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Abstract- Genetic programming (GP) extends 
traditional genetic algorithms to automatically induce 
computer programs. GP has been applied in a wide 
range of applications such as software re-engineering, 
electrical circuits synthesis, knowledge engineering, 
and data mining. One of the most important and 
challenging research areas in GP is the investigation of 
ways to successfully evolve recursive programs. A 
recursive program is one that calls itself either directly 
or indirectly through other programs. Because 
recursions lead to compact and general programs and 
provide a mechanism for reusing program code, they 
facilitate GP to solve larger and more complicated 
problems. Nevertheless, it is commonly agreed that the 
recursive program learning problem is very difficult 
for GP. In this paper, we propose a technique to tackle 
the difficulties in learning recursive programs. The 
technique is incorporated into an adaptive Grammar 
Based Genetic Programming system (adaptive 
GBGP). A number of experiments have been 
performed to demonstrate that the system can evolve 
recursive programs efficiently and effectively.  

1 Introduction 

Genetic programming (GP) extends traditional genetic 
algorithms (Holland 1975, Goldberg 1989) to 
automatically induce computer programs (Koza 1992; 
1994, Koza et al. 1999). It is a stochastic general search 
and problem solving method that uses the analogies from 
natural selection and evolution. GP encodes potential 
solutions to a specific problem as computer programs and 
apply reproduction and recombination operators to these 
programs to create new programs. The reproduction and 
recombination processes are repeated until appropriate 
solutions are found or all resources have been used. GP 
has been demonstrated to be effective and robust in 
searching very large and varied spaces in a wide range of 
applications such as software re-engineering, electrical 
circuits synthesis, knowledge engineering (Koza 1992; 
1994, Koza et al. 1999, Kinnear 1994, Angeline and 
Kinnear 1996, Spector et al. 1999), and data mining 
(Wong and Leung 2000, Freitas 1997). 

One of the most important and challenging areas of 
research in genetic programming is the investigation of 
ways to apply them to larger and more complicated 

problems. One approach to make a large problem more 
tractable is to discover problem representations 
automatically. Koza (1994) used the boolean even-n-
parity problem to demonstrate extensively that his 
approach of hierarchical Automatically Defined Functions 
(ADFs) can facilitate the solving of the problem.  

The boolean even-n-parity program of n boolean input 
arguments returns true (T) if an even number of the 
arguments are true, otherwise it returns false (nil). Koza 
(1994) used GP with ADFs to induce hierarchical 
functions from training examples (fitness cases) to solve 
the problem. The training set contains all 2n combinations 
of the n boolean input arguments. The standardized 
fitness of an S-expression is the sum of the error between 
the value returned by the S-expression and the correct 
value of the even-n-parity program. 

Koza showed that the even-7-parity problem can be 
solved using GP with ADFs. He found that about 
1,440,000 programs should be evaluated to obtain at least 
one solution with 99% probability. Since all 2n fitness 
cases, for a particular value of n, were used as the training 
examples, it is unclear whether GP with ADFs can 
discover the regularities of the even-n-parity problem and 
induce a general program. Moreover, GP with ADFs can 
only solve an instance of the even-n-parity problem for a 
particular value of n. If a different value of n is provided, 
GP with ADFs must be used again to induce another 
program for the new instance of the problem. A better 
solution is a recursive program that solves all instances of 
the problem for all n ≥  0. A general recursive program is 
given below:  

(defun parity (L) 
  (if (null L) T 
    (AND  
      (OR (first L) (parity  
                      (rest L))) 
      (NAND (first L) (parity  
                        (rest L)))))) 

In this recursive program, the argument L is a list of 
boolean values. Any number of boolean values can exist 
in the list L.  

Since recursive programs are usually compact, elegant, 
and general solutions of complicated problems, the 
problem of evolving recursive programs is very important 
in genetic programming. However, it is commonly agreed 
that the problem is very difficult. 

From our experience in evolving recursive even-n-
parity program using Generic Genetic Programming 
(Wong and Leung 1997), we observed that non-



terminating programs with similar structures occur 
frequently in various generations. In this paper, we 
propose a technique that automatically modifies the 
grammar after observing a number of non-terminating 
programs. The modified grammar reduces the probability 
of generating this kind of non-terminating programs, and 
thus it accelerates the process of evolving recursive 
programs.  

The technique is implemented in an adaptive Grammar 
Based Genetic Programming System (adaptive GBGP), 
which allows extended logic grammars to be learnt and 
modified dynamically. The next section describes related 
research in learning recursive programs. Some difficulties 
in evolving recursive programs are presented in Section 3. 
Adaptive GBGP and the technique of modifying 
grammars dynamically are discussed in Section 4. The 
experiment results are presented in the next section. In 
Section 6, we discuss the differences between our 
approach and other existing methods. A conclusion is 
given in the last section. 

2 Related Research 

Koza (1992) studied a limited form of recursion for 
sequence induction. To evolve programs that can generate 
the Fibonacci sequence, the S-expression was allowed to 
reference previously computed values in the sequence. 

GP was applied to evolve programs with recursive 
ADFs to perform tree search (Brave 1996). To evolve a 
recursive ADF, the name of the ADF was included in its 
function set. However, an evolved recursive ADF may 
contain infinite-loops. To handle this problem, the 
maximum number of recursive calls was specified as the 
depth of the tree being searched. Usually such a limit 
affects the evolution process since a good program may 
never be induced if its evaluation requires more than the 
permitted recursive calls. It was demonstrated that GP can 
find solutions to the tree search problem faster than that 
using non-recursive ADFs. Moreover, the program 
containing recursive ADFs is less complex and requires 
less computational effort to execute than the programs 
with non-recursive ADFs. However, this approach is not a 
general method to evolve recursive programs.  

Whigham designed two directed mutation operators to 
guide GP to evolve a recursive member function using 
his CFG-GP system (Whigham 1996). A directed 
mutation operator specifies that a subtree generated by 
one particular grammar rule is replaced by another subtree 
generated by another grammar rule. However, these two 
mutation operators are problem specific. The knowledge 
about the solution is used to direct GP search. For 
problems that have not an obvious recursive pattern, this 
approach may not be applicable. 

Yu used her PolyGP to evolve nth and map recursive 
programs (Yu 1999b). In this approach, the name of the 
program is included in the function set so that it can be 
used to evolve recursive programs. However, this 
approach complicates the dynamic of program evolution 

with other issues. The first issue is the method to handle 
infinite loops. In her experiments, the maximum number 
of recursive calls allowed in a program is the length of the 
input list. This limit may prevent her PolyGP from 
discovering good programs if the programs require more 
than the permitted recursive calls to evaluate. The second 
issue is the fitness penalty applied to programs with 
infinite loops. It is not clear which fitness penalty is 
appropriate. Finally, a small change in a recursive 
program can lead to large variation of the fitness of the 
program. Thus, recursive programs are extremely 
deceptive. Therefore, the fitness of a recursive program 
does not reflect its proximity to a solution in the space of 
programs.  

Yu introduced an alternative approach for evolving 
recursive programs. In this approach, recursion is 
provided implicitly by the higher-order function foldr. 
It provides a mechanism of module creation and reuse 
(Yu 1999a). 

Recently, Koza and his colleagues introduced 
Automatically Defined Recursion (ADR) that implements 
a general form of recursion (Koza et al. 1999). An ADR 
consists of a Recursion Condition Branch (RCB), a 
Recursion Body Branch (RBB), a Recursion Update 
Branch (RUB), and a Recursion Ground Branch (RGB). 
These branches are subject to evolution during the run of 
genetic programming. A number of architecture-altering 
operations for ADR have also been implemented. 

Wong and Leung developed a flexible framework 
called GGP (Generic Genetic Programming). The 
framework combines GP and Inductive Logic 
Programming (Lavrac and Dzeroski 1994, Muggleton 
1992) to learn programs in various programming 
languages. The system is also powerful enough to 
represent context-sensitive information and domain-
dependent knowledge. This knowledge can be used to 
accelerate the learning speed and/or improve the quality 
of the programs induced (Wong and Leung 1997, Wong 
2001). 

Since GGP can induce programs in various 
programming languages, it must be able to accept 
grammars of different languages and produce programs in 
them. Most modern programming languages are specified 
in the notation of BNF (Backus-Naur Form) which is a 
kind of context-free grammar (CFG). However, GGP is 
based on logic grammars because CFGs (Hopcroft and 
Ullman 1979) are not expressive enough to represent 
context-sensitive information of some languages and 
domain-dependent knowledge of the target programs 
being induced. 

Wong and Leung used GGP to evolve a recursive 
program for the even-n-parity problem from training 
examples without noise (Wong and Leung 1996b). Their 
approach is to construct a logic grammar that includes a 
grammar rule making recursive calls. Moreover, the 
grammar enforces a termination condition in the program 
structure. However, the convergence of recursive calls in 
the program is not guaranteed. Hence, they used an 
execution time limit to halt the program. They 



demonstrated that, using such a grammar to guide 
evolution, GGP is able to find the solution to the general 
even-n-parity problem more efficiently than Koza’s ADFs 
approach. They also studied the problem of evolving 
recursive programs from noisy examples (Wong and 
Leung 1996a).  

Tang et al. (1998) compared Inductive Logic 
Programming (ILP), GP, and Genetic Logic Programming 
(GLP is a variant of GP for inducing Prolog programs 
proposed by Whigham and McKay (1995)) for program 
induction. These approaches were used to induce four 
recursive, list-manipulation programs. The results indicate 
that ILP is generally more accurate at inducing correct 
programs given limited data and computing resources. 
GLP performs the worst, and is rarely able to induce a 
correct program. Although they found that ILP is 
generally more accurate than GP and GLP,  they only 
used the traditional GP (Koza 1992) in their comparison. 
Other GP systems such as Strongly Typed GP (Montana 
1995), PolyGP, CFG-GP, GGP, and GP with ADR were 
not compared. Thus, it is not clear if the conclusion is 
applicable to other GP systems. 

3 Difficulties in Evolving Recursive Programs 

In general, a recursive program consists of one or more 
base statements and a number of recursive statements. It 
is difficult to evolve a recursive program because 
appropriate base and recursive statements and correct 
ordering of them must be evolved simultaneously. 
Consider the even-n-parity problem, the following 
program:  

(defun parity (L) 
  (AND (or (first L)  
           (parity (rest L))) 
       (if (null L) T 
        (AND (OR (first L)  
               (parity (rest L))) 
             (NAND (first L)  
               (parity (rest L))))))) 

is incorrect, although the second component of the 
outermost AND function is the target recursive program to 
be evolved.  

Moreover, consider the problem of inducing a program 
from all fitness cases of the even-3-parity problem, the 
standardized fitness value of the program: 

(defun parity (L) 
  (if (null L) T (first L))) 

is only 4, although its base statement is correct. The 
standardized fitness value of the program: 

(defun parity (L) 
  (if (null L) nil 
    (AND (OR (first L)  
             (parity (rest L))) 
    (NAND (first L)  
          (parity (rest L)))))) 

is 8 (the worst value), although its recursive statement is 
correct. These examples illustrate that the problem of 
inducing recursive program is difficult, because the 
properties of the problem obstruct the construction and 
combination of good building blocks. 

Moreover, several non-terminating programs with 
similar structures occur frequently in various generations 
during the evolution of recursive programs. For example, 
the following programs, 

(defun parity (L) 
  (parity L)) 
 
(defun parity (L) 
  (AND (parity L) (first L))) 
 
(defun parity (L) 
  (OR (parity L) (AND (parity L) 
                      (first L)))) 

may be generated several times. Since it is impossible to 
develop an algorithm that determines if a program will 
terminate or not, a program is assumed to be non-
terminating if it executes for a long time. In other words, 
much of the execution time is wasted in evaluating these 
programs, and less execution time is devoted to evolve 
good programs.  

4 Adaptive GBGP 

This section presents a novel approach called adaptive 
Grammar Based Genetic Programming system (adaptive 
GBGP) that is an extention of GGP. Adaptive GBGP 
applies extended logic grammars to specific the language 
bias and the search bias of the learning problem of 
evolving programs (Whigham 1996). This section first 
introduces the formalism of extended logic grammars 
followed by the description of the representations and the 
genetic operators of adaptive GBGP. The technique of 
adapting grammars is discussed in Section 4.3. 

4.1 Introduction to Extended Logic Grammars 
 
Extended logic grammars are the generalizations of 
CFGs. Their expressiveness is much more powerful than 
those of CFGs, but equally amenable to efficient 
execution. In this paper, extended logic grammars are 
described in a notation similar to that of definite clause 
grammars (Pereira and Warren 1980). The grammar for 
some simple S-expressions in Table 1 will be used 
throughout this section. 
 
1:start -> [(*], exp(W), exp(W), exp(W), [)]. 
2:start -> {member(?x,[W, Z])}, [(*],  
  exp-1(?x) <(5 2)(6 2)(7 1)>, 
  exp-1(?x), exp-1(?x),[)]. 
3:start -> {member(?x,[W, Z])}, [(+),  
  exp-1(?x) <(5 3)(6 1)(7 1)>,  
  exp-1(?x), exp-1(?x), [)]. 
4:exp(?x) -> [(/ ?x 1.5)]. 
5:exp-1(?x) -> {random(1,2,?y)}, [(/ ?x ?y)]. 
6:exp-1(?x) -> {random(3,4,?y)}, [(- ?x ?y)]. 
7:exp-1(W) -> [(+ (- W 11) 12)]. 

Table 1: An extended logic grammar 
 
An extended logic grammar differs from a CFG in that 

the grammar symbols, whether terminal or non-terminal, 
may include arguments. The arguments can be any term 
in the grammar. A term is either a logic variable, a 



function or a constant. A variable is represented by a 
question mark '?' followed by a string of  letters and/or 
digits. A function is a grammar symbol followed by a 
bracketed n-tuple of terms and a constant is simply a 
0-arity function. Arguments can be used in a grammar to 
enforce context-dependency. Thus, the permissible forms 
for a constituent may depend on the context in which that 
constituent occurs in the program.  

The terminal symbols, which are enclosed in square 
brackets, correspond to the set of words of the language 
specified. For example, the terminal [(- ?x ?y)] 
creates the constituent (- 1.0 2.0) of a program if 
?x and ?y are instantiated respectively to 1.0 and 2.0. 
Non-terminal symbols are similar to literals in Prolog; 
exp-1(?x) in Table 1 is an example of non-terminal 
symbol. Commas denote concatenation and each grammar 
rule ends with a full stop. 

The right-hand side of a grammar rule may contain 
logic goals and grammar symbols. The goals are pure 
logical predicates for which logical definitions have been 
given. They specify the conditions that must be satisfied 
before the rule can be applied. For example, the goal 
member(?x, [W, Z]) in Table 1 instantiates the 
variable ?x to either W or Z if ?x has not been 
instantiated, otherwise it checks whether the value of ?x 
is either W or Z. In another example, if the variable ?y has 
not been bound, the goal random(1, 2, ?y) 
instantiates ?y to a random floating point number 
between 1 and 2. Otherwise, the goal checks whether the 
value of ?y is between 1 and 2. 

The special non-terminal start corresponds to a 
program of the language. In Table 1, some grammar 
symbols are shown in bold-face to identify the 
constituents that cannot be manipulated by genetic 
operators. For example, the last terminal symbol [)] of 
the second rule is revealed in bold-face because every S-
expression must end with a ')', and thus it is not necessary 
to modify the ')' symbol. The underlined number before 
each rule is used to identify this rule. 

One of the differences between an extended logic 
grammar and a logic grammar is that the former allows a 
non-terminal at the right hand side of a grammar rule to 
be followed by an optional list of rule-biases. A rule-
biases list is enclosed by a pair of angle brackets and it 
contains a list of pairs. The first element of a pair is a 
number that identifies a grammar rule while the second 
element of a pair is an integer between min-rule-bias and 
max-rule-bias. In the current implementation, min-rule-
bias and max-rule-bias are respectively 1 and 5. The 
second element is called rule-bias and it specifies the 
relative probability of applying the corresponding 
grammar rule to expand the non-terminal symbol. For 
example, consider the first non-terminal symbol 
exp-1(?x) of grammar rule 2, its rule-biases list is <(5 
2) (6 2) (7 1)>, thus the probabilities of applying 
grammar rules 5, 6, and 7 to expand the non-terminal 
symbol are respectively 0.4, 0.4 and 0.2. If the rule-biases 
list of a non-terminal symbol is not specified, the 
maximum value (i.e. max-rule-bias) is assigned to the 

rule-bias of every applicable grammar rules. Therefore, 
the rule-biases list of the second non-terminal symbol 
exp-1(?x) of grammar rule 2 is (<5 5) (6 5) (7 
5)>. In other words, the probabilities of applying 
grammar rules 5, 6, and 7 to expand this non-terminal 
symbol are equal. 

4.2 Representations, Crossover, and Mutation 
 
Adaptive GBGP represents a program as a derivation tree 
showing how the program has been derived from the 
extended logic grammar. In other words, a derivation tree 
is the genotype and the corresponding program is the 
phenotype. Adaptive GBGP applies deduction to 
randomly generate programs and their derivation trees in 
the language declared by the given grammar. These 
derivation trees form the initial population and adaptive 
GBGP directly manipulates these trees to find appropriate 
solutions. 

The algorithms for implementing crossover and 
mutation are similar to those of GGP. However, the 
information maintained in the rule-biases list of different 
non-terminal symbols will be used to determine the 
crossover sites when crossover is performed. Similarly, 
mutation applies the information to decide which 
grammar rule should be used to expand a non-terminal 
symbol. 

4.3 Adaptations of Extended Logic Grammars 
 
From our experience in evolving the recursive even-n-
parity program using GGP, we have observed that non-
terminating programs with similar structures occur 
frequently in various generations. Consider the grammar 
depicted in Table 2, 
 
11:start    -> [ (defun parity (L) ),  
     s-expr(BOOL), [ ) ]. 
12:s-expr(BOOL) -> [ T ]. 
13:s-expr(BOOL) -> [ nil ]. 
14:s-expr(BOOL) -> [ ( ], op, s-expr(BOOL),  
     s-expr(BOOL), [ ) ]. 
15:s-expr(BOOL) -> [ ( ], [ if (null L) T ],  
     s-expr(BOOL), [ ) ]. 
16:s-expr(BOOL) -> [ ( ], [ parity ],  
     s-expr(LIST), [ ) ]. 
17:s-expr(BOOL) -> [ ( ], [ first ],  
     s-expr(LIST), [ ) ]. 
18:s-expr(LIST) -> [ L ]. 
19:s-expr(LIST) -> [ ( ],[ rest ],  
     s-expr(LIST),[ ) ]. 
20:op    -> [ AND ]. 
21:op    -> [ OR ]. 
22:op    -> [ NAND ]. 
23:op    -> [ NOR ]. 

Table 2: An extended logic grammar for the even-
n-parity problem. 

 
this grammar allows the program, 

(defun parity (L) 
  (if (null L) T (parity (rest L)))) 

and the program, 
(defun parity (L) 
  (first L)) 



to be generated. The derivation trees of these two 
programs are shown in Figures 1 and 2 respectively. In 
the figures, the plain numbers are used to identify the sub-
trees of these derivation trees, while the underlined 
numbers indicate the grammar rules used in deducing the 
corresponding sub-trees. 

 
start

[(defun parity (L)] s-expr(BOOL) [)]

[(] [if (null L) T] s-expr(BOOL) [)]

[(] [parity] s-expr(LIST) [)]

[(] [rest] s-expr(LIST) [)]

[L]
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2 3 14

4 5 6 15

7 8 9 16
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Figure 1: The derivation tree of the first program. 
 

[(defun parity (L)]

start

s-expr(BOOL) [)]

[(] [first] s-expr(LIST) [)]

[L]
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22 23 28

24
25 26 29

27

11

17

18

 
Figure 2: The derivation tree of the second 

program. 
 
If the two programs are selected as parental programs 

to produce a new program through crossover. A non-
terminating program, 

(defun parity (L) 
  (if (null L) T (parity L))) 

will be created if the sub-trees 9 and 26 are exchanged. 
Since the grammar rule 18 is used to deduce the sub-tree 
26 and the grammar rule 16 contains the non-terminal 
symbol s-expr(LIST) which is expanded to the sub-
tree 9, this situation indicates that the probability of 
applying the grammar rule 18 to deduce the sub-tree for 
the non-terminal symbol s-expr(LIST) of the 
grammar rule 16 should be reduced, in order to decrease 
the chance of generating similar non-terminating 
programs. Therefore, adaptive GBGP retrieves the rule-
biases list of the non-terminal symbol s-expr(LIST) 
of the grammar rule 16, and reduces the rule bias 
associated with the grammar rule 18. When modifying the 
rule bias, adaptive GBGP ensures that the rule bias will 
not be smaller than min-rule-bias. 

5 Experiments 

Two experiments have been performed repeatedly for 100 
times to demonstrate the effectiveness of the adaptive 
mechanism described in Section 4.3. They differ in 
whether the adaptive mechanism is enabled or disabled.  

In these experiments, the extended logic grammar in 
Table 2 is used by the systems to evolve recusive 
programs. The population size is 500 and the maximum 
number of generations is 50. The probabilities of 
performing crossover and mutation are respectively 0.6 
and 0.3. The maximum depth of derivation trees 
generated in the initial population is 12. The maximum 
depth of trees produced by crossover and mutation is also 
12. The even-0-, 2-, and 3-parity problems are used in the 
training process. The training set contains all 13 fitness 
cases from these even-parity problems. The standardized 
fitness value of an evolved program is the total number of 
misclassifications on the 13 fitness cases. The evolution 
terminates if the maximum number of generations of 50 is 
reached or a program that classifies all fitness cases 
correctly is found.  

In order to avoid the problem caused by a non-
terminating recursive program, a recursion limit is 
enforced. After invoking the program recursively for 20 
times, if the evolved program fails to find a result for a 
fitness case, it will be terminated. In this case, the 
program is assumed to be non-terminating and a special 
fitness value is assigned to it to indicate that it is non-
terminating. It is possible that an evolved program will 
generate exceptions during its execution for some fitness 
cases, because it is illegal to perform the first 
operation on an empty list. If the program produces an 
exception, it is assumed that it will misclassify the 
corresponding fitness cases. 

In Section 5.1, we present the performance results of 
the system without the adaptive mechanism. In Section 
5.2, the performance results of adaptive GBGP are 
described. 

5.1 Non-adaptive GBGP 
 
In the 100 trials, the system successfully evolves 46 
programs that classify all fitness cases correctly. The 
generated programs are then tested on the even-i-parity 
problems, where i ∈ {0, 1, 2, 4, 5, 6, 7, 8, 9, 10}. 44 of 
them can successfully solve all the problems. They are 
further analyzed manually and it is found that these 44 
programs are correct recursive programs for the general 
even-n-parity problem. 

The I(M, i, z) for z of 99% reaches a minimum value 
of 175,595 at generation 39 (Koza 1992). Since there are 
only 13 fitness cases, 175,595*13 = 2,282,735 fitness 
cases should be processed to find a general recursive 
program for the even-n-parity problem. 



5.2 Adaptive GBGP 
 
In the 100 trials, the system successfully evolves 49 
programs that classify all fitness cases correctly. The 
generated programs are further analysized, 48 of them are 
correct recursive programs for the general even-n-parity 
problem. The curves in Figure 3 show the experimentally 
observed cumulative frequency of success F(M, i) of 
solving the problem by generation i using a population of 
M programs, where M is 500. It can be observed that 
adaptive GBGP performs better than non-adaptive GBGP. 
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Figure 3: The performance curves showing 

cumulative frequency of success F(M, i) 
for the even-n-parity problem. 

 
The curves in Figure 4 show the number of programs 

I(M, i, z) that must be processed to produce a solution by 
generation i with a probability z, where z is 0.99. The 
I(M, i, z) of adaptive GBGP reaches a minimum value of 
151,092 at generation 40 (Koza 1992). This figure also 
shows that adaptive GBGP performs better than non-
adaptive GBGP. 
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Figure 4: The performance curves showing I(M, i, 

z) for the even-n-parity problem. 

Since there are only 13 fitness cases, 151,092*13 = 
1,964,196 fitness cases should be processed to find a 
general recursive program for the even-n-parity problem. 
On the other hand, GP with ADFs evaluates 1,440,000*27 
= 184,320,000 fitness cases to find a program that solves 
the even-7-parity problem only. In other words, adaptive 
GBGP can solve the even-7-parity problem about 94 
times faster. 

Table 3 summarizes the numbers of non-terminating 
programs generated by adaptive GBGP and non-adaptive 
GBGP in 100 trials. The average number of non-
terminating programs generated by adaptive GBGP is 
440.26, which is much smaller than that of non-adaptive 
GBGP (1,077.47). Moreover, the maximum number of 
non-terminating programs generated by adaptive GBGP is 
1,173. This value is slightly higher than the average 
number of non-terminating programs generated by non-
adaptive GBGP. In other words, adaptive GBGP 
generates much smaller number of non-terminating 
programs than non-adaptive GBGP in many trials. 

 
 Adaptive GBGP Non-adaptive GBGP 
Average 440.26 1,077.47 
Std. 193.00 557.27 
Maximum 1,173 2,041 
Minimum 167 237 

Table 3: The numbers of non-terminating 
programs generated by adaptive GBGP 
and non-adaptive GBGP. 

 
One of extended logic grammars modified by adaptive 

GBGP is shown in Table 4. It can be observed that the 
extended logic grammar can reduce the chance of 
generating non-terminating programs, and thus it 
accelerates the process of evolving recursive programs. 

 
11:start    -> [ (defun parity (L) ),  
     s-expr(BOOL), [ ) ]. 
12:s-expr(BOOL) -> [ T ]. 
13:s-expr(BOOL) -> [ nil ]. 
14:s-expr(BOOL) -> [ ( ], op, s-expr(BOOL),  
     s-expr(BOOL), [ ) ]. 
15:s-expr(BOOL) -> [ ( ], [ if (null L) T ],  
     s-expr(BOOL), [ ) ]. 
16:s-expr(BOOL) -> [ ( ], [ parity ],  
     s-expr(LIST)<(18 1)  
     (19 5)>, [ ) ]. 
17:s-expr(BOOL) -> [ ( ], [ first ],  
     s-expr(LIST), [ ) ]. 
18:s-expr(LIST) -> [ L ]. 
19:s-expr(LIST) -> [ ( ],[ rest ],  
     s-expr(LIST),[ ) ]. 
20:op    -> [ AND ]. 
21:op    -> [ OR ]. 
22:op    -> [ NAND ]. 
23:op    -> [ NOR ]. 

Table 4: An extended logic grammar adapted by 
adaptive GBGP. The modified grammar 
rule is shaded. 

 



6 Discussion and Future Work 

Whigham developed a framework for automatically 
modifying an initial context-free grammar in his CFG-GP 
system. The technique improved the convergence of 
CFG-GP for the 6-multiplexer problem (Whigham 1996). 
However, he did not demonstrate if this technique can be 
used in evolving recursive programs. His approach has a 
number of characteristics. Firstly, new grammar rules can 
be added to the grammar but existing rules cannot be 
deleted. Secondly, the modified grammars must represent 
the same language that is expressible from the initial 
grammar. Thirdly, new grammar rules are extracted from 
the fittest program in each generation. Grammar rules 
cannot be obtained from useful derivations in other 
programs, and thus useful information may be wasted. 
Finally, the approach assumes that any terminal in the 
fittest program may contribute to developing useful 
grammar rules. Thus, the learnt grammar rules only 
specify the structures of the lower part of the derivation 
tree. Wong and Leung (1996b) demonstrated that 
grammar rules describing the overall structure of the 
derivation tree are very useful in evolving recursive 
programs. But the approach of Whigham cannot learn this 
kind of grammar rules.  

Similarly, our adaptive GBGP will not delete any 
existing rules. However, the probabilities of applying 
some rules will be reduced if they are inappropriate in 
certain contexts (i.e. rules). Since the same non-terminal 
symbol at the right-hand side of different rules can have 
different rule-biases list, rules may have different 
probabilities of being used in different contexts. For 
example, consider the grammar rule 2 in Table 1, the 
probabilities of applying rules 5, 6, and 7 to expand the 
first non-terminal symbol exp-1(?x) are 0.4, 0.4, and 
0.2 respectively. On the other hand, the probabilities of 
using rules 5, 6, and 7 to expand the first non-terminal 
symbol exp-1(?x) of the grammar rule 3 are 0.6, 0.2, 
and 0.2 respectively. 

Angeline (1996) used adaptive techniques for 
determining crossover position with GP. For each 
program tree, a parameter tree having the same structure 
as the program is maintained. At each node in the 
parameter tree, there is a value that represents the 
probability of performing crossover at that node. These 
values are adaptively modified using a Gaussian random 
noise after each crossover operation. Instead, our adaptive 
GBGP maintains this kind of information in the grammar 
and it is updated by examining the fitness of the offspring 
created by performing crossover. 

To determine if the technique described in this paper is 
general enough to handle various extended logic 
grammars and different problems, we will apply adaptive 
GBGP on a number of recursive program learning 
problems including factorial, Fibonacci, member, reverse, 
conc, last, shift, and translate functions with and without 
noisy and missing training examples. 

We will study methods to add new rules and delete 
existing rules dynamically. The modified grammars 

should represent different languages. Thus, if the initial 
grammar does not contain the solution, the modified 
grmmars may allow adaptive GBGP to find the solution. 

7 Conclusion 

In this paper, we have proposed a technique to tackle the 
difficulties in learning recursive programs by dynamically 
modifying the grammar specifying the search space. The 
modified grammar reduce the chance of producing non-
terminating programs, and thus it accelerates the process 
of evolving recursive programs. The technique is 
incorporated into an adaptive Grammar Based Genetic 
Programming system (adaptive GBGP). A number of 
experiments have been performed to demonstrate that the 
system can evolve recursive programs efficiently and 
effectively. 
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