
Page 1

An Adaptive Knowledge Acquisition System using
Generic Genetic Programming

Man Leung Wong

Department of Computing and Decision Sciences

Lingnan University

Tuen Mun

Hong Kong

mlwong@ln.edu.hk

Page 2

An Adaptive Knowledge Acquisition System using
Generic Genetic Programming

Abstract

The knowledge acquisition bottleneck greatly obstructs the development of knowledge-based systems. One

popular approach to knowledge acquisition uses inductive concept learning to derive knowledge from

examples stored in databases. However, existing learning systems cannot improve themselves

automatically. This paper describes an adaptive knowledge acquisition system that can learn first-order

logical relations and improve itself automatically. The system is composed of an external interface, a biases

base, a knowledge base of background knowledge, an example database, an empirical ILP learner, a meta-

level learner, and a learning controller. In this system, the empirical ILP learner performs top-down search

in the hypothesis space defined by the concept description language, the language bias, and the background

knowledge. The search is directed by search biases which can be induced and refined by the meta-level

learner based on generic genetic programming.

It has been demonstrated that the adaptive knowledge acquisition system performs better than

FOIL on inducing logical relations from perfect or noisy training examples. The result implies that the

search bias evolved by evolutionary learning is better than that of FOIL which is designed by a top

researcher in the field. Consequently, Generic genetic programming is a promising technique for

implementing a meta-level learning system. The result is very encourage as it suggests that the process of

natural selection and evolution can successfully evolve a high performance learning system.

Area: Evolutionary Computation, Genetic Programming, Knowledge Acquisition

1. Introduction

The knowledge acquisition bottleneck greatly obstructs the development of

knowledge-based systems. One popular approach to knowledge acquisition uses

inductive concept learning to derive knowledge from examples stored in databases.

The knowledge acquired can be expressed in different knowledge representations

such as first-order logical relations, decision trees, decision lists, and production

rules. Existing learning systems such as CART (Breiman et al. 1984), C4.5 (Quinlan

Page 3

1992), ASSISTANT (Cestnik et al. 1987), AQ15 (Michalski et al 1986), and CN2

(Clark and Niblett 1989) use attribute-value language for representing the training

examples and the induced knowledge and allow a finite number of objects in the

universe of discourse. This representation limits them to learn only propositional

descriptions in which concepts are described in terms of values of a fixed number of

attributes.

Dzeroski and Lavrac show that Inductive Logic Programming (ILP) can be

used to induce knowledge represented as first-order logical relations (Dzeroski and

Lavrac 1993, Dzeroski 1996). ILP is more powerful than traditional inductive

learning methods because it uses an expressive first-order logic framework and

facilitates the application of background knowledge. In this formalism, domain

knowledge represented in the form of relations can be used in the induced relational

descriptions of concepts. Moreover, ILP has a strong theoretical foundation from

logic programming and computational learning theory.

The task of inducing first-order logical relations can be formulated as a search

problem (Mitchell 1982) in a hypotheses space of logical relations. Various

approaches (Quinlan 1990; 1996, Muggleton and Feng 1990) differ mainly in the

search strategy and the heuristics used to guide the search. The search space is

extremely large, so strong heuristics are required to manage the problem. Most

systems are based on a greedy search strategy. They generate a sequence of logical

relations from general to specific (or from specific to general) until a consistent

relation is found. Each relation in the sequence is obtained by specializing (or

generalizing) the previous one. For example, FOIL (Quinlan 1990, 1996) applies a

hill climbing search strategy guided by an information-gain heuristic to search

relations from general to specific. But these strategies and heuristics are not always

applicable because these systems may become trapped in local maxima. In order to

overcome this problem, non greedy strategies should be adopted. Moreover, existing

ILP systems cannot improve themselves automatically.

In this paper, we describe an adaptive knowledge acquisition system that

induces first-order logical relations and improves itself during learning. We formulate

Page 4

the definitions of inductive concept learning and adaptive knowledge acquisition in

the next section. The system is based on a generic genetic programming approach that

is presented in Section 3. A generic top-down first-order learning algorithm is

described in the next section. The fifth section contains a description of a meta-level

learner that induces search bias. The experimentation and some evaluations of the

system are reported in Section six. Finally, the conclusion is presented in the last

section.

2. INDUCTIVE CONCEPT LEARNING AND ADAPTIVE

KNOWLEDGE ACQUISITION

The goal of machine learning is to develop techniques and tools for building

intelligent learning machines. Machine learning paradigms include inductive,

deductive, genetic-based, and connectionist learning. Multi-strategy learning

integrates several learning paradigms. This section focuses on supervised inductive

concept learning. If U is a universal set of observations, a concept C is formalized as a

subset of observations in U. Inductive concept learning finds descriptions for various

target concepts from positive and negative training instances of these concepts.

In machine learning, formal languages for describing observations and

concepts are called object and concept description languages respectively. Typically,

object description languages are attribute-value pair descriptions and first-order

languages of Horn clauses. Concepts can be described extensionally or intensionally.

A concept is described extensionally by listing the descriptions of all of its instances

(observations). Thus extensional concepts are represented in the object description

language. On the other hand, intensional concepts are expressed in a separate concept

description language that permits compact and concise concept descriptions. Typical

concept description languages are decision trees, decision lists, production rules, and

first-order logic.

Inductive concept learning can be viewed as searching the space of hypothesis

descriptions. A bias is a mechanism employed by a learning system to constrain the

search for target hypotheses. A search bias determines how to conduct the search in

Page 5

the hypothesis space while a language bias determines the size and structure of the

hypothesis space.

A strong search bias, such as the hill-climbing search strategy, employs

existing knowledge about the size and structure of the hypothesis space to exploit

promising solutions of the space, thus it can find the target concept quickly. But it

may trap the system in a local maximum. A weak search bias, such as depth-first and

breath-first search, explores the space completely; the learner is guaranteed to find the

target concept that can be represented by the concept description language.

Nevertheless, a weak bias is very inefficient. In other words, the search bias

introduces the efficiency/completeness tradeoff into a learning system.

A strong language bias defines a less expressive description language such as

the propositional logic. The hypothesis space created by the bias is comparatively

smaller and the learning can be performed more efficiently. But the learner may fail

to find the target concept which is not contained in the small hypothesis space. A

weak bias defines a larger space and thus the target concept is more likely to be

expressible in the space. The disadvantage is that the learner is less efficient. The

language bias introduces the efficiency/expressiveness tradeoff into a learning

system.

Background knowledge B is declarative prior knowledge that can be used by

either the search bias to direct the search more efficiently, or the language bias to

express the hypothesis space in a more natural and concise way. Background

knowledge plays an important role in relational concept learning. Relational concept

learning induces a new relation for the target concept (i.e., the target predicate) from

training examples and known relations from the background knowledge. The training

examples, the hypothesis space, and the background knowledge are represented in

first order Horn clause languages (Muggleton 1992). Tradeoffs between

expressiveness and efficiency are introduced by some additional restrictions on the

three languages representing the examples, the hypothesis space, and the background

knowledge. The background knowledge B provides definitions of known predicates

qi which can be used in the definition of the target predicate p. It also provides

Page 6

additional information to ease the learning. The information includes argument types,

symmetry of predicates in pairs of arguments, input/output modes, rule models,

predicate sets, parametrized languages, integrity constraints, determinations and any

knowledge that can modify the operation of the search and language biases (Lavrac

and Dzeroski 1994).

An adaptive knowledge acquisition system is a relational concept learning

system that can improve itself on the learning capability. It maintains various sets of

background knowledge and biases. It improves itself by modifying its biases and

background knowledge. Since a hypothesis space for learning is defined through the

concept description language, the language bias, and the background knowledge, the

size and structure of the hypothesis space can be modified by changing the language

bias and the background knowledge. The search strategy and heuristics are changed if

the system's search biases are modified. Here, we formulate the task of an adaptive

knowledge acquisition system in Table 1.

Given:
 -A set E of positive E+ and negative E- training
 examples of the target predicate p. Training examples
 are represented as ground atoms
 -A concept description language L
 -A set of learning biases BIASES
 -A set of various background knowledge BKs
Find:
 -A modified set of learning biases BIASES'
 -A modified set of background knowledge BKs'
 -A concept definition H for the target predicate p
 expressible in L such that H is complete and
 consistent with respect to (w.r.t.) the training
 examples E and a background knowledge B' in BKs'

 H is complete if every positive example e+ in E+ is
 covered by H w.r.t. the background knowledge B. i.e.
 B ∪ H |= e+

 H is consistent if no negative example e- in E- is
 covered by H w.r.t. the background knowledge B. i.e.
 B ∪ H |≠ e-

Table 1: The definition of adaptive knowledge acquisition

Page 7

External Interface

Learning
Controller

BKbase Biases
Base

Example
database

Meta-Level
Learner

Empirical ILP
Learner

Data flow

Control flow

Figure 1: The logical organization of an adaptive knowledge acquisition

system

The logical organization of our system is depicted in Figure 1. Its components

are introduced as follows:

(1) External interface: It provides a user-friendly interface between the

system and users. It accepts training examples, a set BKs of

background knowledge, and a set BIASES of biases and transfers

them through the learning controller to the example database, BKbase,

and biases base respectively. The interface also provides commands

for users to query about the results of an adaptive learning task and to

directly control the operations of the learning controller.

 (2) Biases base: It is a knowledge base that stores all learning biases.

Biases can be retrieved, added, deleted, and modified through the

interface of this knowledge base.

(3) BKbase: It stores various background learning knowledge that can be

used in inductive learning. Background knowledge can be retrieved,

added, deleted, and modified through the interface of BKbase. Since

each entity of it is in fact a complex structure representing background

knowledge, BKbase is implemented using object-oriented techniques.

Page 8

(4) Examples database: It stores the training examples.

(5) Empirical ILP learner: It induces first-order logical relations from the

training examples, given a concept description language, a specific

background knowledge, a search bias, and a language bias. A search of

the hypothesis space can be performed bottom-up or top-down.

Bottom-up techniques start from the training examples and search the

space by employing various generalization operators. Top-down

techniques start from the most general concept descriptions, and search

the space by using various specialization operators. Top-down

techniques are better suited for learning from imperfect examples

because a large number of data are available in every specialization

step and the system can employ various statistical techniques to decide

how to perform the specialization. Moreover, top-down search can

easily be guided by the search bias. In Section 4, a generic top-down

first-order learning algorithm is described.

(6) Meta-level learner: It learns search biases, language biases, and

background knowledge. Search and language biases can be represented

declaratively or procedurally. In this paper, we apply GGP to

implement the meta-level learner that induces procedural biases. The

description of GGP is presented in Section 3.

(7) Learning controller: It is a knowledge-based system that controls the

empirical ILP learner and the meta-level learner. The knowledge used

by the learning controller can be updated by the meta-level learner.

3. Generic Genetic Programming (GGP)

Generic Genetic Programming (GGP) is a novel approach that combines genetic

programming (Koza 1992; 1994, Kinnear 1994) and inductive logic programming

(Quinlan 1990; 1996, Muggleton 1992). Using GGP, programs in various

programming languages can be evolved. The approach is also powerful enough to

handle context-sensitive information and domain-dependent knowledge which can be

used to accelerate the learning speed and/or improve the quality of the programs.

Page 9

GGP can induce programs in various programming languages. This is

achieved by accepting or choosing grammars of different languages to produce

programs in these languages. Most modern programming languages are specified in

the notation of BNF (Backus-Naur form) which is a kind of context-free grammars

(CFGs). However, GGP is based on logic grammars because CFGs (Hopcroft and

Ullman 1979, Lewis and Rapadimitrion 1981) are not expressive enough to represent

context-sensitive information for some languages and domain-dependent knowledge

of the target program being induced. This section first introduces the formalism of

logic grammars followed by the descriptions of GGP.

3.1. Introduction to logic grammars

Logic grammars are the generalizations of CFGs. Their expressivenesses are much

more powerful than those of CFGs, but equally amenable to efficient execution. In

this paper, logic grammars are described in a notation similar to that of definite clause

grammars (Pereira and Warren 1980, Pereira and Shieber 1987, Sterling and Shapiro

1986). The logic grammar for some simple S-expressions in Table 2 will be used

throughout this section.

1: start -> [(*], exp(W), exp(W), exp(W), [)].
2: start -> {member(?x,[W, Z])}, [(*], exp-1(?x),
 exp-1(?x), exp-1(?x), [)].
3: start -> {member(?x,[W, Z])}, [(+], exp-1(?x),
 exp-1(?x), exp-1(?x), [)].
4: exp(?x) -> [(/ ?x 1.5)].
5: exp-1(?x) -> {random(1,2,?y)}, [(/ ?x ?y)].
6: exp-1(?x) -> {random(3,4,?y)}, [(- ?x ?y)].
7: exp-1(W) -> [(+ (- W 11) 12)].

Table 2: A logic grammar

A logic grammar differs from a CFG in that the logic grammar symbols,

whether terminal or non-terminal, may include arguments. The arguments can be any

term in the grammar. A term is either a logic variable, a function or a constant. A

variable is represented by a question mark ? followed by a string of letters and/or

digits. A function is a grammar symbol followed by a bracketed n-tuple of terms and

Page 10

a constant is simply a 0-arity function. Arguments can be used in a logic grammar to

enforce context-dependency. Thus, the permissible forms for a constituent may

depend on the context in which that constituent occurs in the program. Another

application of arguments is to construct tree structures in the course of parsing, such

tree structures can provide a representation of the semantics of the program.

The terminal symbols enclosed in square brackets correspond to the set of

words of the language specified. For example, the terminal [(- ?x ?y)] creates

the constituent (- 1.0 2.0) of a program if ?x and ?y are instantiated

respectively to 1.0 and 2.0. Non-terminal symbols are similar to literals in Prolog,

exp-1(?x) in Table 2 is an example of non-terminal symbols. Commas denote

concatenation and each grammar rule ends with a full stop.

The right-hand side of a grammar rule may contain logic goals and grammar

symbols. The goals are pure logical predicates for which logical definitions have been

given. They specify the conditions that must be satisfied before the rule can be

applied. For example, the goal member(?x, [W, Z]) in Table 2 instantiates the

variable ?x to either W or Z if ?x has not been instantiated, otherwise it checks

whether the value of ?x is either W or Z. If the variable ?y has not been bound, the

goal random(1, 2, ?y) instantiates ?y to a random floating point number

between 1 and 2. Otherwise, the goal checks whether the value of ?y is between 1

and 2.

Domain-dependent knowledge can be represented in logic goals. For example,

consider the following grammar rule:
a-useful-program -> first-component(?X),

 {is-useful(?X, ?Y)},

 second-component(?Y).

This rule states that a useful program is composed of two components. The

first component is generated from the non-terminal first-component(?X). The

logic variable ?X is used to store semantic information about the first component

produced. The logic goal then determines whether the first component is useful

according to the semantic information stored in ?X. Domain-dependent knowledge

Page 11

about which program fragments are useful is represented in the logical definition of

this predicate. If the first component is useful, the logic goal is-

useful(?X, ?Y) is satisfied and some semantic information is stored into the

logic variable ?Y. This information will be used in the non-terminal second-

component(?Y) to guide the search for a good program fragment as the second

component of a useful program.

The special non-terminal start corresponds to a program of the language. In

Table 2, some grammar symbols are shown in bold-face to identify the constituents

that cannot be manipulated by genetic operators. For example, the last terminal

symbol [)] of the second rule is revealed in bold-face because every S-expression

must be ended with a ')'. The number before each rule is a label for later discussions.

It is not part of the grammar.

3.2. Representations of programs

One of the fundamental contributions of GGP is in the representations of programs in

different programming languages appropriately so that initial population can be

generated easily and the genetic operators such as reproduction, mutation, and

crossover can be performed effectively. A program can be represented as a derivation

tree that shows how the program has been derived from the logic grammar. GGP

applies deduction to randomly generate programs and their derivation trees in the

language declared by the given grammar. These programs form the initial population.

For example, the program (* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can be

generated by GGP given the logic grammar in Table 2. It is derived from the

following sequence of derivations:
start => [(*] exp(W) exp(W) exp(W) [)]
 => [(*] [(/ W 1.5)] exp(W) exp(W) [)]
 => [(*] [(/ W 1.5)] [(/ W 1.5)]
 exp(W) [)]
 => [(*] [(/ W 1.5)] [(/ W 1.5)]
 [(/ W 1.5)] [)]
 => [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))]
This sequence of derivations can be represented as the derivation tree depicted

in Figure 2.

Page 12

In literature, the terms derivation trees and parse trees are usually used

interchangeably. However, we will use the term derivation trees to refer to the tree

structures in our framework and the term parse trees to refer to those in GP. The

bindings of logic variables are enclosed in a pair of braces. The sub-trees enclosed in

a dashed rectangular are frozen. In other words, they are generated by bold-faced

grammar symbols and they cannot be modified by genetic operators.

An advantage of logic grammars is that they specify what is a legal program

without any explicit reference to the process of program generation and parsing.

Furthermore, a logic grammar can be translated into an efficient logic program that

can generate and parse the programs in the language declared by the logic grammar

(Pereira and Warren 1980, Pereira and Shieber 1987, Abramson and Dahl 1989). In

other words, the process of program generation and parsing can be achieved by

performing deduction using the translated logic program. Consequently, the program

generation and analysis mechanisms of GGP can be implemented using a deduction

mechanism based on the logic programs translated from the grammars.

[(*] exp(W) exp(W) exp(W) [)]

start

[(/ ?x 1.5)]
{?x/W}

[(/ ?x 1.5)]
{?x/W}

[(/ ?x 1.5)]
{?x/W}

Figure 2: A derivation tree of the S-expression in Lisp
(* (/ W 1.5) (/ W 1.5) (/ W 1.5))

This method of translating a logic grammar into a logic program is common in

the field of natural language processing (Pereira and Warren 1980, Pereira and

Shieber 1987, Abramson and Dahl 1989). The original idea of this approach is to

Page 13

rephrase the special purpose formalism of CFGs into a general purpose first-order

predicate logic (Kowalski 1979, Colmerauer 1978, Pereira and Warren 1980). This

approach is further refined and generalized to Definite Clause Grammars (DCGs)

which can handle the properties of context-dependency of natural languages

effectively. Since DCGs, a kind of logic grammars, can be translated into efficient

logic programs automatically, parsers and generators for the corresponding natural

languages can be obtained easily. In other words, researchers in the field of natural

language processing only declare the grammar for a particular natural language, and

the translation process will produce the corresponding parser and generator for them.

Moreover, for some cases, the same logic program can be used as both a parser and

generator at the same time.

Alternatively, initial programs can be induced by other learning systems such

as FOIL (Quinlan 1990; 1996) or given by the user. GGP analyzes each program and

creates the corresponding derivation tree.

3.3. The evolution process of GGP

In GGP, populations of programs are genetically bred using the Darwinian principle

of survival and reproduction of the fittest along with genetic operations appropriate

for creating programs. GGP starts with an initial population of programs generated

randomly, induced by other learning systems, or provided by the user. Logic

grammars provide declarative descriptions of the valid programs that can appear in

the initial population. A fitness function must be defined by the user to evaluate the

fitness values of the programs. Typically, each program is run over a set of fitness

cases and the fitness function estimates its fitness by performing some statistical

operations (e.g. average) to the values returned by this program.

The initial programs in generation 0 are normally incorrect and have poor

performances. However, some programs in the population will be fitter than others.

Fitness of each program in the generation is estimated and the following process is

iterated over many generations until the termination criterion is satisfied. The

reproduction, sexual crossover, and asexual mutation are used to create new

Page 14

generation of programs from the current one. The reproduction involves selecting a

program from the current generation and allowing it to survive by copying it into the

next generation. Either fitness proportionate or tournament selection can be used.

The crossover is used to create offspring programs from two parental

programs selected. Mutation creates a modified offspring program from a parental

program selected. Unlike crossover, the offspring program is usually similar to the

parent program. Logic grammars are used to constraint the offspring programs that

can be produced by these genetic operations.

This algorithm will produce populations of programs which tend to exhibit

increasing average of fitness. Finally, GGP returns the best program found in any

generation of a run as the result. A high level algorithm of GGP is presented in Table

3.

1. Generate an initial population of programs.
2. Execute each program in the current population and assign it a

fitness value according to the fitness function
3. If the termination criterion is satisfied, terminate the

algorithm. The best program found in the run of the algorithm
is designated as the result.

4. Create a new population of programs from the current population
by applying the reproduction, crossover, and mutation
operations. These operations are applied to programs selected
by fitness proportionate or tournament selections.

5. Rename the new population to the current population.
6. Proceed to the next generation by branching back to the step 2.

Table 3: The high level algorithm of GGP

4. A generic top-down first-order learning algorithm

This section presents a generic top-down first-order learning algorithm based on

FOIL (Quinlan 1990, 1996). The algorithm is depicted in Table 4. The algorithm

consists of three steps. In the pre-processing step, missing argument values in training

examples are handled by assigning default or random values to them. A training

example will be removed if it has too many missing values. If there are no or

Page 15

inadequate negative examples in the training set, they can be generated. Different

ways of creating negative examples have been proposed (Lavrac and Dzeroski 1994).

Input:

E: Training examples
L: The concept description language
BIASsearch: The search bias
BIASlang: The language bias
B: Background knowledge
T: The target concept

Output:

A relation P which contains a set of clauses. Each clause C ∈ L.

Function LEARNING(E, L, BIASsearch, BIASlang, B, T)

(1) Pre-processing of the training examples E and producing a

 modified set of examples E': E' := Preprocessing(E).

(2) Let Ecurrent := E';

 Let P := {};
 Repeat
 -Let C := T ←;
 -Find a specialization C' of C. This step constructs a
 clause C' from C by calling Clause-Construct(C,
 Ecurrent, B, L, BIASsearch, BIASlang);
 -If a specialization can be found
 -Add C' to P to produce a new relation P'. i.e.
 P' := P ∪ {C'};
 -Remove all positive examples covered by P' from
 Ecurrent to get an updated training set E'

 E'current := Ecurrent - { positive examples in

 Ecurrent covered by P' w.r.t. the background knowledge B};

 -Let Ecurrent := E'current;

 -Let P := P'
 Else
 -Set the flag No-More-Improvement to true;
 Until
 The Covering termination criterion is satisfied. i.e.
 covering-termination(P, No-More-Improvement, Ecurrent, B)
 returns true;

(3) Post-processing the relation P and producing P'. i.e.

 P' := Post-processing(P);
 Return(P');

Table 4: A generic top-down first-order learning algorithm

Page 16

The second step performs the construction of a logical relation. This step

employs four local variables: Ecurrent (Current training examples set),

E'current (Updated training examples set), P (Current relation) and P' (Modified

relation). The main component of this step is the covering loop which implements

Michalski's covering algorithm (Michalski et al. 1986a). The covering loop construct

a relation by iteratively executing the following sub-steps:

(a) Construct a clause that covers some positive examples in Ecurrent.

(b) Append the clause to the current relation P and generate a modified

relation P'.

(c) Remove all positive examples from Ecurrent which are covered by

P' with respect to the background knowledge B.

The covering loop terminates if the terminating conditions are satisfied. A

typical condition is that either all positive examples are covered or no more

improvement can be achieved by searching for a new clause. The final step attempts

to improve the accuracy of the relation induced when classifying unseen examples

and to simplify the relation.

The covering loop calls the 'Clause-Construct' function which is the core of

the generic algorithm. A hill-climbing 'Clause-Construct' algorithm is presented in

Table 5. The function constructs a clause Cn = T ← l1, l2, ..., ln

starting from the most general clause C0 = T ← with an empty body. A sequence

of clauses C0, C1, C2, C3,, Cn are generated by a number of specialization steps.

At each step, the current clause Ci = T← l1,l2, ..., li is refined by

appending a specific literal lj to its body. A literal lj is constructed from the

background knowledge B restricted by the concept description language L and

language bias BIASlang. The language may limit lj to be function-free while

BIASlang may prevent new variable to be introduced in lj. The aim of the

procedure is to find a clause which covers most positive examples while excludes all

or most negative examples. In a hill-climbing search, the procedure keeps the current

Page 17

best clause and refines it using the estimated best specialization at each step, until the

stopping condition is satisfied

The 'Clause-Construct' function calls the 'Find-Extension' function to find the

extension Ei of the current training examples given the partially developed clause

Ci = T(X1, X2, ..., Xn) ← l1, l2, ..., li and the background

knowledge B. Each training example <x1, x2, ...,xn> is a n-tuple where xi,

1≤ i≤n, are some constants. To find the extension, the function initializes a clause C0

= T(X1, X2, ..., Xn), then the literal l1 is added to the body of C0 to

produce a new clause C1. The literal l1 is either of the form Xj = Xk, Xj ≠ Xk,

pm(Y1, Y2, ...,Ysm) or not pm(Y1, Y2, ...,Ysm).

If the literal contains k new variables, the arity of each tuple in the generated

training set E1 increases to (n + k). E1 can be found by performing a natural join of

Ecurrent with the relation corresponding to literal l1. The process is repeated for

literals l2, l3, ..., li until the extension Ei is found.

The most important component of the hill-climbing 'Clause-Construct'

algorithm is the 'scoring' function that estimates the performance of each literal. An

accurate estimation directs the search towards the global maxima while a misleading

one traps the system into local-maxima. By providing different 'scoring' functions to

the generic learning algorithm, various learning algorithms can be generated. The

performances of a good and a bad learners can be significant different as shown in

Sub-section 5.3.

Page 18

Input:
C: An initial clause C = T←
Ecurrent: The current training examples
B: Background knowledge
L: The concept description language
BIASsearch: The search bias
BIASlang: The language bias

Output:
A clause that covers some positive examples in Ecurrent while excludes all or most
negatives examples in Ecurrent

Function Clause-Construct(C, Ecurrent, B, L, BIASsearch, BIASlang)

There is a scoring function stored in BIASsearch, save this function to scoring;

Repeat
 -Set BEST to a bad literal such as X = X where X is a
 variable appearing in the head of the clause;
 -Set Best-score to 0;
 -Find the extension Ei of Ecurrent using the clause C w.r.t. B. i.e.
 Ei := Find-Extension(C, Ecurrent, B);

 -Let ni
+
 be the number of positive tuples in Ei;

 -Let ni
−
 be the number of negative tuples in Ei;

 -Current-information := − log2(ni
+ / (ni

+ + ni
−));

 -For all literal l from B that satisfy the constraints
 imposed by the language L and bias BIASlang

 -Set C' = C ∪ {l};

 -Find the extension Ei+1 of Ecurrent using the clause C
' i.e.

 Ei+1 := Find-Extension(C
', Ecurrent, B);

 -Let ni+1
+

 be the number of positive tuples in Ei+1;

 -Let ni+1
−

 be the number of negative tuples in Ei+1;

 -Let the number of positive tuples in Ei that have been

 represented by one or more tuples in Ei+1 be ni
++

;
 -Find the score of the literal l by using the scoring

 function i.e. literal-score := scoring (ni
++

, ni+1
+

, ni+1
−

,
 Current-information);
 -If literal-score > Best-score then
 -BEST := l;
 -Best-score := literal-score;
 -If BEST == X=X then
 -No-More-Improvement := true;
 Else
 -Append BEST to the body of C;
Until Clause-Termination(C, No-More-Improvement, Ecurrent, B) is true;

Post-processing the clause C to find an improvement i.e. C' := Find-Improvement(C);

If Acceptable(C')

 -Return(C');
Else
 -Return(No-Specialization-Can-Be-Found);

Table 5: A hill-climbing 'Clause-Construct' algorithm

Page 19

5. Inducing procedural search biases

In this section, GGP is used in the meta-level learner to induce procedural search

biases (i.e. the 'scoring' function). In order to employ GGP, a logic grammar must be

defined (Table 6).

In the grammar, the terminal symbols n-pos-i-plus-1, n-neg-i-plus-1, and

n-pos-i represent respectively ni+1
+ , ni+1

− and ni
+ + . With reference to the algorithms

in Tables 4 and 5, assume that Ei is the extension of current training examples

Ecurrent by current clause Ci, ni
+ and ni

− are respectively the number of positive

and negative tuples in Ei. Ei can be extended by using the literal l to Ei+1. ni+1
+ and

ni+1
− are respectively the number of positive and negative tuples in Ei+1. ni

++ is the

number of positive tuples in Ei that have been represented by one or more tuples in

Ei+1. The terminal symbol current-information is defined as

− log2(ni
+ / (ni

+ + ni
−)).

start -> function.
s-exp -> term.
s-exp -> function.

function -> [(], op1, s-exp, [)].
function -> [(], op2, s-exp, s-exp, [)].

op1 -> [protected-log].
op2 -> [+].
op2 -> [-].
op2 -> [*].
op2 -> [%].
op2 -> [info].

term -> [n-pos-i-plus-1].
term -> [n-neg-i-plus-1].
term -> [n-pos-i].
term -> [current-information].
term -> { random(-10, 10, ?a) }, [?a].

Table 6: A logic grammar for learning procedural search bias

The terminal symbols +, -, and * represent functions that perform ordinary

addition, subtraction, and multiplication respectively. The symbol % represents

Page 20

function that normally returns the quotient. However, if division by zero is attempted,

the function returns 1.0. The symbol protected-log is a function that calculates

the logarithm of the input argument x if x is larger than zero, otherwise it returns 1.0.

The symbol info represents the basic function that calculates − log2(X / (X + Y))

given X and Y as inputs. The logic goal random(-10, 10, ?a) generates a

random floating point number between -10 and 10 and instantiates ?a to the random

number generated

5.1. The evolution process

The evolution process of the adaptive knowledge acquisition system is depicted in

Figure 3. Firstly, the Biases base is initialized with a population of different 'scoring'

functions generated randomly using the logic grammar depicted in Table 6. To

estimate the fitness of a specific 'scoring' function, it is combined with the generic

top-down learner to produce a specific learner. The performance of this specific

learner is then evaluated by using a fitness function. This measure is assigned as the

fitness of the specific 'scoring' function. GGP employs selection, crossover, and

mutation to generate potentially better functions. The modified functions are stored in

the Biases base and the whole evolution process iterates until the best function is

found or no computational resource is available

Page 21

Biases Base

GGP

Empirical ILP
Learner

BKbase
Example
database

Modified
Biases

Initial
Biases

Bias
Performance

of bias

Figure 3: The evolution process of the adaptive knowledge acquisition

system

5.2. The experimentation setup

In this paper, learning curves are used to estimate the performances of various

learning systems. The example space is divided randomly into disjoint training and

testing sets. The learner is trained on progressively larger portions of the training set

and the performance of the induced logical relation is estimated on the disjoint testing

set. This process of dividing, training, and testing is repeated for 20 trials and the

results are averaged to generate a learning curve.

As a running example, we use a traditional problem discussed in the literature

(Muggleton and Feng 1990). In the problem of learning the list predicate member, the

data consist of all lists of lengths 0 to 3 defined over three constants. The background

knowledge B contains definitions of list construction predicates: null which holds for

an empty list and component which decomposes a list into its head and tail. The

example space contains 75 positive and 45 negative examples. The training sets

contain 20 to 52 examples, one-half of each training set is positive examples. The

testing set consists of 45 positive and 15 negative examples.

Page 22

5.3. Fitness calculation

Adjusted and normalized fitness values are used as in Koza (1992). They are

calculated from the raw fitness which is estimated by the fitness function. Various

fitness functions have been tried and two of them are described here. The impact of

fitness function on the generality of the evolved function is also demonstrated. The

problem domain of learning the member predicate is used here.

For the first fitness function, a random set of 24 positive and 21 negative

examples is used. A specific 'scoring' function is combined with the generic top-down

learner to produce a specific learner called Adapted-ILP hereafter. Adapted-ILP

induces first-order logical relations using the random example set. The quality of the

induced logical relations is evaluated by counting the total number of misclassified

examples from the same training set. This measure is used as the raw fitness of the

specific 'scoring' function. Using this fitness function, only poor 'scoring' functions

have been evolved. The learning curve of a poor learner is depicted in Figure 4.

For the second fitness function, the raw fitness is developed in several steps.

At the beginning of each generation, four instances of the learning task are created

randomly from the member domain. Each learning task has a training and a disjoint

testing data. The training set contains 20 positive and 20 negative examples. For each

learning task, a specific Adapted-ILP induces logical relations from the training set

and the relations are evaluated by counting the number of misclassified examples

from the testing set. The performance of the Adapted-ILP is the sum of numbers of

misclassified examples for all learning tasks. This measure is then used as the raw

fitness of the corresponding 'scoring' function. This fitness function can force the

evolution of good 'scoring' functions. The learning curve of a good learner is shown

in Figure 4.

Page 23

20 24 28 32 36 40 44 48 52
Training size

0.7
0.75

0.8
0.85

0.9
0.95

1

A
cc

ur
ac

y

Poor ILP learner
Good ILP learner

Figure 4: The learning curves of good and poor learner

6. Experimentation and evaluations

This section compares the performance of our system with that of FOIL (Quinlan

1990; 1996). Standard learning tasks in the literature are used in these experiments

(Quinlan 1990, Muggleton and Feng 1990).

6.1. The member predicate

The learning curves for this problem are depicted in Figure 5. It is interested to find

that our system has higher accuracy than FOIL. The difference is significant at 5%

level of significance when the training size is less than 36.

20 24 28 32 36 40 44 48 52
Training size

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Foil
The Adaptive ILP system

Figure 5: Learning curves for the member problem

Page 24

6.2. The member predicate in a noisy environment

Difference amount of noise is introduced into the training examples in order to study

the performances of both systems in learning relations in noisy environment. To

introduce n% of noise into the examples, n% positive examples are labeled as

negative ones while n% negative examples are labeled as positive ones. In this

experiment, the percentages of introduced noise are 10% (0.1) and 40% (0.4). Their

learning curves are summarized in Figure 6. Our system performs better than FOIL at

all noise level.

20 24 28 32 36 40 44 48 52
Training size

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Foil (0.1)
The Adaptive ILP system (0.1)
Foil (0.4)
The Adaptive ILP system (0.4)

Figure 6: Learning curves for the member problem in a noisy environment

6.3. The multiply predicate

In the problem of learning the arithmetic predicate multiply (Muggletion and Feng

1990), the data contain integers in the range from zero to ten. The background

knowledge is composed of definitions for arithmetic predicates plus, decrement, zero,

and one. The example space has 73 positive and 1258 negative examples respectively.

The training sets consist of 400 to 500 examples, one-tenth of each training set is

positive and the remainder is negative. The learning curves for multiply are presented

in Figure 7. Our system performs better than FOIL when the size of training set is less

than 460. The difference is significant at 5% level of significance.

Page 25

400 420 440 460 480 500
Training size

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Foil
The Adaptive ILP system

Figure 7: Learning curves for the multiply problem

6.4. The uncle predicate

Another traditional testbed for relational learners is the domain of family

relationships (Quinlan 1990). In this experiment, the uncle predicate is induced and

the background predicates are parent, sibling, married, male, and female. The

learning curves are presented in Figure 8.

50 70 90 110 130 150
Training size

0.75

0.8

0.85

0.9

0.95

1

1.05

A
cc

ur
ac

y

Foil
The Adaptive ILP system

Figure 8: Learning curves for the uncle problem

Page 26

7. Conclusion

In this paper, we formulate an adaptive knowledge acquisition system which is

composed of an external interface, a biases base, a knowledge base of background

knowledge, an example database, an empirical ILP learner, a meta-level learner, and a

learning controller. An implementation of the adaptive knowledge acquisition system

has been developed. In the implementation, the empirical ILP learner performs top-

down search in the hypothesis space defined by the concept description language, the

language bias, and the background knowledge. The search is directed by search biases

which can be induced and refined by a meta-level learner implemented by using

generic genetic programming.

Generic Genetic Programming (GGP) is a novel, general, and powerful

approach of evolving search biases. It is also powerful enough to use logic grammars

to represent context-sensitive information and domain-dependent knowledge. The

idea of using formal grammars to direct search for knowledge in the hypothesis space

or to reduce the size of the space has also been independently studied by other

researcher recently (Cohen 1992, Gruau 1996, Whigham 1995; 1996).

It has been demonstrated that the induced bias is better than that of FOIL on

many standard learning tasks. From these experiments, it can be concluded that the

adaptive knowledge acquisition system has superior learning ability compared to

FOIL. Since they are different in their search biases only, the result implies that the

search bias induced by GGP is better than that of FOIL for the learning problems.

This result is surprising because the search biases of the adaptive knowledge

acquisition system are initialized by a random process. These biases are normally

poor, but the process of natural selection and evolution can successfully evolve a

good bias.

It is important to mention that the search bias is rather general because it has

reasonable performance on many traditional learning problems using the same bias

acquired automatically. This paper illustrates that GGP is a plausible approach for

implementing a meta-level learning system. For future work, in order to find a

Page 27

general, efficient, and effective bias, a large number of learning tasks of different

kinds, such as the member, append, quick sort, ackermann, uncle, and grandfather

problems, with various characteristics should be used. This adaptive learning

approach, though computationally intensive, is rather exciting, as it opens up many

opportunities for creating or improving learning algorithms.

Page 28

Reference

Abramson, H. and Dahl, V. (1989). Logic Grammars. Berlin: Springer-Verlag.

Bremen, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and
Regression Trees. Belmont: Wadsworth.

Cestnik, B., Kononenko, J. and Bratko, I. (1987). ASSISTANT 86: A knowledge
elicitation tool for sophisticated users. In I. Bratko and N. Lavrac (Ed.), Progress in
Machine Learning, 31-45. Wilmslow: Sigma Press.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning; 3,
261-283.

Cohen, W. (1992). Compiling Prior Knowledge into an Explicit Bias. In Proceedings
of the Ninth International Workshop on Machine Learning, 102-110. CA: Morgan
Kaufmann.

Colmerauer, A. (1978). Metamorphosis Grammars. In L. Bolc (Ed.), Natural
Language Communication with Computers. Berlin: Springer-Verlag.

Dzeroski, S. (1996). Inductive Logic Programming and Knowledge Discovery in
Databases. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy
(eds.), Advances in Knowledge Discovery in Data Mining, 117-152. Menlo Park, CA:
AAAI Press.

Dzeroski, S. and Lavrac, N. (1993). Inductive Learning in Deductive Databases. IEEE
Transactions on Knowledge and Data Engineering, 5, 939-949.

Gruau, F. (1996). On Using Syntactic Constraints with Genetic Programming. In P. J.
Angeline and K. E. Kinnear, Jr. (Eds.) Advances in Genetic Programming 2, 402-417.
MA: MIT Press.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory, languages,
and computation. MA: Addison-Wesley.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press.

Kinnear, K. E. Jr., editor (1994). Advances in Genetic Programming. Cambridge,
MA: MIT Press.

Kowalski, R. A. (1979). Logic For Problem Solving. Amsterdam: North-Holland.

Page 29

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. London: Ellis Horword.

Lewis, H. R. and Rapadimitrion, C. H. (1981). Elements of the theory of computation.
NJ: Prentice Hall.

Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N. (1986). The multi-purpose
incremental learning system AQ15 and its testing application on tree medical
domains. In Proceedings of the National Conference on Artificial Intelligence, 1041-
1045. San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. (1982). Generalization as Search, Artificial Intelligence, 18, 203-226.

Muggletion, S., editor (1992). Inductive Logic Programming. London: Academic
Press.

Muggleton, S. and Buntine, W. (1988). Machine invention of first-order predicates by
inverting resolution. In Proceedings of the Fifth International Conference on
Machine Learning, 339-352. CA: Morgan Kaufmann

Muggleton, S. and Feng, C. (1990), Efficient induction of logic programs, In
Proceedings of the First Conference on Algorithmic Learning Theory, 1-14.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite Clause Grammars for
Language Analysis - A Survey of the Formalism and a Comparison with Augmented
Transition Networks Artificial Intelligence, 13, 231-278.

Pereira, F. C. N. and Shieber, S. M. (1987). Prolog and Natural-Language Analysis.
CA: CSLI.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning,
5, 239-266.

Sterling, L. and Shapiro, E. (1986). The Art of Prolog. Cambridge, MA: MIT Press.

Whigham, P. A. (1996). Search Bias, Language Bias and Genetic Programming. In
Proceedings of the First Genetic Programming Conference, 230-237. Cambridge,
MA: MIT Press.

Whigham, P. A. (1995). Inductive Bias and Genetic Programming. In Proceedings of
the First International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, 461-466. UK: IEE.

