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Byoung-Tak Zhang and Dong-Yeon Cho

Genetic programming provides a useful paradigm for developing multiagent systems in the domains
where human programming alone is not sufficient to take into account all the details of possible
situations. However, existing GP methods attempt to evolve collective behavior immediately from
primitive actions. More realistic tasks require several emergent behaviors and a proper coordination
of these is essential for success. We have recently proposed a framework, called fitness switching,
to facilitate learning to coordinate composite emergent behaviors using genetic programming. Co-
evolutionary fitness switching described in this chapter extends our previous work by introducing the
concept of coevolution for more effective implementation of fitness switching. Performance of the
presented method is evaluated on the table transport problem and a simple version of simulated robot
soccer problem. Simulation results show that coevolutionary fitness switching provides an effective
mechanism for learning complex collective behaviors which may not be evolved by simple genetic
programming.

18.1 Introduction

Evolving complex collective behaviors is an interesting problem for distributed intelligence
and artificial life. Some tasks can be done faster or more easily by dividing them up among
many agents. Other tasks may not only be solved better by using multiple agents, but can
only be effectively solved, by using teams of agents working together [Kube and Zhang,
1993; Mataric, 1996].

Several attempts have been made to use genetic programming to evolve cooperative be-
havior of a group of simple robotic agents. [Koza, 1992] and [Bennett III, 1996] used
genetic programming to evolve a common program that controls foraging for food by ants.
[Haynes et al., 1995] showed that programs for solving a predator-prey problem can be
generated by genetic programming without any deep domain knowledge. [Luke and Spec-
tor, 1996] explored various strategies for evolving teams of agents in the Serengeti world,
a simple predator-prey environment. [Iba, 1997] studied three different breeding strategies
(homogeneous, heterogeneous, and coevolutionary) for cooperative robot navigation. Ge-
netic programming was also used in agent based computing. [Qureshi, 1996] demonstrated
that it is possible to evolve agents that communicate and interact with each other to solve a
global problem.

Most of these studies have attempted to evolve emergent collective behavior immedi-
ately from primitive actions. However, more realistic complex tasks require more than
one emergent behavior and a proper coordination of these is essential for successful ac-
complishment of the task. In real applications, it is common to use externally imposed
structures to reduce the complexity of learning [Digney, 1996]. For example, [Langdon,
1998] and [Bruce, 1995] show that evolving a list took much less effort if broken into 2
tasks, one following the other.
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In previous work [Zhang and Cho, 1998] we have introduced a framework, called fit-
ness switching, that facilitates evolution of composite emergent behaviors using genetic
programming. In fitness switching, different parts of a genetic tree are responsible for
different behaviors and for each of the subtrees a basis fitness function is defined. The
complex behavior is produced by dynamically changing fitness types from a pool of fit-
ness functions. Coevolutionary fitness switching described in this chapter is an extension
of fitness switching in which multiple subtrees are coevolved in a single GP run.

Our approach is different from other heterogeneous breeding schemes [Luke and Spec-
tor, 1996; Iba, 1997] in which different subtrees represent different agents. In coevolu-
tionary fitness switching, different subtrees represent different behaviors of a single agent
which need to be coordinated. The basic idea behind this approach is that fitness func-
tions are a fundamental mechanism that guides the evolutionary process. It is motivated by
progressive learning, i.e. learning easier tasks first and then harder tasks, which is a well-
proven method in pedagogy [Zhang and Hong, 1997]. As will be discussed later, coevolu-
tionary fitness switching can be considered as a method that enhances scalability of genetic
programming by enabling the designer to incorporate problem structure while preserving
essential explorative and automatic programming capability of genetic programming.

The chapter is organized as follows. Section 18.2 describes the general framework for
coevolutionary fitness switching. Section 18.3 evaluates the effectiveness of the framework
on the table transport task, a multiagent cooperation task. Section 18.4 shows application
results on simulated robotic soccer. Section 18.5 discusses our results and further work.

18.2 Genetic Programming with Coevolutionary Fitness Switching

Genetic programming is an automatic programming method that finds the most fit computer
programs by means of natural selection and genetics [Koza, 1992; Langdon, 1998; Banzhaf
et al., 1998]. A population of computer programs are generated at random. They are
evolved to better programs using genetic operators. The ability of the program to solve the
problem is measured as its fitness value.

In genetic programming, the computer programs are usually represented as trees or LISP
S-expressions. The tree consists of elements from the function set and the terminal set. Typ-
ically, terminal symbols provide values to the GP program while function symbols perform
operation on their input, which are either terminals or output from other functions. There-
fore, terminals should be evaluated earlier than functions; that is, bottom-up evaluations are
performed. For multiagent control, functions denote sensing of environments and terminals
denotes actions to be taken. Thus functions first should determine the state of environment
and then actions described by terminals are taken; that is, top-down evaluations are per-
formed. An illustrative example of the genetic program for multiagent control is shown in
Figure 18.1.
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Fitness switching is a method designed for evolving complex group behaviors using
genetic programming [Zhang and Cho, 1998]. The procedure for applying fitness switching
to a specific problem can be summarized as follows:

1. Define the primitive actions for the problem domain. These are the terminal set, i.e. the
actions executed by the agents to solve the problem.

2. Define a small number of micro-behaviors����������	
���
	�������	
������	
that constitute the original problem-solving behavior.

3. Define a fitness function for each micro-behavior. Together they make the pool of fitness
functions � ��������	�����	�������	��������
4. Design a sequence of micro-behaviors or their combinations to achieve the target behav-
ior: �

� � �
� � �"! � � 	

where
!

denotes the append operator and

�
# is the empty sequence, i.e.

�
# �%$'&

. The
corresponding sequence of fitness functions are defined as( � � ( � � � ! � � 	
where

( # �)$'&
.

5. Define the structure of a genetic program * as having + subtrees, *�,.-0/ �21
	������3	 +54 ,
immediately under the root node.

* � -6* � 	 * � 	�������	 * � 4 �
6. Apply genetic programming to evolve

�
� , 7 �81�	������3	 + in sequence. The first subtree* �

is executed on the given problem and the fitness of this subtree is evaluated using its
fitness function

�0�
. Then the second subtree * �

is executed and evaluated. Likewise, other
subtrees are executed and evaluated sequentially. After that, the fitness of the program * ,( -6*�4 , is calculated (Figure 18.2).

The method is called fitness switching since evolution is guided by fitness functions
switched from simpler ones to more complex ones. If multiple subtrees are coevolved,
then the method is referred to as coevolutionary fitness switching.

In coevolutionary fitness switching, each subtree * , is responsible for one micro-behavior� , and fitness measures are switched within a single generation. Fitness of programs is
measured at each generation as follows:
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Figure 18.1
An example of genetic program for controlling the behavior of a robot. The left subtree means “If the table
is nearby then stop, else do [if an obstacle is nearby then avoid it, otherwise turn to the table] and
move forward.” Likewise, the right subtree encodes a control program for the robot which is executed after the
left subtree.
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Figure 18.2
Schematic diagram for genetic programming with coevolutionary fitness switching. For multiagent control, each
subtree ��� represents a control program for a micro-behavior of each robot ��� . The fitness of subtree ��� is
assigned by executing it �	��

� times and measuring the goodness of its behavior by fitness function � � .
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Procedure CoevolutionaryFitnessSwitching()
Pop = Initialize()
For each generation ����� to �

For each individual ���	��

���� �������
For each subtree ����� to �

For ����� to � ��
 ������ �"! � �#� �%$&�
EndFor
Calculate � $��� ����� ��� �%�(' � $

EndFor
EndFor��

�)� � �+*,�+� � � ��

��-/. ��

�0. 1324�56�+7 ��
8� = 9;:
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Figure 18.3
Procedure for genentic programming with coevolutionary fitness switching. Each subtree � � is responsible for a
single micro-behavior and fitness measures are switched within a single generation to coordinate a sequence of
micro-behaviors to evolve macro-behaviors. (See text for more details.)

1. Execute the first subtree * �
for

�
SIT@U times and measure its fitness by

�6�
.

2. Execute the second subtree * �
for

�
SIT@U times and measure its fitness by

� �
.

3. Execute other subtrees and measure their fitness sequentially.

4. The fitness of the program * � -'* � 	 * � 	������3	 * � 4 is defined as
( -'* 4 � �

V
,,W � � , .

The advantage of this method is the ability of concurrent evolution of primitive cooperative
behaviors and their coordination.

A more formal description of this procedure is given in Figure 18.3. The initial pop-
ulation is created with random individuals. Then, the fitness values of individual * , at
generation 7 for the training set X ,

(ZY ,,[� \ �^] -_X�` * , 4 , are evaluated as described above.
Based on the adaptive Occam method [Zhang et al., 1997] a complexity term was used in
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all experiments to penalize large trees:( -6/ 4 � ] -&X�` * , 4 ����� -'* , 4 	
where

� -'* , 4 is the complexity measured in the number of nodes in tree * , and
�

is a small
constant. This measure is based on the minimum description length (MDL) principle, i.e.
it encourages to induce models that have the minimal total code length:

*��	��
 � �
�������������� ��� -_X�` * , 4 � � -6* , 4 ��	
where

� -6* , 4 is the code length for model description and
� -&X�` * , 4 is the code length for

data description using the model.
We used ( � 	��

) uniform ranking selection, i.e., the best � individual assigned a selection
probability of

� , while the rest are discarded:

! 
 -6* , 4 �#" � 	 1%$ / $ �& 	 �('�/ $)�5�
In experiments

 * � & �,+
, i.e. the best 50% of the population are deterministically selected

into the mating pool. Two parents in the mating pool are selected at random to generate
two offspring by crossover and mutation.

The crossover operator selects a subtree from *.-, of the first parent * , and swap it with
a subtree selected from the */-0 in the second parent * 0 . If the depth of the offspring
tree exceeds the depth limit, crossover is performed again. Then, the mutation operator
changes a node symbol according to the mutation rate. A terminal node is replaced by
another terminal node and a nonterminal node by a different nonterminal.

The genetic operators are applied repeatedly until offspring of population size are pro-
duced. After generating all offspring, the best two of the parents population replace two
individuals selected at random from the offspring population (2-elitism). This completes
one generation and the process is repeated for 1 generations.

There are two simple implementational variants of fitness switching. One is naive evo-
lution in which each micro-behavior is performed using the whole genetic program tree.
Naive evolution is one extreme on which most existing GP studies are based. This method
is very efficient in memory usage since the same tree is shared by multiple behaviors. A
disadvantage is that this representation is difficult to coordinate multiple cooperative be-
haviors. An alternative method for implementing fitness switching is sequential evolution.
Here each subtree * , is responsible for one micro-behavior

� , . Subtree * , is evolved by a
GP run and then the best program for this run is used to evolve the next GP run for evolving
the subtree * ,�2 �

. This is another extreme in which the coordination is hard-coded both in
representation and in evolutionary process. Sequential evolution approach seems the most
practical in solving tasks which can be clearly decomposed into a sequence of independent
subtasks. But most of the interesting problems that need emergent computations do not
belong to this class of problems.
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Figure 18.4
Table transport problem. There is one table, one destination, four robotic agents and a fixed number of obstacles.
The robots can move in 8 directions and have a limited visual field of range 1 in all 8 directions. The table and
destination are assumed to be observable by the agents from any position.

18.3 Results on Table Transport

The different GP approaches have been experimentally compared on table transport prob-
lem. This problem consists of an + ��� grid world, a single table

�
and four robotic agents

as shown in Figure 18.4. A specific location 1 is designated as the destination. All 6 initial
locations are chosen randomly. The goal of the robots is to transport the table to the des-
tination 1 . The robots need to move in a herd since the table is too heavy and large to be
transported by single robots.

This problem requires at least two emergent behaviors, i.e. homing and herding, to
be executed in sequence. The four robots need first to get together around the object to
transport, i.e. homing, and then transport it in team to the destination, i.e. herding. Though
in a different context, [Werner and Dyer, 1993] have studied the herding behavior. In this
task, a group of robot agents must cooperate to achieve the goal.

The fitness switching method is applied to the table transport problem. This task can
be considered as a composition of two following cooperative behaviors: homing and herd-
ing. Thus the sequence of micro-behaviors is

� � $'� � 	
� � &
, where

� � ���	� � / +�
 and� � ���	
���� / +�
 . The sequence of fitness functions is

� �%$ � � 	�� � &
, where

� �
measures

the fitness of the homing behavior to the table and
� �

measures the fitness of the herding
behavior for transporting the table to the goal. Better programs are defined to have lower
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Table 18.1
Symbols used for fitness definition.

Symbol Description
��� �

-axis distance between target and robot
A� � �

–axis distance between target and robot
A

� � number of steps moved by robot
A> �

number of collisions made by robot
AC �

distance between starting and final position of
A

� � penalty for moving away from other robots�
� coefficient for factor ��

positive constant (
� ���4� )

fitness values as follows:

�
� � �	

 W

� ����� � ��
 -�� 
 	�� 
 4 � �3� � 
 � ��� � 
�� � ��� 
 ��� �
(18.1)

� � � �	

 W

� ��� � � ��
 -�� 
 	�� 
 4 � � � � 
 � � � � 
 � � � � 
 � ��� * 
 ��� �
(18.2)

where the subscript
�

denotes the index for robots. Typical values of
� , are

� � � + � &
,�3� � & � � +

,
��� � 1
� &

,
� � ��� � &

, and
� � � & ����+

. The definitions of the symbols used in these
equations are summarized in Table 18.1. The constant K is used to normalize the fitness
values to be positive (this does not change the selective chance of the individuals.) The
target position for homing behavior is the initial position of the table

�
while the target

position for herding behavior is the destination 1 of the table.
The objective of a GP run is to find a multi-robot algorithm that, when executed by

each robot in a group of 4 robots, causes efficient table transport behavior in group. The
terminals and functions used for GP are listed in Table 18.2. The function set consists of six
primitives: IF-OBSTACLE, IF-ROBOT, IF-TABLE, IF-GOAL, PROG2 and PROG3.
The terminal set consists of six primitive actions: FORWARD, AVOID, RANDOM-MOVE,
TURN-TABLE, TURN-GOAL and STOP. If FORWARD or RANDOM-MOVE cause a robot to
run into obstacles, other robots or edges of the world, then the robot remains the current
position. We assume that all primitive actions take the same time for execution and the
robots have a mixture of local and global sensors. Local sensors (e.g., infra-red sensors)
are used for IF-OBSTACLE and IF-ROBOT. Global sensors are used for IF-TABLE and
IF-GOAL. An example of genetic program is shown in Figure 18.1. Table 18.3 summarizes
the experimental setup for genetic programs. We enforce a maximum tree depth of 10 to
avoid generating overly large structures.

Each fitness case represents a world of 32 by 32 grid on which there are four robots,
64 obstacles, and the table to be transported. A total of 20 different, randomly generated
training cases were used. A total of 20 different worlds were also used for evaluating the
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Table 18.2
Terminals and functions of GP-trees for the table transport problem.

Symbol Description

Terminals FORWARD Move one step forward in the current direction.
AVOID Check clockwise and make one step in the first direction that avoids collision.
RANDOM-MOVE Move one step in the random direction.
TURN-TABLE Make a clockwise turn to the nearest direction of the table.
TURN-GOAL Make a clockwise turn to the nearest direction of the goal.
STOP Stay at the same position.

Functions IF-OBSTACLE Check collision with obstacles.
IF-ROBOT Check collision with other robots.
IF-TABLE Check if the table is nearby (within the range of one cell.)
IF-GOAL Check if the destination is nearby (within the range of one cell.)
PROG2, PROG3 Evaluate two (or three) subtrees in sequence.

Table 18.3
Parameters used in the experiments for the table transport problem.

Parameter Value

Population size 100
Max generation 200
Crossover rate 0.9
Mutation rate 0.1
Max tree depth 10

generalization performance of evolved programs. The training and test cases differ in the
initial positions of the robots and the locations of the table, destination and obstacles.

All the robots use the same control program. In evaluating the fitness of robots we made
a complete run of the program for one robot, before the fitness of another is measured. This
is an efficient way of measuring the fitness, but is different from the real situation in which
robots are moving at the same time. This is an advantage of subgoal evolution. Sequential
execution of the program can detect various behavior patterns of parallel execution if a
sufficient number of training cases are used.

Figure 18.5 shows the change in fitness values during a GP run with coevolutionary
fitness switching: The fitness of a tree * is measured by

( -'* 4 � � � -'* 4 � ��� -6* 4 , where� � -'* 4 is the fitness for homing and
� � -'* 4 is the fitness for herding. A rapid decrease in

fitness indicates the fast improvement in cooperative behavior.
We examined the evolution process of cooperative behavior by analyzing the perfor-

mance of best programs at each generation. Shown in Figure 18.6 are the performance at
generations 


� 1�	�1 & 	�1�� 	�� 1
. At 


� 1
, a program was evolved that successfully moves

some of the robots toward the table. But, no herding behavior was achieved. At 

� 1 &

the robots tend to move toward the goal position but no group behavior is observed. At



�81��
, three of the robots learned the herding behavior but one failed. This is possible
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Figure 18.5
Evolution of fitness values during a GP run: (solid line) best fitness for each generation, (dotted line) average
fitness for the individuals in each generation. Lower fitness means better individuals. A rapid decrease in fitness
indicates fast improvement in cooperative behavior for table transport.

since, though having the same control program, the robots see different local environments.
It took the robots 71 generations to learn perfect homing (i.e., every robot arrives at the ta-
ble) and herding behaviors to transport the table to the destination.

Genetic programming with coevolutionary fitness switching was able to learn to solve the
transport problem for more than one environments. The generality of the evolved programs
was verified by running them on test environments. Figure 18.7 shows the behaviors of the
robots for the test cases. Shown is the performance for four test cases out of 20. The
composite cooperative behaviors can be observed: The robots start at their initial positions,
getting together to the table (homing), moving in a herd to the goal (herding), and finally
arriving at the destination (transporting).

The performance of genetic programs was measured by the number of hits: the number
of times all the robots reached the destination. Figure 18.8 shows the change in the number
of hits during the run.

Table 18.4 compares the number of hits for the three fitness switching methods described
in the previous section. We made 10 runs for each method and measures the average values
and their standard deviations. It is interesting to note that the naive approach only suc-
ceeded on 0.4 fitness cases in average out of 20 test cases in each run. As expected the
fitness switching with sequential evolution, the most engineered version, was the best in
number of hits for training and test. The coevolutionary switching method was competitive
to the sequential switching in number of hits for both training and test performance. Rela-
tively small values of standard deviation suggest that the results are statistically significant.
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Figure 18.6
Trajectories of robots controlled by the best programs in the population. At generation one, three out of four
robots succeeded in homing to the table (T), but they failed to arrive at the goal (G) position. At generation 10, all
the robots succeeded in homing but still failed in herding. As generation goes on ( �6� � � , �6��� � ), they show
successful homing and herding behaviors.

Table 18.4
Comparison of different evolution methods in terms of the number of hits for table transport. Experiments have
been performed on 20 fitness cases for training and test, respectively. The values are averaged over ten runs. Also
shown are the standard deviation. Coevolutionary fitness switching is competitive to sequential evolution, the
most problem-specific approach, while the naive evolution method fails to solve this problem.

Method Number of Hits

Training Test

Naive 0.3 � 0.458 0.4 � 0.663
Sequential 15.1 � 2.982 13.0 � 1.949
Coevolution 13.9 � 2.737 11.9 � 2.546
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Figure 18.7
Trajectory of robots running the best program for the 4 test cases out of 20. Though the environments are different,
robots have successfully performed homing and herding behaviors to transport the table to the destination. Here
the environments have wall-like obstacles whose position and length were generated randomly.



437 ’Advances in Genetic Programming III, Research and Educational use only’

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r 

of
 H

its

Generation

best
average

Figure 18.8
Number of hits vs. generation for a typical run. Despite the elitism, best fitness (and the number of hits) can
decrease since the control programs have random moves as their primitive actions.
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Figure 18.9
Average number of steps vs. generation. The solid line shows the number of steps taken by a group of 4 robots
using the best program. The dotted line shows the average number of steps for a group of 4 robots, average taken
over all the programs in the population.
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Table 18.5
Comparison of the number of steps taken by a group of four robots for table transport. Shown are average values
with standard deviation for the training set and test set, respectively. Also shown are the tree size in terms of the
number of nodes. Coevolutionary fitness switching achieved competitive performance to the sequential evolution
using more smaller programs.

Method Average Number of Steps Tree Size

Training Test (#Nodes)

Naive 327.75 � 156.11 697.18 � 200.19 36.9 � 15.34
Sequential 671.69 � 140.01 523.39 � 132.39 60.5 � 21.95
Coevolution 553.72 � 122.88 538.47 � 107.75 37.8 � 11.90

Figure 18.9 shows the evolution of the average number of steps made by four robots
for 20 different training environments. The number of steps for a robot is defined as the
number of primitive actions taken during the execution of the program. Shown are the
best-of-generation and population-average values. Table 18.5 compares the performance
of three different methods for fitness switching. The values given are the average number
of steps made by a group of four robots for 20 different environments for training and test.
Since genetic programs are shared for two micro-behaviors in naive evolution, robots have
tried to remain around the table or destination. Thus, the average number of steps for train-
ing cases was very small, but they did not achieve the goal. In contrast, the most engineered
sequential evolution method obtained the largest average number of steps because the con-
trol programs were fully evolved to fit the training cases. In the coevolutionary method, the
average number of steps for training and test cases was moderate, indicating relatively reli-
able fitting to both the training data and the test data. It should be mentioned that, compared
to the number of hits (Table 18.4), the standard deviation of the performance is relatively
large. The table also shows the size of programs evolved by each method. The program
evolved by coevolutionary fitness switching was the most sparse consisting of 37.8 nodes
in average.

18.4 Application to Robotic Soccer

Robot soccer is an interesting challenge for artificial intelligence research on autonomous
agents and multiagent learning [Kitano et al., 1997]. It involves two adversary teams of
cooperative agents. To achieve the ultimate goal, each team needs to cooperate with team-
mates but its cooperation is hindered by the opponent team. Agents also need to generate
subgoals, such as passing or intercepting the ball, and have to collaborate to achieve them
in harmony with others. As the teammates and opponents are moving around in the field,
the environment is dynamically changing. It is almost impossible for humans to develop a
soccer program that takes into account every possible situation [Kitano et al., 1997].
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Figure 18.10
The environment for the dash-and-dribble problem. There are two teams and a ball in the 2@2�� � � grid field.
Attacking robots can move in 8 directions and have a limited visual field of range 1 to each movable direction.

We demonstrate the effectiveness of coevolutionary fitness switching in the context of
a particular aspect of soccer game in the RoboCup domain [Cho and Zhang, 1998]. A
fuller application of genetic programming to RoboCup Simulation League is reported in
[Luke et al., 1997]. We focus on the dash-and-dribble behavior: given the ball position
and its destination, a team of robot players is to approach to the ball and dribble it to the
destination. In this task, a group of robot agents should cooperate to accomplish the task,
otherwise they will get the ball intercepted by the opponent team.

We consider a soccer field of
� � � 1 �

grid points (Figure 18.10). There are two teams
of robots and a ball in the field. The target position of the ball is given as X . Each team
consists of 11 players. The objective of the attacking team,

� � , is to dash to and dribble
the ball to the destination. The objective of the opponent team,

���
, is to hinder this attack.

The dash-and-dribble behavior is useful in several situations. The dashing behavior is
used in a defensive mode; team

� � needs to dash to the ball to intercept the ball of the
opponent team. The dribble behavior is required to pass the ball to the destination. In both
cases group behaviors are required so that the respective behavior is performed effectively,
that is, not to be intercepted by the opponents. Since not all players of team

� � need to
take part in the attacking dash-and-dribble, we consider in the experiments the case of four
attacking players. In contrast, all of the 11 opponent players are considered as obstacles.

The attacking robots move forward in the current direction (N, E, S, W, NE, SE, SW,
NW) or remain in the current position. The defensive robots do not move, that is, remain in
the current position (they are regarded as obstacles). The attacking robots are all have the
same sensors and actuators (homogeneous agents) and have a limited visual field of range
1 to each movable direction.
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Table 18.6
The terminal and function set used in the dash-and-dribble problem. This is similar to Table 18.2.

Symbol Description

Terminals FORWARD Move one step forward in the current direction.
AVOID Check the surrounding region and make one step in the first direction

possible.
RANDOM-MOVE Make a movement in the random direction.
TURN-BALL Make a clockwise turn to the nearest direction of the ball.
TURN-DESTINATION Make a clockwise turn to the nearest direction of the destination.
STOP Make no step and remain in the current position.

Functions IF-OPPONENT Return true if an opponent is adjacent to the current block, else false.
IF-MATE Return true if a mate is adjacent, else false.
IF-BALL Return true if a ball is adjacent, else false.
IF-Destination Return true if the destination is adjacent, else false.
PROG2 Execute two subtrees in sequence.
PROG3 Evaluate three subtrees in sequence.

The attacking robots activate their control program to run a team trial. At the beginning
of the trial, they have different positions and orientations which are chosen randomly. Dur-
ing a trial they should approach and move the ball to the destination in cooperation with
others.

This problem has similarities to the table transport problem (TTP) in several aspects.
Dashing to the ball can be considered as a homing behavior in TTP, and dribbling the ball
to the destination can be regarded as a herding behavior in TTP. In our experiments there are
four robots which perform the given task and eleven defensive robots. The terminals and
functions used in the dash-and-dribble problem are shown in Table 18.6. Fitness functions
for dash and dribble behaviors are similar to Equation (18.1) and (18.2) except for the
target positions. A total of 20 training cases are used for evolving programs. A total of
20 different worlds are used for evaluating the generalization performance of the evolved
programs. Other parameter values are the same as in the previous section (Table 18.3).

Figure 18.11 shows the evolution of fitness values during a GP run. A rapid decrease in
fitness during early generations indicates a fast improvement in cooperative behavior. The
training resulted in a program tree whose depth is 8 and the number of nodes is 37 in the
187th generation. Figure 18.12 shows the change in the number of hits during the run. The
number of steps needed for dash-and-dribble behavior is shown in Figure 18.13.

The generality of the programs evolved was verified by running them on test environ-
ments. Figure 18.14 shows the behavior of the robots to some test cases. Though the en-
vironments are different, robots successfully perform the dash-and-dribble behavior. Table
18.7 compares the performance of three methods for the training and test cases. The naive
evolution failed to find the appropriate control program. The sequential evolution showed
the best results in number of hits for both cases. The coevolutionary fitness switching was
competitive to the sequential method.
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Figure 18.11
Evolution of fitness values during a GP run for the dash-and-dribble behavior: (solid line) best fitness for each
generation, (dotted line) average fitness for the individuals in each generation. Lower fitness means better indi-
viduals.
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Figure 18.12
Number of hits vs. generation for the dash-and-dribble behavior. Despite the elitism, the number of hits can
decrease the control programs have random moves as their primitive actions.
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Figure 18.13
Number of steps vs. generation for the dash-and-dribble behavior. The solid line shows the number of steps taken
by a group of 4 robots using the best program. The dotted line shown the average number of steps for a group of
4 robots, average taken over all the programs in the population.
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Figure 18.14
Trajectories of robots running the evolved programs on the 4 test cases. Robots successfully dashed to the ball
and dribbled it to the destination D.
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Table 18.7
Results for the training and test cases on the dash-and-dribble problem. The values are averaged over ten runs.
Also shown are the standard deviation.

Method Number of Hits

Training Test

Naive 0.0 � 0.000 0.0 � 0.000
Sequential 17.0 � 2.366 13.9 � 1.700
Coevolution 13.0 � 3.162 10.9 � 3.673

18.5 Conclusions

We described a method for evolving composite cooperative behaviors of multiple robotic
agents. This method, called coevolutionary fitness switching, is based on a pool of fitness
functions which are defined to reflect the problem structure but without too much need for
domain knowledge. The method was motivated by the observation that, while GP is able
to evolve emergent behaviors, the evolution can be more efficient if the program structure
and sometimes the evolution strategy is constrained to match the problem structure.

In the context of the table transport problem we have experimentally shown that coevo-
lution with fitness switching can solve a class of tasks which we were not able to efficiently
solve using simple genetic programming. Simulation results also show that, compared with
the carefully designed sequential evolution method, the coevolutionary fitness switching is
competitive in training and test performance. We also observed that coevolutionary fitness
switching generally produced more smaller solution trees. It seems that coevolutionary
fitness switching has the effect of avoiding overfitting to one specific behavior, thus result-
ing in small trees, while sequential evolution tends to find large trees overfit to specific
subgoals.

The method was also applied to learn the dash-and-dribble behavior for soccer robots.
Here each genetic program consists of several subroutines which are coordinated to perform
the entire task. Each subroutine is responsible for a group behavior and it is evolved by a
specific fitness function. The coevolutionary fitness switching method is then used to coor-
dinate the evolution of the complex macro behaviors from the primitive micro-behaviors.
Our experimental results demonstrate that it is feasible to evolve by genetic programming
some complex group behaviors which are useful for solving specific aspects of robotic
soccer games.
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