
MDL-Based Fitness Functions for Learning Parsimonious Programs

Byoung-Tak Zhang~ Heinz Mfihlenbein
German National Research Center for Computer Science (GMD)

SchlossBirlinghoven, D-53754 St. Augustin, Germany
E-marl: {zhang, muehlenbein}@gmd.de

Introduction

Genetic programming starts with an initial population
of computer programs composed of elementary func-
tions and terminals (Koza 1992; Koza 1994; Kinn-
ear 1994). Genetic operators, such as crossover and
selection, are used to adapt the shape and size of
the programs and evolve increasingly fit populations.
This process can be viewed as a search for a highly
fit computer program, Abest, in the whole program
space A = {A1,A2,...}. The quality of each com-
puter program is measured by running it over a train-
ing set D of input-output cases of the unknown pro-
cess]: D {(xc, /v

= Yc)}c=l, where xc E X, Yc E Y
and_yc =](x~). The domain X and the range
are defined by the application. The goodness of the
program, A, is usually measured in terms of the error:
~g=a (y~ -- fA(X¢))2, where fA is the function realized
by A.

Though this training accuracy can be used as a sin-
gle measure for fitness, many empirical studies have
shown that, as programs grow, it also become less and
less likely for them to be general (Kinnear 1993; Tack-
ett 1993). In addition, large structures require more
computer resources in space and time for the evolu-
tion. Several methods have been proposed to take into
consideration of structural complexity in fitness eval-
uation, but relatively few attempts have been made
in the genetic programming community to employ the
complexity penalty in a more principled way.

In this paper we use a Bayesian model-comparison
method to develop a framework in which a class of
fitness measures is introduced for dealing with prob-
lems of parsimony based on the minimum description
length (MDL) principle (Rissanen 1986). We then
scribe an adaptive technique for putting this fitness
function into practice. It automatically balances the
ratio of training accuracy to solution complexity with-
out losing the population diversity needed to achieve
a desired training accuracy. The effectiveness of the

"Address after August 31, 1995: Department of Com-
puter Science, Kon-Kuk University, Seoul 133-701, Korea.
E-mail: btzhang@galaxy.konkuk.ac.kr

method is shown in the context of evolving neural net-
works based on noisy training data. We also discuss
the relationship of this work with other MDL based
approaches to tree induction.

Deriving MDL-Based Fitness Functions

As outlined in the introduction, the goal of genetic pro-
gramming can be formulated as finding a program or
model, A, whose evaluation fA best approximates the
underlying relation], where the approximation quality
is measured by

N1
E(D[A) = ~ ~ (y~ - fA(Xc)) 2. (1)

Considering the program as a Gaussian model of the
data, the likelihood of the training data is described
by

1
P(D]A) - Z(fl) exp(-flE(D]A)), (2)

where Z(fl) is a normalizing constant, and fl is a posi-
tive constant determining the sensitivity of the proba-
bility to the error value.

Bayes’ rule states that the posterior probability of a
model is:

P(A[D)- P(D[A)P(A)
P(D)

(3)

where P(A) is the prior probability of the models and

P(D) = / P(DIA)P(A)dA. (4)

The most plausible model given the data is then in-
ferred by comparing the posterior probabilities of all
models. Since P(D) is the same for all models, for the
purposes of model comparison, we need only compute

P(D[A)P(A). (5)

A complex model with many parameters will have
a broad distribution of priors, i.e. a small P(A)
value, and hence a small P(A[D) value. A simpler,

122

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

more constrained model will have a sharper prior and
thus a large P(A[D) value. For the more complex
model to be favored over the simpler one, it must
achieve a much better fit to the data. Thus Bayesian
model-comparison techniques choose between alterna-
tive models by trading off this measure of the simplicity
of a model against the data misfit. Thus it is reason-
able to define the evolutionary process of genetic pro-
gramming as the maximization of the posterior prob-
ability:

Abe,, = argmax {P(Ai[D)}
AiE.A

= arg max {P(D[Ai)P(Ai)}. (6)
AIE,A

Though the Bayesian inference is very useful in the-
ory, it is not very convenient to deal with in prac-
tice. Alternatively, we can use the model complexity;
according to coding theory (Rissanen 1984), if P(x)
is given, then its code length is given as L(P(x))
- log(P(x)). Maximizing P(D[A)P(A) is thus equiva-
lent to minimizing the total code length:

L(A]D) - L(P(D[A)P(A))
= - log(P(D[A)P(g))

= L(D[A) + L(A), (7)

where L(D[A) = -logP(D[A) and L(A)
-logP(A). Here L(D[A) is the code length of the
data when encoded using the model A as a predictor
for the data D, and L(A) is the length of the model
itself. This leads to the minimum description length
(MDL) principle (Rissanen 1986; Fogel 1991) where
the goal is to obtain accurate and parsimonious esti-
mates of the probability distribution. The idea is to
estimate the simplest density that has high likelihood
by minimizing the total length of the description of the
data:

Abest = argAm~.~{g(Ai[D)}

= arg mill. {L(DIA~) L(Ai)}. (8
Ai~A

Minimum complexity estimators are treated in this
general form that can be specialized to various cases.
The specialization can be done by choosing a set of can-
didate probability distributions and by choosing a de-
scription length for each of these distributions, subject
to information-theoretic requirements. If we assume
that the squared errors for the data points are inde-
pendent and normally distributed about a zero mean,
then the density function is

P(D) = P~

i,c

1 r~.: (9)
where r~ is the ith component of the squared error for
the cth example, and o"2 is the variance of the Gaussian

distribution. The cost of coding using this distribution
can be computed from the optimal coding theorem.

As illustrated above, an implementation of MDL
typically necessitates knowing the true underlying
probability distribution or an approximation of it. In
general, however, the distribution of underlying data
structure is unknown and the exact formula for the fit-
ness function is impossible to obtain. The key point
is that both the Bayesian model comparison and MDL
principle reduced to the general criterion consisting of
accuracy and parsimony (or training error and com-
plexity) of models that should be balanced. We pro-
pose to measure the fitness of a program A given a
training set D in its most general form as

F(A[D) = FD +

= ~E(DIA) + aC(A), (10)

where the parameters a and fl control the trade-off
between complexity C(A) and fitting error E(D[A) of
the program. In this framework, genetic programming
is considered as a search for a program that minimizes
F(A[D), or

Abe,t = arg min {F(AiID)}AiE.A

= arg rain {flE(DIAi) + oeC(Ai)}. (11)
AiEA

The following section describes a general adaptive tech-
nique that balances a and/3 in unknown environments.

The Fitness Function with an Adaptive

Occam Factor

Our basic approach is to fix the error factor at each
generation and change the complexity factor adap-
tively with respect to the error. Let Ei(g) and Ci(g)
denote the error and complexity of ith individual at
generation g. For simplicity, we assume 0 < El(g) <
and Ci(g) > 0. Given this, we propose to define the
fitness of an individual i at generation g as follows:

Fi(g) E, (g) + a(g)Ci(g). (12)

Here a(g) is called the adaptive Occam factor and ex-
pressed as

1 E~,.,, (g- 1)

a(g) V ¢b.,,(a), if Ebe,t(g- 1) > e (13)
Eb.,(a--1).~b.,,(a) otherwise,

where N is the size of training set. User-defined con-
stant e specifies the maximum training error allowed
for the final solution.

Note that a(g) depends on Eb~t(g-- 1) and Cbe,t(g).
Ebe~t(g-- 1) is the error value of the program which had
the smallest (best) fitness value at generation g -
Chest(g) is the size of the best program at generation g
estimated at generation g - 1 (see (Zhang ~ Miihlen-
bein 1995) for more details). Chest(g) is used for the
normalization of the complexity factor. In essense, two
adaptation phases are distinguished:

123

¯ When Ebest(g-- 1) > e, a(g) decreases as the training
error falls since Ebe,t(g - 1) _< 1 is multiplied. This
encourages fast error reduction at the early stages of
evolution.

¯ For Ebe,~(g - 1) _< e, in contrast, as Ebes~(g) ap-
proaches 0 the relative importance of complexity in-
creases due to the division by a small value Eb~t(g-
1) << 1. This encourages stronger complexity re-
duction at the final stages to obtain parsimonious
solutions.

Note also that the equation (13) is a realization
the general form derived from the MDL approach (10)
where l? is fixed and a is expressed as a function of g:
fl- 1.0 and a=~(g).

The effectiveness of the adaptive Occam method was
studied by comparing its performance with that of the
baseline fitness function Fi(g) = Ei(g) = E(DNIAi)
in evolving sigma-pi neural networks for solving parity
problems. The complexity of the program was mea-
sured as a linear sum of the number of weights, units,
and layers of the network. Both methods used the
same data sets of 7-parity. The training set consisted
of 64 examples with 5% noise. The test set contained
27 = 128 clean data. The population size was M = 40.
For each method, 20 runs were executed to observe the
complexity of the best solution and its training and
generalization performance at generation g,~a~ = 100.

The bar graphs in Figure 1 compare the average net-
work size in terms of the number of units and lay-
ers. The corresponding learning and generalization
performance of both methods are also compared in
Figure 2. The results show that applying the adaptive
Occam method achieves significantly better general-
ization performance. Whereas the solution size in the
baseline method increased without bound, controlling
the Occam factor as described in the last section could
prune inessential substructures to get parsimonious so-
lutions but without losing the training performance. It
is interesting to note that the evolution with the Oc-
cam factor achieved better learning performance than
without it. This is because the search with complexity
penalty focuses more on a smaller search space while
the search without it may explore too large a space
to be practical. Since the evolution time is limited to
the maximum of grnax generations, using the adaptive
Occam factor can find a solution faster than without
it.

We also measured the convergence time to local min-
ima up to gmax generations, i.e. the total learning time
until the generation from which there is no improve-
ment in the size and performance of the best individ-
ual. Figure 3 (left) summarizes the convergence time
measured in millions of evaluations of arithmetic oper-
ations associated with calculating activation values of
neural units. Compared with the standard method, the
adaptive Occam method converged more than three
times faster for this problem. This can be attributed
to the reduction by Occam’s razor in the number of

~0.0.

3
20.0

i
¢

|0.0

~..7
::: F- F_O

units

&O~

5.0J 4.7
::~: F. F D

4.0J :: ~ F.F D+F_A

3.oj (
.. 2.t2.0J

:. :
1.0.1 .-..

i. "
O,Ot

layers

Figure 1: Comparison of performance with and without
complexity penalty, in terms of units and layers.

^ tO0.O

g

99.G
i: F=FO

~-~ F-F_O +Fh ~

92,5 ~:>::::,

generalization

t00.0

&S.0

F=F_O
F=F_O+F_A ~9

training

Figure 2: Comparison of performance with and with-
out complexity penalty, in terms of generalization and
training accuracy.

parameters (weights), as shown in the right figure.
The proposed method has also been applied to the

prediction of an environmental system and the result
was as good as that obtained by a well-engineered
GMDH algorithm (Zhang, Ohm & Miihlenbein 1995).

Discussion
The minimum description length principle has also
been used in other tree-based learning algorithms such
as CART (Breiman et al. 1984) and ID3 (Quinlan
& Rivest 1989). For the induction of parsimonious
decision trees, both CART and ID3 separate growing
and pruning phases and the tree complexity is consid-
ered only in the pruning phase. This is equivalent to a
strategy of "first reducing the error and then reducing
the complexity." An implementation of this strategy
in the context of genetic programming is not so easy,
since, in the genetic programming approach, pruning
and growing are interleaved between generations and
during the entire learning process. Care must be taken
to prune large structures, but without too much loss
of structural diversity.

Iba et al. have used the MDL principle in genetic
programming to evolve GMDH networks (Ivakhnenko
1971) and decision trees (Iba et al. 1993; Iba et al.
1994). As in ID3, the fitness is defined here as sim-
ply the sum of error and complexity costs, followed

124

250.G

U2.} 1~3 : F.F D
= -- F,F_D 200~ ~ -

600.0 ~ F.F O-:-F h
,_ ~ F. ~_0. F_A - -

© 400.0
E 100.0

200.0 1~.1

- 225

0.0 0.0 :

learning time num)arameters

Figure 3: Comparison of performance with and with-
out complezity penalty, in terms of learning time and
number of parameters.

by a normalization of the total costs. Therefore, the
complexity value is as important as the error value in
determining the total fitness value of an individual.
This works perfectly when the coding scheme exactly
reflects the true probability distribution of the environ-
ment. One possible drawback in this implementation
of the MDL principle in genetic programming is the
lack of flexibility in balancing accuracy with parsimony
in unknown environments. That is, there is a risk that
the network size may be penalized too much, resulting
in premature convergence in spite of other diversity-
increasing measures, such as a large crossover rate.

The adaptive Occam method described in the pre-
vious section tries to avoid premature convergence by
normalizing the error and complexity values separately
and balancing their relative weight dynamically. The
dynamic change of the Occam factor is an improve-
ment over the previous work of the authors (Zhang
Miihlenbein 1993; Zhang & Miihlenbein 1993), where
a small constant was used. In early stages of learn-
ing, a strong increase in tree complexity is allowed by
keeping the Occam factor small, which usually results
in fast error reduction. The small Occam factor also
results in robust convergence to the desired training
accuracy, since premature convergence is avoided due
to increased diversity. In later stages, i.e., after the
desired level of training performance is achieved, the
adaptive Occam approach enforces a strong complex-
ity penalty, which encourages parsimony. Overall, this
has the effect of increasing generalization performance
without getting stuck in local minima due to prema-
ture convergence. The control of the phase transition
is not difficult since it is defined by the desired train-
ing accuracy which the user requires. Though other
MDL-based tree induction methods also reward parsi-
mony, the adaptive Occam approach is different in that
it dynamically balances error and complexity costs.

While proposed in a different context, the adaptive
fitness function presented in this paper has some sim-
ilarity in spirit to competitive fitness functions (An-
geline & Pollack 1993; Siegel 1994). Standard fit-
ness functions return the same fitness for an individ-

ual regardless of what other members are present in
the population, demanding an accurate and consis-
tent fitness measure throughout the evolutionary pro-
cess. While the global accuracy can be easily computed
when evolving solutions for many simple problems, it
is often impractical for problems with greater complex-
ity. In contrast, competitive fitness functions evaluate
the fitness values depending on the constituents of the
population. Angeline argues that competitive fitness
functions provide a more robust training environment
than independent fitness functions.

Though the experiments have been done in the con-
text of neural networks, the general method of balanc-
ing accuracy and parsimony can be used for the genetic
induction of other classes of tree-structured programs
as well. This is because the error and complexity val-
ues are normalized separately and the same adaptive
balancing mechanism can be used for different defini-
tions of error and complexity.

Acknowledgement

This research was supported in part by the Real World
Computing Program under the project SIFOGA.

References

P. J. Angeline and J. B. Pollack. Competitive envi-
ronments evolve better solutions for complex tasks.
In S. Forrest, editor, Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms (ICGA-93),
pages 264-270. Morgan Kaufmann, San Mateo, 1993.

L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth Int. Group, Belmont, C.A., 1984.

D. B. Fogel. An information criterion for optimal neu-
ral network selection. IEEE Transactions on Neural
Networks, 2(5):490-497, 1991.
H. Iba, H. de Garis, and T. Sato. Genetic pro-
gramming using a minimum description length prin-
ciple. In K. E. Kinnear, editor, Advances in Genetic
Programming, pages 265-284. Cambridge, MA: MIT
Press, 1994.
H. Iba, T. Kurita, H. de Garis, and T. Sato. System
identification using structured genetic algorithms. In
S. Forrest, editor, Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms (ICGA-93),
pages 279-286. Morgan Kaufmann, 1993.
A. G. Ivakhnenko. Polynomial theory of complex sys-
tems. IEEE Transactions on Systems, Man, and Cy-
bernetics, 1(4):364-378, 1971.
K. E. Kinnear. Generality and difficulty in genetic
programming: Evolving a sort. In S. Forrest, editor,
Proceedings of the Fifth International Conference on
Genetic Algorithms (ICGA-93), pages 287-294. Mor-
gan Kaufmann, San Mateo, 1993.
K. E. Kinnear, editor. Advances in Genetic Program-
ming. Cambridge, MA: MIT Press, 1994.

125

J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press, 1992.

J. R. Koza. Genetic Programming II: Automatic Dis-
covery of Reusable Programs. Cambridge, MA: MIT
Press, 1994.

J. R. Quinlan and R. L. Rivest. Inferring decision
trees using the minimum description length principle.
Information and Computation, 80:227-248, 1989.

J. Rissanen. Universal coding, information, predic-
tion, and estimation. IEEE Transactions on Infor-
mation Theory, 30(4):629-636, 1984.

J. Rissanen. Stochastic complexity and modeling. The
Annals of Statistics, 14:1080-1100, 1986.

E. V. Siegel. Competitive evolving decision trees
against fixed training cases for natural language pro-
cessing. In K. E. Kinnear, editor, Advances in Genetic
Programming, pages 409-423. Cambridge, MA: MIT
Press, 1994.
W. A. Tackett. Genetic programming for feature dis-
covery and image discrimination. In S. Forrest, editor,
Proceedings of the Fifth International Conference on
Genetic Algorithms (ICGA-93), pages 303-309. Mor-
gan Kaufmann, San Mateo, 1993.

B.-T. Zhang and H. Miihlenbein. Evolving optimal
neural networks using genetic algorithms with Oc-
cam’s razor. Complex Systems, 7(3):199-220, 1993.
B.-T. Zhang and H. Miihlenbein. Genetic program-
ming of minimal neural nets using Occam’s razor. In
S. Forrest, editor, Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, pages 342-
349. Morgan Kaufmann, San Mateo, 1993.

B.-T. Zhang and H. Miihlenbein. Synthesis of sigma-
pi neural networks by the breeder genetic program-
ming. In Proceedings of IEEE International Confer-
ence on Evolutionary Computation, pages 318-323.
IEEE Computer Society Press, New York, 1994.

B.-T. Zhang and H. Miihlenbein. Balancing accuracy
and parsimony in genetic programming. Evolutionary
Computation, 3(1):17-38, 1995.

B.-T. Zhang, P. Ohm and H. Miihlenbein. Water pol-
lution prediction with evolutionary neural trees. In
Proceedings of IJCAI Workshop on AI and the Envi-
ronment. IJCAI Press, 1995.

126

