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Abstract 

 
The knowledge acquisition bottleneck greatly obstructs the development of knowledge-based systems. One 

popular approach to knowledge acquisition uses inductive concept learning to derive knowledge from 

examples stored in databases. However, existing learning systems cannot improve themselves 

automatically. This paper describes an adaptive knowledge acquisition system that can learn first-order 

logical relations and improve itself automatically. The system is composed of an external interface, a biases 

base, a knowledge base of background knowledge, an example database, an empirical ILP learner, a meta-

level learner, and a learning controller. In this system, the empirical ILP learner performs top-down search 

in the hypothesis space defined by the concept description language, the language bias, and the background 

knowledge. The search is directed by search biases which can be induced and refined by the meta-level 

learner based on generic genetic programming. 

 

It has been demonstrated that the adaptive knowledge acquisition system performs better than 

FOIL on inducing logical relations from perfect or noisy training examples. The result implies that the 

search bias evolved by evolutionary learning is better than that of FOIL which is designed by a top 

researcher in the field. Consequently, Generic genetic programming is a promising technique for 

implementing a meta-level learning system. The result is very encourage as it suggests that the process of 

natural selection and evolution can successfully evolve a high performance learning system.  

 

Area: Evolutionary Computation, Genetic Programming, Knowledge Acquisition 

 
1. Introduction 

 
The knowledge acquisition bottleneck greatly obstructs the development of 

knowledge-based systems. One popular approach to knowledge acquisition uses 

inductive concept learning to derive knowledge from examples stored in databases. 

The knowledge acquired can be expressed in different knowledge representations 

such as first-order logical relations, decision trees, decision lists, and production 

rules. Existing learning systems such as CART (Breiman et al. 1984), C4.5 (Quinlan 
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1992), ASSISTANT (Cestnik et al. 1987), AQ15 (Michalski et al 1986), and CN2 

(Clark and Niblett 1989) use attribute-value language for representing the training 

examples and the induced knowledge and allow  a finite number of objects in the 

universe of discourse. This representation limits them to learn only propositional 

descriptions in which concepts are described in terms of values of a fixed number of 

attributes. 

 

Dzeroski and Lavrac show that Inductive Logic Programming (ILP) can be 

used to induce knowledge represented as first-order logical relations (Dzeroski and 

Lavrac 1993, Dzeroski 1996). ILP is more powerful than traditional inductive 

learning methods because it uses an expressive first-order logic framework and 

facilitates the application of background knowledge. In this formalism, domain 

knowledge represented in the form of relations can be used in the induced relational 

descriptions of concepts. Moreover, ILP has a strong theoretical foundation from 

logic programming and computational learning theory. 

 

The task of inducing first-order logical relations can be formulated as a search 

problem (Mitchell 1982) in a hypotheses space of logical relations. Various 

approaches (Quinlan 1990; 1996, Muggleton and Feng 1990) differ mainly in the 

search strategy and the heuristics used to guide the search. The search space is 

extremely large, so strong heuristics are required to manage the problem. Most 

systems are based on a greedy search strategy. They generate a sequence of logical 

relations from general to specific (or from specific to general) until a consistent 

relation is found. Each relation in the sequence is obtained by specializing (or 

generalizing) the previous one. For example, FOIL (Quinlan 1990, 1996) applies a 

hill climbing search strategy guided by an information-gain heuristic to search 

relations from general to specific. But these strategies and heuristics are not always 

applicable because these systems may become trapped in local maxima. In order to 

overcome this problem, non greedy strategies should be adopted. Moreover, existing 

ILP systems cannot improve themselves automatically. 

 

In this paper, we describe an adaptive knowledge acquisition system that 

induces first-order logical relations and improves itself during learning. We formulate 
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the definitions of inductive concept learning and adaptive knowledge acquisition in 

the next section. The system is based on a generic genetic programming approach that 

is presented in Section 3. A generic top-down first-order learning algorithm is 

described in the next section. The fifth section contains a description of a meta-level 

learner that induces search bias. The experimentation and some evaluations of the 

system are reported in Section six. Finally, the conclusion is presented in the last 

section. 

 
2. INDUCTIVE CONCEPT LEARNING AND ADAPTIVE 

KNOWLEDGE ACQUISITION 
 

The goal of machine learning is to develop techniques and tools for building 

intelligent learning machines. Machine learning paradigms include inductive, 

deductive, genetic-based, and connectionist learning. Multi-strategy learning 

integrates several learning paradigms. This section focuses on supervised inductive 

concept learning. If U is a universal set of observations, a concept C is formalized as a 

subset of observations in U. Inductive concept learning finds descriptions for various 

target concepts from positive and negative training instances of these concepts. 

 

In machine learning, formal languages for describing observations and 

concepts are called object and concept description languages respectively. Typically, 

object description languages are attribute-value pair descriptions and first-order 

languages of Horn clauses. Concepts can be described extensionally or intensionally. 

A concept is described extensionally by listing the descriptions of all of its instances 

(observations). Thus extensional concepts are represented in the object description 

language. On the other hand, intensional concepts are expressed in a separate concept 

description language that permits compact and concise concept descriptions. Typical 

concept description languages are decision trees, decision lists, production rules, and 

first-order logic. 

 

Inductive concept learning can be viewed as searching the space of hypothesis 

descriptions. A bias is a mechanism employed by a learning system to constrain the 

search for target hypotheses. A search bias determines how to conduct the search in 
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the hypothesis space while a language bias determines the size and structure of the 

hypothesis space.  

 

A strong search bias, such as the hill-climbing search strategy, employs 

existing knowledge about the size and structure of the hypothesis space to exploit 

promising solutions of the space, thus it can find the target concept quickly. But it 

may trap the system in a local maximum. A weak search bias, such as depth-first and 

breath-first search, explores the space completely; the learner is guaranteed to find the 

target concept that can be represented by the concept description language. 

Nevertheless, a weak bias is very inefficient. In other words, the search bias 

introduces the efficiency/completeness tradeoff into a learning system. 

 

A strong language bias defines a less expressive description language such as 

the propositional logic. The hypothesis space created by the bias is comparatively 

smaller and the learning can be performed more efficiently. But the learner may fail 

to find the target concept which is not contained in the small hypothesis space. A 

weak bias defines a larger space and thus the target concept is more likely to be 

expressible in the space. The disadvantage is that the learner is less efficient. The 

language bias introduces the efficiency/expressiveness tradeoff into a learning 

system.  

 

Background knowledge B is declarative prior knowledge that can be used by 

either the search bias to direct the search more efficiently, or the language bias to 

express the hypothesis space in a more natural and concise way. Background 

knowledge plays an important role in relational concept learning. Relational concept 

learning induces a new relation for the target concept (i.e., the target predicate) from 

training examples and known relations from the background knowledge. The training 

examples, the hypothesis space, and the background knowledge are represented in 

first order Horn clause languages (Muggleton 1992). Tradeoffs between 

expressiveness and efficiency are introduced by some additional restrictions on the 

three languages representing the examples, the hypothesis space, and the background 

knowledge. The background knowledge B provides definitions of known predicates 

qi which can be used in the definition of the target predicate p. It also provides 
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additional information to ease the learning. The information includes argument types, 

symmetry of predicates in pairs of arguments, input/output modes, rule models, 

predicate sets, parametrized languages, integrity constraints, determinations and any 

knowledge that can modify the operation of the search and language biases (Lavrac 

and Dzeroski 1994). 

 

An adaptive knowledge acquisition system is a relational concept learning 

system that can improve itself on the learning capability. It maintains various sets of 

background knowledge and biases. It improves itself by modifying its biases and 

background knowledge. Since a hypothesis space for learning is defined through the 

concept description language, the language bias, and the background knowledge, the 

size and structure of the hypothesis space can be modified by changing the language 

bias and the background knowledge. The search strategy and heuristics are changed if 

the system's search biases are modified. Here, we formulate the task of an adaptive 

knowledge acquisition system in Table 1. 

 
 
Given: 
 -A set E of positive E+ and negative E- training 
  examples of the target predicate p. Training examples 
  are represented as ground atoms 
 -A concept description language L 
 -A set of learning biases BIASES 
 -A set of various background knowledge BKs 
Find: 
 -A modified set of learning biases BIASES' 
 -A modified set of background knowledge BKs' 
 -A concept definition H for the target predicate p 
  expressible in L such that H is complete and  
  consistent with respect to (w.r.t.) the training 
  examples E and a background knowledge B' in BKs' 
 
 H is complete if every positive example e+ in E+ is 
 covered by H w.r.t. the background knowledge B. i.e. 
 B ∪ H |= e+ 
 
 H is consistent if no negative example e- in E- is 
 covered by H w.r.t. the background knowledge B. i.e. 
 B ∪ H |≠ e- 
 

 

Table 1: The definition of adaptive knowledge acquisition 
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Figure 1: The logical organization of an adaptive knowledge acquisition 

system 

 

The logical organization of our system is depicted in Figure 1. Its components 

are introduced as follows: 

(1) External interface: It provides a user-friendly interface between the 

system and users. It accepts training examples, a set BKs of 

background knowledge, and a set BIASES of biases and transfers 

them through the learning controller to the example database, BKbase, 

and biases base respectively. The interface also provides commands 

for users to query about the results of an adaptive learning task and to 

directly control the operations of the learning controller. 

 (2) Biases base: It is a knowledge base that stores all learning biases. 

Biases can be retrieved, added, deleted, and modified through the 

interface of this knowledge base. 

(3) BKbase: It stores various background learning knowledge that can be 

used in inductive learning. Background knowledge can be retrieved, 

added, deleted, and modified through the interface of BKbase. Since 

each entity of it is in fact a complex structure representing background 

knowledge, BKbase is implemented using object-oriented techniques. 
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(4) Examples database: It stores the training examples. 

(5) Empirical ILP learner: It induces first-order logical relations from the 

training examples, given a concept description language, a specific 

background knowledge, a search bias, and a language bias. A search of 

the hypothesis space can be performed bottom-up or top-down. 

Bottom-up techniques start from the training examples and search the 

space by employing various generalization operators. Top-down 

techniques start from the most general concept descriptions, and search 

the space by using various specialization operators. Top-down 

techniques are better suited for learning from imperfect examples 

because a large number of data are available in every specialization 

step and the system can employ various statistical techniques to decide 

how to perform the specialization. Moreover, top-down search can 

easily be guided by the search bias. In Section 4, a generic top-down 

first-order learning algorithm is described. 

(6) Meta-level learner: It learns search biases, language biases, and 

background knowledge. Search and language biases can be represented 

declaratively or procedurally. In this paper, we apply GGP to 

implement the meta-level learner that induces procedural biases. The 

description of GGP is presented in Section 3.  

(7) Learning controller: It is a knowledge-based system that controls the 

empirical ILP learner and the meta-level learner. The knowledge used 

by the learning controller can be updated by the meta-level learner. 

 

3. Generic Genetic Programming (GGP) 

 
Generic Genetic Programming (GGP) is a novel approach that combines genetic 

programming (Koza 1992; 1994, Kinnear 1994) and inductive logic programming 

(Quinlan 1990; 1996, Muggleton 1992). Using GGP, programs in various 

programming languages can be evolved. The approach is also powerful enough to 

handle context-sensitive information and domain-dependent knowledge which can be 

used to accelerate the learning speed and/or improve the quality of the programs. 
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GGP can induce programs in various programming languages. This is 

achieved by accepting or choosing grammars of different languages to produce 

programs in these languages. Most modern programming languages are specified in 

the notation of BNF (Backus-Naur form) which is a kind of context-free grammars 

(CFGs). However, GGP is based on logic grammars because CFGs (Hopcroft and 

Ullman 1979, Lewis and Rapadimitrion 1981) are not expressive enough to represent 

context-sensitive information for some languages and domain-dependent knowledge 

of the target program being induced. This section first introduces the formalism of 

logic grammars followed by the descriptions of GGP.  

 
3.1. Introduction to logic grammars 

 

Logic grammars are the generalizations of CFGs. Their expressivenesses are much 

more powerful than those of CFGs, but equally amenable to efficient execution. In 

this paper, logic grammars are described in a notation similar to that of definite clause 

grammars (Pereira and Warren 1980, Pereira and Shieber 1987, Sterling and Shapiro 

1986). The logic grammar for some simple S-expressions in Table 2 will be used 

throughout this section.  

 
 
1: start  -> [(*], exp(W), exp(W), exp(W), [)]. 
2: start  -> {member(?x,[W, Z])}, [(*], exp-1(?x),  
    exp-1(?x), exp-1(?x), [)]. 
3: start  -> {member(?x,[W, Z])}, [(+], exp-1(?x),  
    exp-1(?x), exp-1(?x), [)]. 
4: exp(?x) -> [(/ ?x 1.5)]. 
5: exp-1(?x) -> {random(1,2,?y)}, [(/ ?x ?y)]. 
6: exp-1(?x) -> {random(3,4,?y)}, [(- ?x ?y)]. 
7: exp-1(W) -> [(+ (- W 11) 12)]. 
 

 

Table 2: A logic grammar 

 

A logic grammar differs from a CFG in that the logic grammar symbols, 

whether terminal or non-terminal, may include arguments. The arguments can be any 

term in the grammar. A term is either a logic variable, a function or a constant. A 

variable is represented by a question mark ? followed by a string of  letters and/or 

digits. A function is a grammar symbol followed by a bracketed n-tuple of terms and 
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a constant is simply a 0-arity function. Arguments can be used in a logic grammar to 

enforce context-dependency. Thus, the permissible forms for a constituent may 

depend on the context in which that constituent occurs in the program. Another 

application of arguments is to construct tree structures in the course of parsing, such 

tree structures can provide a representation of the semantics of the program. 

 

The terminal symbols enclosed in square brackets correspond to the set of 

words of the language specified. For example, the terminal [(- ?x ?y)] creates 

the constituent (- 1.0 2.0) of a program if ?x and ?y are instantiated 

respectively to 1.0 and 2.0. Non-terminal symbols are similar to literals in Prolog, 

exp-1(?x) in Table 2 is an example of non-terminal symbols. Commas denote 

concatenation and each grammar rule ends with a full stop.  

 

The right-hand side of a grammar rule may contain logic goals and grammar 

symbols. The goals are pure logical predicates for which logical definitions have been 

given. They specify the conditions that must be satisfied before the rule can be 

applied. For example, the goal member(?x, [W, Z]) in Table 2 instantiates the 

variable ?x to either W or Z if ?x has not been instantiated, otherwise it checks 

whether the value of ?x is either W or Z. If the variable ?y has not been bound, the 

goal random(1, 2, ?y) instantiates ?y to a random floating point number 

between 1 and 2. Otherwise, the goal checks whether the value of ?y is between 1 

and 2.  

 

Domain-dependent knowledge can be represented in logic goals. For example, 

consider the following grammar rule: 
a-useful-program -> first-component(?X), 

     {is-useful(?X, ?Y)}, 

     second-component(?Y). 

This rule states that a useful program is composed of two components. The 

first component is generated from the non-terminal first-component(?X). The 

logic variable ?X is used to store semantic information about the first component 

produced. The logic goal then determines whether the first component is useful 

according to the semantic information stored in ?X. Domain-dependent knowledge 
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about which program fragments are useful is represented in the logical definition of 

this predicate. If the first component is useful, the logic goal is-

useful(?X, ?Y) is satisfied and some semantic information is stored into the 

logic variable ?Y. This information will be used in the non-terminal second-

component(?Y) to guide the search for a good program fragment as the second 

component of a useful program. 

 

The special non-terminal start corresponds to a program of the language. In 

Table 2, some grammar symbols are shown in bold-face to identify the constituents 

that cannot be manipulated by genetic operators. For example, the last terminal 

symbol [)] of the second rule is revealed in bold-face because every S-expression 

must be ended with a ')'. The number before each rule is a label for later discussions. 

It is not part of the grammar. 

 

3.2. Representations of programs 

 

One of the fundamental contributions of GGP is in the representations of  programs in 

different programming languages appropriately so that initial population can be 

generated easily and the genetic operators such as reproduction, mutation, and 

crossover can be performed effectively. A program can be represented as a derivation 

tree that shows how the program has been derived from the logic grammar. GGP 

applies deduction to randomly generate programs and their derivation trees in the 

language declared by the given grammar. These programs form the initial population. 

For example, the program (* (/ W 1.5) (/ W 1.5) (/ W 1.5)) can be 

generated by GGP given the logic grammar in Table 2. It is derived from the 

following sequence of derivations: 
start => [(*] exp(W) exp(W) exp(W) [)] 
  => [(*] [(/ W 1.5)] exp(W) exp(W) [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   exp(W) [)] 
  => [(*] [(/ W 1.5)] [(/ W 1.5)] 
   [(/ W 1.5)] [)] 
  => [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 
This sequence of derivations can be represented as the derivation tree depicted 

in Figure 2.  
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In literature, the terms derivation trees and parse trees are usually used 

interchangeably. However, we will use the term derivation trees to refer to the tree 

structures in our framework and the term parse trees to refer to those in GP. The 

bindings of logic variables are enclosed in a pair of braces. The sub-trees enclosed in 

a dashed rectangular are frozen. In other words, they are generated by bold-faced 

grammar symbols and they cannot be modified by genetic operators. 

 

An advantage of logic grammars is that they specify what is a legal program 

without any explicit reference to the process of program generation and parsing. 

Furthermore, a logic grammar can be translated into an efficient logic program that 

can generate and parse the programs in the language declared by the logic grammar 

(Pereira and Warren 1980, Pereira and Shieber 1987, Abramson and Dahl 1989). In 

other words, the process of program generation and parsing can be achieved by 

performing deduction using the translated logic program. Consequently, the program 

generation and analysis mechanisms of GGP can be implemented using a deduction 

mechanism based on the logic programs translated from the grammars. 

 
 

[(*] exp(W) exp(W) exp(W) [)]

start

[(/ ?x 1.5)] 
{?x/W}

[(/ ?x 1.5)] 
{?x/W}

[(/ ?x 1.5)] 
{?x/W}

 
 

 

Figure 2: A derivation tree of the S-expression in Lisp 
(* (/ W 1.5) (/ W 1.5) (/ W 1.5)) 

 

This method of translating a logic grammar into a logic program is common in 

the field of natural language processing (Pereira and Warren 1980, Pereira and 

Shieber 1987, Abramson and Dahl 1989). The original idea of this approach is to 
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rephrase the special purpose formalism of CFGs into a general purpose first-order 

predicate logic (Kowalski 1979, Colmerauer 1978, Pereira and Warren 1980). This 

approach is further refined and generalized to Definite Clause Grammars (DCGs) 

which can handle the properties of context-dependency of natural languages 

effectively. Since DCGs, a kind of logic grammars, can be translated into efficient 

logic programs automatically, parsers and generators for the corresponding natural 

languages can be obtained easily. In other words, researchers in the field of natural 

language processing only declare the grammar for a particular natural language, and 

the translation process will produce the corresponding parser and generator for them. 

Moreover, for some cases, the same logic program can be used as both a parser and 

generator at the same time. 

 

Alternatively, initial programs can be induced by other learning systems such 

as FOIL (Quinlan 1990; 1996) or given by the user. GGP analyzes each program and 

creates the corresponding derivation tree.  

 

3.3. The evolution process of GGP 

 

In GGP, populations of programs are genetically bred using the Darwinian principle 

of survival and reproduction of the fittest along with genetic operations appropriate 

for creating programs. GGP starts with an initial population of programs generated 

randomly, induced by other learning systems, or provided by the user. Logic 

grammars provide declarative descriptions of the valid programs that can appear in 

the initial population. A fitness function must be defined by the user to evaluate the 

fitness values of the programs. Typically, each program is run over a set of fitness 

cases and the fitness function estimates its fitness by performing some statistical 

operations (e.g. average) to the values returned by this program. 

 

The initial programs in generation 0 are normally incorrect and have poor 

performances. However, some programs in the population will be fitter than others. 

Fitness of each program in the generation is estimated and the following process is 

iterated over many generations until the termination criterion is satisfied. The 

reproduction, sexual crossover, and asexual mutation are used to create new 
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generation of programs from the current one. The reproduction involves selecting a 

program from the current generation and allowing it to survive by copying it into the 

next generation. Either fitness proportionate or tournament selection can be used.  

 

The crossover is used to create offspring programs from two parental 

programs selected. Mutation creates a modified offspring program from a parental 

program selected. Unlike crossover, the offspring program is usually similar to the 

parent program. Logic grammars are used to constraint the offspring programs that 

can be produced by these genetic operations. 

 

This algorithm will produce populations of programs which tend to exhibit 

increasing average of fitness. Finally, GGP returns the best program found in any 

generation of a run as the result. A high level algorithm of GGP is presented in Table 

3. 

 
 
1. Generate an initial population of programs.  
2. Execute each program in the current population and assign it a 

fitness value according  to the fitness function 
3. If the termination criterion is satisfied, terminate the 

algorithm. The best program found in the run of the algorithm 
is  designated as the result. 

4. Create a new population of programs from the current population 
by applying the reproduction, crossover, and mutation 
operations. These operations are applied to programs selected 
by fitness proportionate or tournament selections. 

5. Rename the new population to the current population. 
6. Proceed to the next generation by branching back to the step 2. 
 

 

Table 3: The high level algorithm of GGP 

 
4. A generic top-down first-order learning algorithm 

 
This section presents a generic top-down first-order learning algorithm based on 

FOIL (Quinlan 1990, 1996). The algorithm is depicted in Table 4. The algorithm 

consists of three steps. In the pre-processing step, missing argument values in training 

examples are handled by assigning default or random values to them. A training 

example will be removed if it has too many missing values. If there are no or 
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inadequate negative examples in the training set, they can be generated. Different 

ways of creating negative examples have been proposed (Lavrac and Dzeroski 1994). 

 
 
Input: 

E: Training examples 
L: The concept description language 
BIASsearch: The search bias 
BIASlang: The language bias 
B: Background knowledge 
T: The target concept 

 
Output: 

A relation P which contains a set of clauses. Each  clause C ∈ L. 
 
Function LEARNING(E, L, BIASsearch, BIASlang, B, T) 
 
(1) Pre-processing of the training examples E and producing a 

 modified set of examples E': E' := Preprocessing(E). 
 
(2) Let Ecurrent := E'; 

 Let P := {}; 
 Repeat 
 -Let C := T ←; 
 -Find a specialization C' of C. This step constructs a  
  clause C' from C by calling Clause-Construct(C,  
  Ecurrent, B, L,  BIASsearch, BIASlang); 
 -If a specialization can be found 
  -Add C' to P to produce a new relation P'. i.e. 
   P' := P ∪ {C'}; 
  -Remove all positive examples covered by P' from 
   Ecurrent to get an updated training set E' 

   E'current := Ecurrent - { positive examples in 

   Ecurrent covered by P' w.r.t. the background  knowledge B}; 

  -Let Ecurrent := E'current; 

  -Let P := P' 
  Else 
  -Set the flag No-More-Improvement to true; 
 Until 
 The Covering termination criterion is satisfied. i.e. 
 covering-termination(P, No-More-Improvement, Ecurrent, B) 
 returns true; 

 
(3) Post-processing the relation P and producing P'. i.e. 

 P' := Post-processing(P); 
 Return(P'); 

 

 

Table 4:  A generic top-down first-order learning algorithm 
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The second step performs the construction of a logical relation. This step 

employs four local variables: Ecurrent (Current training examples set), 

E'current (Updated training examples set), P (Current relation) and P' (Modified 

relation). The main component of this step is the covering loop which implements 

Michalski's covering algorithm (Michalski et al. 1986a). The covering loop construct 

a relation by iteratively executing the following sub-steps: 

(a) Construct a clause that covers some positive examples in Ecurrent. 

(b) Append the clause to the current relation P and generate a modified 

relation P'. 

(c) Remove all positive examples from Ecurrent which are covered by 

P' with respect to the background knowledge B. 
 

The covering loop terminates if the terminating conditions are satisfied. A 

typical condition is that either all positive examples are covered or no more 

improvement can be achieved by searching for a new clause. The final step attempts 

to improve the accuracy of the relation induced when classifying unseen examples 

and to simplify the relation.  

 

The covering loop calls the 'Clause-Construct' function which is the core of 

the generic algorithm. A hill-climbing 'Clause-Construct' algorithm is presented in 

Table 5. The function constructs a clause Cn = T ←  l1, l2, ..., ln 

starting from the most general clause C0 = T ←  with an empty body. A sequence 

of clauses C0, C1, C2, C3, ...., Cn are generated by a number of specialization steps. 

At each step, the current clause Ci = T←  l1,l2, ..., li is refined by 

appending a specific literal lj to its body. A literal lj is constructed from the 

background knowledge B restricted by the concept description language L and 

language bias BIASlang. The language may limit lj to be function-free while 

BIASlang may prevent new variable to be introduced in lj. The aim of the 

procedure is to find a clause which covers most positive examples while excludes all 

or most negative examples. In a hill-climbing search, the procedure keeps the current 
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best clause and refines it using the estimated best specialization at each step, until the 

stopping condition is satisfied 

 
The 'Clause-Construct' function calls the 'Find-Extension' function to find the 

extension Ei of the current training examples given the partially developed clause 

Ci = T(X1, X2, ..., Xn) ←  l1, l2, ..., li and the background 

knowledge B. Each training example <x1, x2, ...,xn> is a n-tuple where xi, 

1≤ i≤n, are some constants. To find the extension, the function initializes a clause C0 

= T(X1, X2, ..., Xn), then the literal l1 is added to the body of C0 to 

produce a new clause C1. The literal l1 is either of the form Xj = Xk, Xj ≠  Xk, 

pm(Y1, Y2, ...,Ysm) or not pm(Y1, Y2, ...,Ysm).  

 

If the literal contains k new variables, the arity of each tuple in the generated 

training set E1 increases to (n + k). E1 can be found by performing a natural join of 

Ecurrent with the relation corresponding to literal l1. The process is repeated for 

literals l2, l3, ..., li until the extension Ei is found. 

 

The most important component of the hill-climbing 'Clause-Construct' 

algorithm is the 'scoring' function that estimates the performance of each literal. An 

accurate estimation directs the search towards the global maxima while a misleading 

one traps the system into local-maxima. By providing different 'scoring' functions to 

the generic learning algorithm, various learning algorithms can be generated. The 

performances of a good and a bad learners can be significant different as shown in 

Sub-section 5.3. 
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Input: 
C: An initial clause C = T← 
Ecurrent: The current training examples  
B: Background knowledge 
L: The concept description language 
BIASsearch: The search bias 
BIASlang: The language bias 

Output: 
A clause that covers some positive examples in Ecurrent while excludes all or most 
negatives examples in Ecurrent 

 
Function Clause-Construct(C, Ecurrent, B, L, BIASsearch, BIASlang) 
 
There is a scoring function stored in BIASsearch, save this function to scoring;  

 
Repeat 
 -Set BEST to a bad literal such as X = X where X is a  
  variable appearing in the head of the clause; 
 -Set Best-score to 0; 
 -Find the extension Ei of Ecurrent using the clause C w.r.t. B. i.e. 
  Ei := Find-Extension(C, Ecurrent, B); 

 -Let ni
+
 be the number of positive tuples in Ei; 

 -Let ni
−
 be the number of negative tuples in Ei; 

 -Current-information := − log2(ni
+ / (ni

+ + ni
− )); 

 -For all literal l from B that satisfy the constraints  
  imposed by the language L and bias BIASlang 

  -Set C' = C ∪  {l}; 

  -Find the extension Ei+1 of Ecurrent using the clause C
' i.e. 

   Ei+1 := Find-Extension(C
', Ecurrent, B); 

  -Let ni+1
+

 be the number of positive tuples in Ei+1; 

  -Let ni+1
−

 be the number of negative tuples in Ei+1; 

  -Let the number of positive tuples in Ei that have been  

   represented by one or more tuples in Ei+1 be ni
++

; 
  -Find the score of the literal l by using the scoring  

   function i.e. literal-score := scoring (ni
++

, ni+1
+

, ni+1
−

, 
   Current-information); 
  -If literal-score > Best-score then 
   -BEST := l; 
   -Best-score := literal-score; 
 -If BEST == X=X then 
  -No-More-Improvement := true; 
  Else 
  -Append BEST to the body of C; 
Until Clause-Termination(C, No-More-Improvement, Ecurrent, B) is true; 
 

Post-processing the clause C to find an improvement i.e. C' := Find-Improvement(C); 
 

If Acceptable(C') 

 -Return(C'); 
Else 
 -Return(No-Specialization-Can-Be-Found); 

 

 

Table 5: A hill-climbing 'Clause-Construct' algorithm 
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5. Inducing procedural search biases 

 
In this section, GGP is used in the meta-level learner to induce procedural search 

biases (i.e. the 'scoring' function). In order to employ GGP, a logic grammar must be 

defined (Table 6). 

 

In the grammar, the terminal symbols n-pos-i-plus-1, n-neg-i-plus-1,  and 

n-pos-i represent respectively  ni+1
+ , ni+1

−  and ni
+ + . With reference to the algorithms 

in Tables 4 and 5, assume that Ei is the extension of current training examples 

Ecurrent by current clause Ci, ni
+  and ni

−  are respectively the number of positive 

and negative tuples in Ei. Ei can be extended by using the literal l to Ei+1. ni+1
+  and 

ni+1
−  are respectively the number of positive and negative tuples in Ei+1. ni

++  is the 

number of positive tuples in Ei that have been represented by one or more tuples in 

Ei+1. The terminal symbol current-information is defined as 

− log2(ni
+ / (ni

+ + ni
− )).  

 
 
start   -> function. 
s-exp   -> term. 
s-exp   -> function. 
 
function  -> [(], op1, s-exp, [)]. 
function  -> [(], op2, s-exp, s-exp, [)]. 
 
op1   -> [ protected-log ]. 
op2   -> [ + ]. 
op2   -> [ - ]. 
op2   -> [ * ]. 
op2   -> [ % ]. 
op2   -> [ info ]. 
 
term   -> [ n-pos-i-plus-1 ]. 
term   -> [ n-neg-i-plus-1 ]. 
term   -> [ n-pos-i ]. 
term   -> [ current-information ]. 
term   -> { random(-10, 10, ?a) },  [ ?a ]. 
 

 

Table 6: A logic grammar for learning procedural search bias 

 
The terminal symbols +, -, and * represent functions that perform ordinary 

addition, subtraction, and multiplication respectively. The symbol % represents 
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function that normally returns the quotient. However, if division by zero is attempted, 

the function returns 1.0. The symbol protected-log is a function that calculates 

the logarithm of the input argument x if x is larger than zero, otherwise it returns 1.0. 

The symbol info represents the basic function that calculates − log2(X / (X + Y )) 

given X and Y as inputs. The logic goal random(-10, 10, ?a) generates a 

random floating point number between -10 and 10 and instantiates ?a to the random 

number generated  

 

5.1. The evolution process 

 

The evolution process of the adaptive knowledge acquisition system is depicted in 

Figure 3. Firstly, the Biases base is initialized with a population of different 'scoring' 

functions generated randomly using the logic grammar depicted in Table 6. To 

estimate the fitness of a specific 'scoring' function, it is combined with the generic 

top-down learner to produce a specific learner. The performance of this specific 

learner is then evaluated by using a fitness function. This measure is assigned as the 

fitness of the specific 'scoring' function. GGP employs selection, crossover, and 

mutation to generate potentially better functions. The modified functions are stored in 

the Biases base and the whole evolution process iterates until the best function is 

found or no computational resource is available 
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Figure 3: The evolution process of the adaptive knowledge acquisition 

system 

 
5.2. The experimentation setup 

 
In this paper, learning curves are used to estimate the performances of various 

learning systems. The example space is divided randomly into disjoint training and 

testing sets. The learner is trained on progressively larger portions of the training set 

and the performance of the induced logical relation is estimated on the disjoint testing 

set. This process of dividing, training, and testing is repeated for 20 trials and the 

results are averaged to generate a learning curve. 

 

As a running example, we use a traditional problem discussed in the literature 

(Muggleton and Feng 1990). In the problem of learning the list predicate member, the 

data consist of all lists of lengths 0 to 3 defined over three constants. The background 

knowledge B contains definitions of list construction predicates: null which holds for 

an empty list and component which decomposes a list into its head and tail. The 

example space contains 75 positive and 45 negative examples. The training sets 

contain 20 to 52 examples, one-half of each training set is positive examples. The 

testing set consists of 45 positive and 15 negative examples.  
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5.3. Fitness calculation 

 

Adjusted and normalized fitness values are used as in Koza (1992). They are 

calculated from the raw fitness which is estimated by the fitness function. Various 

fitness functions have been tried and two of them are described here. The impact of 

fitness function on the generality of the evolved function is also demonstrated. The 

problem domain of learning the member predicate is used here. 

 

For the first fitness function, a random set of 24 positive and 21 negative 

examples is used. A specific 'scoring' function is combined with the generic top-down 

learner to produce a specific learner called Adapted-ILP hereafter. Adapted-ILP 

induces first-order logical relations using the random example set. The quality of the 

induced logical relations is evaluated by counting the total number of misclassified 

examples from the same training set. This measure is used as the raw fitness of the 

specific 'scoring' function. Using this fitness function, only poor 'scoring' functions 

have been evolved. The learning curve of a poor learner is depicted in Figure 4. 

 

For the second fitness function, the raw fitness is developed in several steps. 

At the beginning of each generation, four instances of the learning task are created 

randomly from the member domain. Each learning task has a training and a disjoint 

testing data. The training set contains 20 positive and 20 negative examples. For each 

learning task, a specific Adapted-ILP induces logical relations from the training set 

and the relations are evaluated by counting the number of misclassified examples 

from the testing set. The performance of the Adapted-ILP is the sum of numbers of 

misclassified examples for all learning tasks. This measure is then used as the raw 

fitness of the corresponding 'scoring' function. This fitness function can force the 

evolution of good 'scoring' functions. The learning curve of a good learner is shown 

in Figure 4. 
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Figure 4: The learning curves of good and poor learner 

 
6. Experimentation and evaluations 
 

This section compares the performance of our system with that of FOIL (Quinlan 

1990; 1996). Standard learning tasks in the literature are used in these experiments 

(Quinlan 1990, Muggleton and Feng 1990). 

 

6.1. The member predicate 

 

The learning curves for this problem are depicted in Figure 5. It is interested to find 

that our system has higher accuracy than FOIL. The difference is significant at 5% 

level of significance when the training size is less than 36. 
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Figure 5: Learning curves for the member problem 
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6.2. The member predicate in a noisy environment 

 

Difference amount of noise is introduced into the training examples in order to study 

the performances of both systems in learning relations in noisy environment. To 

introduce n% of noise into the examples, n% positive examples are labeled as 

negative ones while n% negative examples are labeled as positive ones. In this 

experiment, the percentages of introduced noise are 10% (0.1) and 40% (0.4). Their 

learning curves are summarized in Figure 6. Our system performs better than FOIL at 

all noise level.  
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Figure 6: Learning curves for the member problem in a noisy environment 

 
6.3. The multiply predicate 

 

In the problem of learning the arithmetic predicate multiply (Muggletion and Feng 

1990), the data contain integers in the range from zero to ten. The background 

knowledge is composed of definitions for arithmetic predicates plus, decrement, zero, 

and one. The example space has 73 positive and 1258 negative examples respectively. 

The training sets consist of 400 to 500 examples, one-tenth of each training set is 

positive and the remainder is negative. The learning curves for multiply are presented 

in Figure 7. Our system performs better than FOIL when the size of training set is less 

than 460. The difference is significant at 5% level of significance.  
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Figure 7: Learning curves for the multiply problem 

 
6.4. The uncle predicate 

 
Another traditional testbed for relational learners is the domain of family 

relationships (Quinlan 1990). In this experiment, the uncle predicate is induced and 

the background predicates are parent, sibling, married, male, and female. The 

learning curves are presented in Figure 8. 
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Figure 8: Learning curves for the uncle problem 
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7. Conclusion 
 

In this paper, we formulate an adaptive knowledge acquisition system which is 

composed of an external interface, a biases base, a knowledge base of background 

knowledge, an example database, an empirical ILP learner, a meta-level learner, and a 

learning controller. An implementation of the adaptive knowledge acquisition system 

has been developed. In the implementation, the empirical ILP learner performs top-

down search in the hypothesis space defined by the concept description language, the 

language bias, and the background knowledge. The search is directed by search biases 

which can be induced and refined by a meta-level learner implemented by using 

generic genetic programming. 

 

Generic Genetic Programming (GGP) is a novel, general, and powerful 

approach of evolving search biases. It is also powerful enough to use logic grammars 

to represent context-sensitive information and domain-dependent knowledge. The 

idea of using formal grammars to direct search for knowledge in the hypothesis space 

or to reduce the size of the space has also been independently studied by other 

researcher recently (Cohen 1992, Gruau 1996, Whigham 1995; 1996). 

 

It has been demonstrated that the induced bias is better than that of FOIL on 

many standard learning tasks. From these experiments, it can be concluded that the 

adaptive knowledge acquisition system has superior learning ability compared to 

FOIL. Since they are different in their search biases only, the result implies that the 

search bias induced by GGP is better than that of FOIL for the learning problems. 

This result is surprising because the search biases of the adaptive knowledge 

acquisition system are initialized by a random process. These biases are normally 

poor, but the process of natural selection and evolution can successfully evolve a 

good bias.  

 

It is important to mention that the search bias is rather general because it has 

reasonable performance on many traditional learning problems using the same bias 

acquired automatically. This paper illustrates that GGP is a plausible approach for 

implementing a meta-level learning system. For future work, in order to find a 
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general, efficient, and effective bias, a large number of learning tasks of different 

kinds, such as the member, append, quick sort, ackermann, uncle, and grandfather 

problems, with various characteristics should be used. This adaptive learning 

approach, though computationally intensive, is rather exciting, as it opens up many 

opportunities for creating or improving learning algorithms. 
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