
Applying Adaptive Grammar Based Genetic Programming in Evolving
Recursive Programs

Man Leung Wong
Department of Computing and Decision Sciences

Lingnan University, Tuen Mun
Hong Kong

mlwong@ln.edu.hk

Abstract- Genetic programming (GP) extends
traditional genetic algorithms to automatically induce
computer programs. GP has been applied in a wide
range of applications such as software re-engineering,
electrical circuits synthesis, knowledge engineering,
and data mining. One of the most important and
challenging research areas in GP is the investigation of
ways to successfully evolve recursive programs. A
recursive program is one that calls itself either directly
or indirectly through other programs. Because
recursions lead to compact and general programs and
provide a mechanism for reusing program code, they
facilitate GP to solve larger and more complicated
problems. Nevertheless, it is commonly agreed that the
recursive program learning problem is very difficult
for GP. In this paper, we propose a technique to tackle
the difficulties in learning recursive programs. The
technique is incorporated into an adaptive Grammar
Based Genetic Programming system (adaptive
GBGP). A number of experiments have been
performed to demonstrate that the system can evolve
recursive programs efficiently and effectively.

1 Introduction

Genetic programming (GP) extends traditional genetic
algorithms (Holland 1975, Goldberg 1989) to
automatically induce computer programs (Koza 1992;
1994, Koza et al. 1999). It is a stochastic general search
and problem solving method that uses the analogies from
natural selection and evolution. GP encodes potential
solutions to a specific problem as computer programs and
apply reproduction and recombination operators to these
programs to create new programs. The reproduction and
recombination processes are repeated until appropriate
solutions are found or all resources have been used. GP
has been demonstrated to be effective and robust in
searching very large and varied spaces in a wide range of
applications such as software re-engineering, electrical
circuits synthesis, knowledge engineering (Koza 1992;
1994, Koza et al. 1999, Kinnear 1994, Angeline and
Kinnear 1996, Spector et al. 1999), and data mining
(Wong and Leung 2000, Freitas 1997).

One of the most important and challenging areas of
research in genetic programming is the investigation of
ways to apply them to larger and more complicated

problems. One approach to make a large problem more
tractable is to discover problem representations
automatically. Koza (1994) used the boolean even-n-
parity problem to demonstrate extensively that his
approach of hierarchical Automatically Defined Functions
(ADFs) can facilitate the solving of the problem.

The boolean even-n-parity program of n boolean input
arguments returns true (T) if an even number of the
arguments are true, otherwise it returns false (nil). Koza
(1994) used GP with ADFs to induce hierarchical
functions from training examples (fitness cases) to solve
the problem. The training set contains all 2n combinations
of the n boolean input arguments. The standardized
fitness of an S-expression is the sum of the error between
the value returned by the S-expression and the correct
value of the even-n-parity program.

Koza showed that the even-7-parity problem can be
solved using GP with ADFs. He found that about
1,440,000 programs should be evaluated to obtain at least
one solution with 99% probability. Since all 2n fitness
cases, for a particular value of n, were used as the training
examples, it is unclear whether GP with ADFs can
discover the regularities of the even-n-parity problem and
induce a general program. Moreover, GP with ADFs can
only solve an instance of the even-n-parity problem for a
particular value of n. If a different value of n is provided,
GP with ADFs must be used again to induce another
program for the new instance of the problem. A better
solution is a recursive program that solves all instances of
the problem for all n ≥ 0. A general recursive program is
given below:

(defun parity (L)
 (if (null L) T
 (AND
 (OR (first L) (parity
 (rest L)))
 (NAND (first L) (parity
 (rest L))))))

In this recursive program, the argument L is a list of
boolean values. Any number of boolean values can exist
in the list L.

Since recursive programs are usually compact, elegant,
and general solutions of complicated problems, the
problem of evolving recursive programs is very important
in genetic programming. However, it is commonly agreed
that the problem is very difficult.

From our experience in evolving recursive even-n-
parity program using Generic Genetic Programming
(Wong and Leung 1997), we observed that non-

terminating programs with similar structures occur
frequently in various generations. In this paper, we
propose a technique that automatically modifies the
grammar after observing a number of non-terminating
programs. The modified grammar reduces the probability
of generating this kind of non-terminating programs, and
thus it accelerates the process of evolving recursive
programs.

The technique is implemented in an adaptive Grammar
Based Genetic Programming System (adaptive GBGP),
which allows extended logic grammars to be learnt and
modified dynamically. The next section describes related
research in learning recursive programs. Some difficulties
in evolving recursive programs are presented in Section 3.
Adaptive GBGP and the technique of modifying
grammars dynamically are discussed in Section 4. The
experiment results are presented in the next section. In
Section 6, we discuss the differences between our
approach and other existing methods. A conclusion is
given in the last section.

2 Related Research

Koza (1992) studied a limited form of recursion for
sequence induction. To evolve programs that can generate
the Fibonacci sequence, the S-expression was allowed to
reference previously computed values in the sequence.

GP was applied to evolve programs with recursive
ADFs to perform tree search (Brave 1996). To evolve a
recursive ADF, the name of the ADF was included in its
function set. However, an evolved recursive ADF may
contain infinite-loops. To handle this problem, the
maximum number of recursive calls was specified as the
depth of the tree being searched. Usually such a limit
affects the evolution process since a good program may
never be induced if its evaluation requires more than the
permitted recursive calls. It was demonstrated that GP can
find solutions to the tree search problem faster than that
using non-recursive ADFs. Moreover, the program
containing recursive ADFs is less complex and requires
less computational effort to execute than the programs
with non-recursive ADFs. However, this approach is not a
general method to evolve recursive programs.

Whigham designed two directed mutation operators to
guide GP to evolve a recursive member function using
his CFG-GP system (Whigham 1996). A directed
mutation operator specifies that a subtree generated by
one particular grammar rule is replaced by another subtree
generated by another grammar rule. However, these two
mutation operators are problem specific. The knowledge
about the solution is used to direct GP search. For
problems that have not an obvious recursive pattern, this
approach may not be applicable.

Yu used her PolyGP to evolve nth and map recursive
programs (Yu 1999b). In this approach, the name of the
program is included in the function set so that it can be
used to evolve recursive programs. However, this
approach complicates the dynamic of program evolution

with other issues. The first issue is the method to handle
infinite loops. In her experiments, the maximum number
of recursive calls allowed in a program is the length of the
input list. This limit may prevent her PolyGP from
discovering good programs if the programs require more
than the permitted recursive calls to evaluate. The second
issue is the fitness penalty applied to programs with
infinite loops. It is not clear which fitness penalty is
appropriate. Finally, a small change in a recursive
program can lead to large variation of the fitness of the
program. Thus, recursive programs are extremely
deceptive. Therefore, the fitness of a recursive program
does not reflect its proximity to a solution in the space of
programs.

Yu introduced an alternative approach for evolving
recursive programs. In this approach, recursion is
provided implicitly by the higher-order function foldr.
It provides a mechanism of module creation and reuse
(Yu 1999a).

Recently, Koza and his colleagues introduced
Automatically Defined Recursion (ADR) that implements
a general form of recursion (Koza et al. 1999). An ADR
consists of a Recursion Condition Branch (RCB), a
Recursion Body Branch (RBB), a Recursion Update
Branch (RUB), and a Recursion Ground Branch (RGB).
These branches are subject to evolution during the run of
genetic programming. A number of architecture-altering
operations for ADR have also been implemented.

Wong and Leung developed a flexible framework
called GGP (Generic Genetic Programming). The
framework combines GP and Inductive Logic
Programming (Lavrac and Dzeroski 1994, Muggleton
1992) to learn programs in various programming
languages. The system is also powerful enough to
represent context-sensitive information and domain-
dependent knowledge. This knowledge can be used to
accelerate the learning speed and/or improve the quality
of the programs induced (Wong and Leung 1997, Wong
2001).

Since GGP can induce programs in various
programming languages, it must be able to accept
grammars of different languages and produce programs in
them. Most modern programming languages are specified
in the notation of BNF (Backus-Naur Form) which is a
kind of context-free grammar (CFG). However, GGP is
based on logic grammars because CFGs (Hopcroft and
Ullman 1979) are not expressive enough to represent
context-sensitive information of some languages and
domain-dependent knowledge of the target programs
being induced.

Wong and Leung used GGP to evolve a recursive
program for the even-n-parity problem from training
examples without noise (Wong and Leung 1996b). Their
approach is to construct a logic grammar that includes a
grammar rule making recursive calls. Moreover, the
grammar enforces a termination condition in the program
structure. However, the convergence of recursive calls in
the program is not guaranteed. Hence, they used an
execution time limit to halt the program. They

demonstrated that, using such a grammar to guide
evolution, GGP is able to find the solution to the general
even-n-parity problem more efficiently than Koza’s ADFs
approach. They also studied the problem of evolving
recursive programs from noisy examples (Wong and
Leung 1996a).

Tang et al. (1998) compared Inductive Logic
Programming (ILP), GP, and Genetic Logic Programming
(GLP is a variant of GP for inducing Prolog programs
proposed by Whigham and McKay (1995)) for program
induction. These approaches were used to induce four
recursive, list-manipulation programs. The results indicate
that ILP is generally more accurate at inducing correct
programs given limited data and computing resources.
GLP performs the worst, and is rarely able to induce a
correct program. Although they found that ILP is
generally more accurate than GP and GLP, they only
used the traditional GP (Koza 1992) in their comparison.
Other GP systems such as Strongly Typed GP (Montana
1995), PolyGP, CFG-GP, GGP, and GP with ADR were
not compared. Thus, it is not clear if the conclusion is
applicable to other GP systems.

3 Difficulties in Evolving Recursive Programs

In general, a recursive program consists of one or more
base statements and a number of recursive statements. It
is difficult to evolve a recursive program because
appropriate base and recursive statements and correct
ordering of them must be evolved simultaneously.
Consider the even-n-parity problem, the following
program:

(defun parity (L)
 (AND (or (first L)
 (parity (rest L)))
 (if (null L) T
 (AND (OR (first L)
 (parity (rest L)))
 (NAND (first L)
 (parity (rest L)))))))

is incorrect, although the second component of the
outermost AND function is the target recursive program to
be evolved.

Moreover, consider the problem of inducing a program
from all fitness cases of the even-3-parity problem, the
standardized fitness value of the program:

(defun parity (L)
 (if (null L) T (first L)))

is only 4, although its base statement is correct. The
standardized fitness value of the program:

(defun parity (L)
 (if (null L) nil
 (AND (OR (first L)
 (parity (rest L)))
 (NAND (first L)
 (parity (rest L))))))

is 8 (the worst value), although its recursive statement is
correct. These examples illustrate that the problem of
inducing recursive program is difficult, because the
properties of the problem obstruct the construction and
combination of good building blocks.

Moreover, several non-terminating programs with
similar structures occur frequently in various generations
during the evolution of recursive programs. For example,
the following programs,

(defun parity (L)
 (parity L))

(defun parity (L)
 (AND (parity L) (first L)))

(defun parity (L)
 (OR (parity L) (AND (parity L)
 (first L))))

may be generated several times. Since it is impossible to
develop an algorithm that determines if a program will
terminate or not, a program is assumed to be non-
terminating if it executes for a long time. In other words,
much of the execution time is wasted in evaluating these
programs, and less execution time is devoted to evolve
good programs.

4 Adaptive GBGP

This section presents a novel approach called adaptive
Grammar Based Genetic Programming system (adaptive
GBGP) that is an extention of GGP. Adaptive GBGP
applies extended logic grammars to specific the language
bias and the search bias of the learning problem of
evolving programs (Whigham 1996). This section first
introduces the formalism of extended logic grammars
followed by the description of the representations and the
genetic operators of adaptive GBGP. The technique of
adapting grammars is discussed in Section 4.3.

4.1 Introduction to Extended Logic Grammars

Extended logic grammars are the generalizations of
CFGs. Their expressiveness is much more powerful than
those of CFGs, but equally amenable to efficient
execution. In this paper, extended logic grammars are
described in a notation similar to that of definite clause
grammars (Pereira and Warren 1980). The grammar for
some simple S-expressions in Table 1 will be used
throughout this section.

1:start -> [(*], exp(W), exp(W), exp(W), [)].
2:start -> {member(?x,[W, Z])}, [(*],
 exp-1(?x) <(5 2)(6 2)(7 1)>,
 exp-1(?x), exp-1(?x),[)].
3:start -> {member(?x,[W, Z])}, [(+),
 exp-1(?x) <(5 3)(6 1)(7 1)>,
 exp-1(?x), exp-1(?x), [)].
4:exp(?x) -> [(/ ?x 1.5)].
5:exp-1(?x) -> {random(1,2,?y)}, [(/ ?x ?y)].
6:exp-1(?x) -> {random(3,4,?y)}, [(- ?x ?y)].
7:exp-1(W) -> [(+ (- W 11) 12)].

Table 1: An extended logic grammar

An extended logic grammar differs from a CFG in that

the grammar symbols, whether terminal or non-terminal,
may include arguments. The arguments can be any term
in the grammar. A term is either a logic variable, a

function or a constant. A variable is represented by a
question mark '?' followed by a string of letters and/or
digits. A function is a grammar symbol followed by a
bracketed n-tuple of terms and a constant is simply a
0-arity function. Arguments can be used in a grammar to
enforce context-dependency. Thus, the permissible forms
for a constituent may depend on the context in which that
constituent occurs in the program.

The terminal symbols, which are enclosed in square
brackets, correspond to the set of words of the language
specified. For example, the terminal [(- ?x ?y)]
creates the constituent (- 1.0 2.0) of a program if
?x and ?y are instantiated respectively to 1.0 and 2.0.
Non-terminal symbols are similar to literals in Prolog;
exp-1(?x) in Table 1 is an example of non-terminal
symbol. Commas denote concatenation and each grammar
rule ends with a full stop.

The right-hand side of a grammar rule may contain
logic goals and grammar symbols. The goals are pure
logical predicates for which logical definitions have been
given. They specify the conditions that must be satisfied
before the rule can be applied. For example, the goal
member(?x, [W, Z]) in Table 1 instantiates the
variable ?x to either W or Z if ?x has not been
instantiated, otherwise it checks whether the value of ?x
is either W or Z. In another example, if the variable ?y has
not been bound, the goal random(1, 2, ?y)
instantiates ?y to a random floating point number
between 1 and 2. Otherwise, the goal checks whether the
value of ?y is between 1 and 2.

The special non-terminal start corresponds to a
program of the language. In Table 1, some grammar
symbols are shown in bold-face to identify the
constituents that cannot be manipulated by genetic
operators. For example, the last terminal symbol [)] of
the second rule is revealed in bold-face because every S-
expression must end with a ')', and thus it is not necessary
to modify the ')' symbol. The underlined number before
each rule is used to identify this rule.

One of the differences between an extended logic
grammar and a logic grammar is that the former allows a
non-terminal at the right hand side of a grammar rule to
be followed by an optional list of rule-biases. A rule-
biases list is enclosed by a pair of angle brackets and it
contains a list of pairs. The first element of a pair is a
number that identifies a grammar rule while the second
element of a pair is an integer between min-rule-bias and
max-rule-bias. In the current implementation, min-rule-
bias and max-rule-bias are respectively 1 and 5. The
second element is called rule-bias and it specifies the
relative probability of applying the corresponding
grammar rule to expand the non-terminal symbol. For
example, consider the first non-terminal symbol
exp-1(?x) of grammar rule 2, its rule-biases list is <(5
2) (6 2) (7 1)>, thus the probabilities of applying
grammar rules 5, 6, and 7 to expand the non-terminal
symbol are respectively 0.4, 0.4 and 0.2. If the rule-biases
list of a non-terminal symbol is not specified, the
maximum value (i.e. max-rule-bias) is assigned to the

rule-bias of every applicable grammar rules. Therefore,
the rule-biases list of the second non-terminal symbol
exp-1(?x) of grammar rule 2 is (<5 5) (6 5) (7
5)>. In other words, the probabilities of applying
grammar rules 5, 6, and 7 to expand this non-terminal
symbol are equal.

4.2 Representations, Crossover, and Mutation

Adaptive GBGP represents a program as a derivation tree
showing how the program has been derived from the
extended logic grammar. In other words, a derivation tree
is the genotype and the corresponding program is the
phenotype. Adaptive GBGP applies deduction to
randomly generate programs and their derivation trees in
the language declared by the given grammar. These
derivation trees form the initial population and adaptive
GBGP directly manipulates these trees to find appropriate
solutions.

The algorithms for implementing crossover and
mutation are similar to those of GGP. However, the
information maintained in the rule-biases list of different
non-terminal symbols will be used to determine the
crossover sites when crossover is performed. Similarly,
mutation applies the information to decide which
grammar rule should be used to expand a non-terminal
symbol.

4.3 Adaptations of Extended Logic Grammars

From our experience in evolving the recursive even-n-
parity program using GGP, we have observed that non-
terminating programs with similar structures occur
frequently in various generations. Consider the grammar
depicted in Table 2,

11:start -> [(defun parity (L)),
 s-expr(BOOL), [)].
12:s-expr(BOOL) -> [T].
13:s-expr(BOOL) -> [nil].
14:s-expr(BOOL) -> [(], op, s-expr(BOOL),
 s-expr(BOOL), [)].
15:s-expr(BOOL) -> [(], [if (null L) T],
 s-expr(BOOL), [)].
16:s-expr(BOOL) -> [(], [parity],
 s-expr(LIST), [)].
17:s-expr(BOOL) -> [(], [first],
 s-expr(LIST), [)].
18:s-expr(LIST) -> [L].
19:s-expr(LIST) -> [(],[rest],
 s-expr(LIST),[)].
20:op -> [AND].
21:op -> [OR].
22:op -> [NAND].
23:op -> [NOR].

Table 2: An extended logic grammar for the even-
n-parity problem.

this grammar allows the program,

(defun parity (L)
 (if (null L) T (parity (rest L))))

and the program,
(defun parity (L)
 (first L))

to be generated. The derivation trees of these two
programs are shown in Figures 1 and 2 respectively. In
the figures, the plain numbers are used to identify the sub-
trees of these derivation trees, while the underlined
numbers indicate the grammar rules used in deducing the
corresponding sub-trees.

start

[(defun parity (L)] s-expr(BOOL) [)]

[(] [if (null L) T] s-expr(BOOL) [)]

[(] [parity] s-expr(LIST) [)]

[(] [rest] s-expr(LIST) [)]

[L]

1

2 3 14

4 5 6 15

7 8 9 16

10 11 12 17

13

11

15

16

19

18

Figure 1: The derivation tree of the first program.

[(defun parity (L)]

start

s-expr(BOOL) [)]

[(] [first] s-expr(LIST) [)]

[L]

21

22 23 28

24
25 26 29

27

11

17

18

Figure 2: The derivation tree of the second

program.

If the two programs are selected as parental programs

to produce a new program through crossover. A non-
terminating program,

(defun parity (L)
 (if (null L) T (parity L)))

will be created if the sub-trees 9 and 26 are exchanged.
Since the grammar rule 18 is used to deduce the sub-tree
26 and the grammar rule 16 contains the non-terminal
symbol s-expr(LIST) which is expanded to the sub-
tree 9, this situation indicates that the probability of
applying the grammar rule 18 to deduce the sub-tree for
the non-terminal symbol s-expr(LIST) of the
grammar rule 16 should be reduced, in order to decrease
the chance of generating similar non-terminating
programs. Therefore, adaptive GBGP retrieves the rule-
biases list of the non-terminal symbol s-expr(LIST)
of the grammar rule 16, and reduces the rule bias
associated with the grammar rule 18. When modifying the
rule bias, adaptive GBGP ensures that the rule bias will
not be smaller than min-rule-bias.

5 Experiments

Two experiments have been performed repeatedly for 100
times to demonstrate the effectiveness of the adaptive
mechanism described in Section 4.3. They differ in
whether the adaptive mechanism is enabled or disabled.

In these experiments, the extended logic grammar in
Table 2 is used by the systems to evolve recusive
programs. The population size is 500 and the maximum
number of generations is 50. The probabilities of
performing crossover and mutation are respectively 0.6
and 0.3. The maximum depth of derivation trees
generated in the initial population is 12. The maximum
depth of trees produced by crossover and mutation is also
12. The even-0-, 2-, and 3-parity problems are used in the
training process. The training set contains all 13 fitness
cases from these even-parity problems. The standardized
fitness value of an evolved program is the total number of
misclassifications on the 13 fitness cases. The evolution
terminates if the maximum number of generations of 50 is
reached or a program that classifies all fitness cases
correctly is found.

In order to avoid the problem caused by a non-
terminating recursive program, a recursion limit is
enforced. After invoking the program recursively for 20
times, if the evolved program fails to find a result for a
fitness case, it will be terminated. In this case, the
program is assumed to be non-terminating and a special
fitness value is assigned to it to indicate that it is non-
terminating. It is possible that an evolved program will
generate exceptions during its execution for some fitness
cases, because it is illegal to perform the first
operation on an empty list. If the program produces an
exception, it is assumed that it will misclassify the
corresponding fitness cases.

In Section 5.1, we present the performance results of
the system without the adaptive mechanism. In Section
5.2, the performance results of adaptive GBGP are
described.

5.1 Non-adaptive GBGP

In the 100 trials, the system successfully evolves 46
programs that classify all fitness cases correctly. The
generated programs are then tested on the even-i-parity
problems, where i ∈ {0, 1, 2, 4, 5, 6, 7, 8, 9, 10}. 44 of
them can successfully solve all the problems. They are
further analyzed manually and it is found that these 44
programs are correct recursive programs for the general
even-n-parity problem.

The I(M, i, z) for z of 99% reaches a minimum value
of 175,595 at generation 39 (Koza 1992). Since there are
only 13 fitness cases, 175,595*13 = 2,282,735 fitness
cases should be processed to find a general recursive
program for the even-n-parity problem.

5.2 Adaptive GBGP

In the 100 trials, the system successfully evolves 49
programs that classify all fitness cases correctly. The
generated programs are further analysized, 48 of them are
correct recursive programs for the general even-n-parity
problem. The curves in Figure 3 show the experimentally
observed cumulative frequency of success F(M, i) of
solving the problem by generation i using a population of
M programs, where M is 500. It can be observed that
adaptive GBGP performs better than non-adaptive GBGP.

Cumulative Frequency of Success

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45
Generation

Su
cc

es
s

Adap t ive
non Adap tive

Figure 3: The performance curves showing

cumulative frequency of success F(M, i)
for the even-n-parity problem.

The curves in Figure 4 show the number of programs

I(M, i, z) that must be processed to produce a solution by
generation i with a probability z, where z is 0.99. The
I(M, i, z) of adaptive GBGP reaches a minimum value of
151,092 at generation 40 (Koza 1992). This figure also
shows that adaptive GBGP performs better than non-
adaptive GBGP.

Individuals to be processed I(M, i, z)

100000

200000

300000

400000

500000

600000

700000

800000

0 5 10 15 20 25 30 35 40 45

Generation

In
di

vi
du

al
s t

o
be

 p
ro

ce
ss

ed

Adaptive
non Adaptive

Figure 4: The performance curves showing I(M, i,

z) for the even-n-parity problem.

Since there are only 13 fitness cases, 151,092*13 =
1,964,196 fitness cases should be processed to find a
general recursive program for the even-n-parity problem.
On the other hand, GP with ADFs evaluates 1,440,000*27
= 184,320,000 fitness cases to find a program that solves
the even-7-parity problem only. In other words, adaptive
GBGP can solve the even-7-parity problem about 94
times faster.

Table 3 summarizes the numbers of non-terminating
programs generated by adaptive GBGP and non-adaptive
GBGP in 100 trials. The average number of non-
terminating programs generated by adaptive GBGP is
440.26, which is much smaller than that of non-adaptive
GBGP (1,077.47). Moreover, the maximum number of
non-terminating programs generated by adaptive GBGP is
1,173. This value is slightly higher than the average
number of non-terminating programs generated by non-
adaptive GBGP. In other words, adaptive GBGP
generates much smaller number of non-terminating
programs than non-adaptive GBGP in many trials.

 Adaptive GBGP Non-adaptive GBGP
Average 440.26 1,077.47
Std. 193.00 557.27
Maximum 1,173 2,041
Minimum 167 237

Table 3: The numbers of non-terminating
programs generated by adaptive GBGP
and non-adaptive GBGP.

One of extended logic grammars modified by adaptive

GBGP is shown in Table 4. It can be observed that the
extended logic grammar can reduce the chance of
generating non-terminating programs, and thus it
accelerates the process of evolving recursive programs.

11:start -> [(defun parity (L)),
 s-expr(BOOL), [)].
12:s-expr(BOOL) -> [T].
13:s-expr(BOOL) -> [nil].
14:s-expr(BOOL) -> [(], op, s-expr(BOOL),
 s-expr(BOOL), [)].
15:s-expr(BOOL) -> [(], [if (null L) T],
 s-expr(BOOL), [)].
16:s-expr(BOOL) -> [(], [parity],
 s-expr(LIST)<(18 1)
 (19 5)>, [)].
17:s-expr(BOOL) -> [(], [first],
 s-expr(LIST), [)].
18:s-expr(LIST) -> [L].
19:s-expr(LIST) -> [(],[rest],
 s-expr(LIST),[)].
20:op -> [AND].
21:op -> [OR].
22:op -> [NAND].
23:op -> [NOR].

Table 4: An extended logic grammar adapted by
adaptive GBGP. The modified grammar
rule is shaded.

6 Discussion and Future Work

Whigham developed a framework for automatically
modifying an initial context-free grammar in his CFG-GP
system. The technique improved the convergence of
CFG-GP for the 6-multiplexer problem (Whigham 1996).
However, he did not demonstrate if this technique can be
used in evolving recursive programs. His approach has a
number of characteristics. Firstly, new grammar rules can
be added to the grammar but existing rules cannot be
deleted. Secondly, the modified grammars must represent
the same language that is expressible from the initial
grammar. Thirdly, new grammar rules are extracted from
the fittest program in each generation. Grammar rules
cannot be obtained from useful derivations in other
programs, and thus useful information may be wasted.
Finally, the approach assumes that any terminal in the
fittest program may contribute to developing useful
grammar rules. Thus, the learnt grammar rules only
specify the structures of the lower part of the derivation
tree. Wong and Leung (1996b) demonstrated that
grammar rules describing the overall structure of the
derivation tree are very useful in evolving recursive
programs. But the approach of Whigham cannot learn this
kind of grammar rules.

Similarly, our adaptive GBGP will not delete any
existing rules. However, the probabilities of applying
some rules will be reduced if they are inappropriate in
certain contexts (i.e. rules). Since the same non-terminal
symbol at the right-hand side of different rules can have
different rule-biases list, rules may have different
probabilities of being used in different contexts. For
example, consider the grammar rule 2 in Table 1, the
probabilities of applying rules 5, 6, and 7 to expand the
first non-terminal symbol exp-1(?x) are 0.4, 0.4, and
0.2 respectively. On the other hand, the probabilities of
using rules 5, 6, and 7 to expand the first non-terminal
symbol exp-1(?x) of the grammar rule 3 are 0.6, 0.2,
and 0.2 respectively.

Angeline (1996) used adaptive techniques for
determining crossover position with GP. For each
program tree, a parameter tree having the same structure
as the program is maintained. At each node in the
parameter tree, there is a value that represents the
probability of performing crossover at that node. These
values are adaptively modified using a Gaussian random
noise after each crossover operation. Instead, our adaptive
GBGP maintains this kind of information in the grammar
and it is updated by examining the fitness of the offspring
created by performing crossover.

To determine if the technique described in this paper is
general enough to handle various extended logic
grammars and different problems, we will apply adaptive
GBGP on a number of recursive program learning
problems including factorial, Fibonacci, member, reverse,
conc, last, shift, and translate functions with and without
noisy and missing training examples.

We will study methods to add new rules and delete
existing rules dynamically. The modified grammars

should represent different languages. Thus, if the initial
grammar does not contain the solution, the modified
grmmars may allow adaptive GBGP to find the solution.

7 Conclusion

In this paper, we have proposed a technique to tackle the
difficulties in learning recursive programs by dynamically
modifying the grammar specifying the search space. The
modified grammar reduce the chance of producing non-
terminating programs, and thus it accelerates the process
of evolving recursive programs. The technique is
incorporated into an adaptive Grammar Based Genetic
Programming system (adaptive GBGP). A number of
experiments have been performed to demonstrate that the
system can evolve recursive programs efficiently and
effectively.

Acknowledgments

This research was supported by the Earmarked Grant LU
3009/02E from the Research Grant Council of the Hong
Kong Special Administrative.

.Bibliography

Angeline, P. J. (1996). Two Self-Adaptive Crossover
Operators for Genetic Programming. In In P. J. Angeline
and K. E. Kinnear, Jr. (editors). Advances in Genetic
Programming 2. pp. 89 - 109. MA: MIT Press.
Angeline, P. J. and Kinnear, K. E. Jr. editors (1996).
Advances in Genetic Programming 2. MA: MIT Press.
Brave, S. (1996). Evolving Recursive Programs for Tree
Search. In P. J. Angeline and K. E. Kinnear, Jr. (editors).
Advances in Genetic Programming 2. pp. 203- 219. MA:
MIT Press.
Freitas, A. A. (1997). A Genetic Programming
Framework for two Data Mining Tasks: Classification
and Generalized Rule Induction. In Genetic Programming
1997: Proceedings of the 2nd Annual Conference, pp. 96-
101.
Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.
Holland, J. H. (1975). Adaptation in natural and artificial
systems. Ann Arbor: The University of Michigan Press.
Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to
automata theory, languages, and computation. MA:
Addison-Wesley.
Kinnear, K. E. Jr. editors (1994). Advances in Genetic
Programming 1. MA: MIT Press.
Koza, J. R., Bennett, F. H. III, Andre, D., and Keane, M.
A. (1999). Genetic Programming III: Darwinian
Invention and Problem Solving. San Francisco, CA:
Morgan Kaufmann Publishers.
Koza, J. R. (1994) Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge MA: MIT
Press.

Koza, J. R. (1992). Genetic Programming: on the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.
Lavrac, N. and Dzeroski, S. (1994). Inductive Logic
Programming: Techniques and Applications. London:
Ellis Horword.
Montana, D. J. (1995). Strongly Typed Genetic
Programming. Evolutionary Computation, 3, pp. 199-230.
Muggletion, S. (1992). Inductive Logic Programming. In
S. Muggletion (ed.), Inductive Logic Programming, pp. 3-
27. London: Academic Press.
Pereira, F. C. N. and Warren, D. H. D. (1980) Definite
Clause Grammars for Language Analysis - A Survey of
the Formalism and a Comparison with Augmented
Transition Networks. Artificial Intelligence, 13, pp. 231-
278.
Spector, L., Langdon, W. B., O’Reilly, U. M., and
Angeline, P. J. editors (1999). Advances in Genetic
Programming 3. MA: MIT Press.
Tang, L, R, Califf, M. E., and Mooney, R. J. (1998) An
Experimental Comparison of Genetic Programming and
Inductive Logic Programming on Learning Recursive List
Functions. TR AI98-271, Artificial Intelligence Lab,
University of Texas at Austin.
Whigham, P. A. (1996). Grammatical Bias for
Evolutionary Learning. Ph.D. Thesis. University of New
South Wales.
Whigham, P. A. and McKay, R. (1995) Genetic
Approaches to learning recursive relations. In Lecture
Notes in Artificial Intelligence: Volume 956. pp. 17-28.
Wong, M. L. (2001). A Flexible Knowledge Discovery
System using Genetic Programming and Logic
Grammars. Decision Support Systems.
Wong, M. L. and Leung, K. S. (2000). Data Mining
Using Grammar Based Genetic Programming and the
Applications. Boston, MA: Kluwer Academic Publishers.
Wong, M. L. and Leung, K. S. (1997). Evolutionary
Program Induction Directed by Logic Grammars.
Evolutionary Computation, 5, pp. 143-180.
Wong, M. L. and Leung, K. S. (1996a). Learning
Recursive Functions from Noisy Examples using Generic
Genetic Programming. In J. R. Koza, D. E. Goldberg, D.
B. Fogel, and R. L. Riolo (editors). Genetic Programming
1996: Proceedings of the First Annual Conference. pp.
238-246. MA: MIT Press.
Wong, M. L. and Leung, K. S. (1996b). Evolving
Recursive Functions for the Even-parity Problem Using
Genetic Programming. In P. J. Angeline and K. E.
Kinnear, Jr. (editors). Advances in Genetic Programming
2. pp. 221- 240. MA: MIT Press.
Yu, T. (1999a). Polymorphism and Genetic Programming.
In Proceedings of the Fourth European Conference on
Genetic Programming.
Yu, T. (1999b). An analysis of the Impact of Functional
Programming Techniques on Genetic Programming.
Ph.D. Thesis. Department of Computer Science.
University College London.

