-1(?x, tree(exp-1(?x),  
    {random(3,4,?y)}, 
    [(- ?x ?y)]),?S0, ?S1) 
 :- random(3, 4, ?y),  
    connect([(- ?x ?y)], ?S0, ?S1). 
7':exp-1(W, 
    tree(exp-1(W), 
    [(+ (- W 11) 12)]),?S0, ?S1) 
 :- connect([(+ (- W 11) 12)], 
    ?S0, ?S1). 
 

 

Bibliography 
Dzeroski, S. and Lavrac, N. (1993). Inductive Learning in 

Deductive Databases. IEEE Transactions on Knowledge 
and Data Engineering, 5, pp. 939-949. 

Goldberg, D. E. (1989). Genetic Algorithms in Search, 
Optimization, and Machine Learning. MA: Addison-
Wesley. 

Holland, J. H. (1975). Adaptation in natural and artificial 
systems. Ann Arbor: The University of Michigan Press. 

Kinnear, K. E. Jr., editor (1994) Advances in Genetic 
Programming. Cambridge MA: MIT Press. 

Koza, J. R. (1992). Genetic Programming: on the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: MIT Press. 

Koza, J. R. (1994). Genetic Programming II: Automatic 
Discovery of Reusable Programs. Cambridge, MA: MIT 
Press. 

Li, D. and Liu, D (1990). A Fuzzy Prolog Database system. 
Great Britain: Research Studies Press Ltd. 

Montana, D. J. (1994) Strongly Typed Genetic 
Programming. Technical Report 7866, Bolt, Beranek, 
and Newman. 

Muggleton, S. (1992) Inductive Logic Programming. In S. 
Muggletion (ed.), Inductive Logic Programming, pp. 3-
27. London: Academic Press. 

Olsson, R. (1995)  Inductive Functional Programming using 
Incremental Program Transformation. Artificial 
Intelligence, 74, pp. 55-81. 

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite 
Clause Grammars for Language Analysis - A Survey of 
the Formalism and a Comparison with Augmented 
Transition Networks. Artificial Intelligence, 13, pp. 231-
278.  

Quinlan, J. R. (1990). Learning logical definitions from 
relations. Machine Learning, 5, 239-266. 

Sterling, L. and Shapiro, E. (1986). The Art of Prolog. MA: 
MIT Press. 

Summers, P. D. (1977) A Methodology for LISP Program 
Construction from Examples. JACM, 24, pp. 161-175. 

Wong, M. L. and Leung, K. S.(1995a) Inducing Logic 
Programs with Genetic Algorithms: The Genetic Logic 
Programming System, IEEE Expert, 9, no. 5. pp. 68-76. 

Wong, M. L. and Leung, K. S. (1995b). An Induction 
System that Learns Programs in different Programming 
Languages using Genetic Programming and Logic 
Grammars. In Proceedings of the 7th IEEE International 
Conference on Tools with Artificial Intelligence. pp. 380-
387. CA: IEEE Computer Society Press. 

Wong, M. L. and Leung, K. S. (1995c). Applying Logic 
Grammars to Induce sub-functions in Genetic 
Programming. In Proceedings of the 1995 IEEE 
International Conference on Evolutionary Computing. 

Wong, M. L. and Leung, K. S. (1996). Evolving recursive 
functions for the even-parity problem using genetic 
programming. In P. J. Angeline and K. E. Kinnear, Jr. 
(Eds.) Advances in Genetic Programming 2. Cambridge 
MA: MIT Press. 

 


