Skip to main content

Automatically Choosing Selection Operator Based on Semantic Information in Evolutionary Feature Construction

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14326))

Included in the following conference series:

  • 495 Accesses

Abstract

In recent years, genetic programming-based evolutionary feature construction has shown great potential in various applications. However, a critical challenge in applying this technique is the need to select an appropriate selection operator with great care. To tackle this issue, this paper introduces a novel approach that leverages the Thompson sampling technique to automatically choose the optimal selection operator based on semantic information of genetic programming models gathered during the evolutionary process. The experimental results on a standard symbolic regression benchmark containing 37 datasets show that the proposed adaptive operator selection algorithm outperforms expert-designed operators, demonstrating the effectiveness of the adaptive operator selection algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Details of Datasets: https://epistasislab.github.io/pmlb/

  2. 2.

    Detailed Results: https://tinyurl.com/AOS-GP-Supplementary-Material

References

  1. La Cava, W., Singh, T.R., Taggart, J., Suri, S., Moore, J.H.: Learning concise representations for regression by evolving networks of trees. In: ICLR (2018)

    Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  Google Scholar 

  4. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  5. Zhang, H., Zhou, A., Zhang, H.: An evolutionary forest for regression. IEEE Trans. Evol. Comput. 26(4), 735–749 (2022)

    Article  MathSciNet  Google Scholar 

  6. Zhang, H., Zhou, A., Chen, Q., Xue, B., Zhang, M.: SR-Forest: a genetic programming based heterogeneous ensemble learning method. IEEE Trans. Evol, Comput (2023)

    Google Scholar 

  7. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming. IEEE Trans. Evol. Comput. 16(5), 645–661 (2012)

    Article  Google Scholar 

  8. Virgolin, M., Alderliesten, T., Bosman, P.A.: On explaining machine learning models by evolving crucial and compact features. Swarm Evol. Comput. 53, 100640 (2020)

    Article  Google Scholar 

  9. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic programming for high-dimensional symbolic regression. IEEE Trans. Evol. Comput. 21(5), 792–806 (2017)

    Article  Google Scholar 

  10. Zhang, H., Zhou, A., Qian, H., Zhang, H.: PS-Tree: a piecewise symbolic regression tree. Swarm Evol. Comput. 71, 101061 (2022)

    Article  Google Scholar 

  11. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  12. Xie, H., Zhang, M.: Parent selection pressure auto-tuning for tournament selection in genetic programming. IEEE Trans. Evol. Comput. 17(1), 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  13. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis of lexicase selection and \(\varepsilon \)-lexicase selection. Evol. Comput. 27(3), 377–402 (2019)

    Article  Google Scholar 

  14. Zhang, H., Chen, Q., Tonda, A., Xue, B., Banzhaf, W., Zhang, M.: Map-elites with cosine-similarity for evolutionary ensemble learning. In: EuroGP. pp. 84–100. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29573-7_6

  15. Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1030–1038 (2019)

    Google Scholar 

  16. Xu, M., Mei, Y., Zhang, F., Zhang, M.: Genetic programming with lexicase selection for large-scale dynamic flexible job shop scheduling. IEEE Trans. Evol., Comput. (2023)

    Google Scholar 

  17. Tian, Y., Peng, S., Zhang, X., Rodemann, T., Tan, K.C., Jin, Y.: A recommender system for metaheuristic algorithms for continuous optimization based on deep recurrent neural networks. IEEE Trans. Artif. Intell. 1(1), 5–18 (2020)

    Article  Google Scholar 

  18. Tian, Y., Li, X., Ma, H., Zhang, X., Tan, K.C., Jin, Y.: Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization. IEEE Trans. Emerg. Top. Comput, Intell (2022)

    Google Scholar 

  19. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: GECCO, pp. 1539–1546 (2005)

    Google Scholar 

  20. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2013)

    Article  Google Scholar 

  21. Sun, L., Li, K.: Adaptive operator selection based on dynamic Thompson sampling for MOEA/D. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 271–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_19

    Chapter  Google Scholar 

  22. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  23. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: GECCO, pp. 913–920 (2008)

    Google Scholar 

  24. Belluz, J., Gaudesi, M., Squillero, G., Tonda, A.: Operator selection using improved dynamic multi-armed bandit. In: GECCO, pp. 1311–1317 (2015)

    Google Scholar 

  25. Wang, C., Deng, Y., Li, X., Xin, Y., Gao, C.: A label-based nature heuristic algorithm for dynamic community detection. In: PRICAI, pp. 621–632. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29911-8_48

  26. Zhen, H., Gong, W., Wang, L.: Evolutionary sampling agent for expensive problems. IEEE Trans. Evol., Comput. (2022)

    Google Scholar 

  27. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min. 10(1), 1–13 (2017)

    Article  Google Scholar 

  28. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2012)

    Article  Google Scholar 

  29. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lexicase selection. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 717–724 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Chen, Q., Xue, B., Banzhaf, W., Zhang, M. (2024). Automatically Choosing Selection Operator Based on Semantic Information in Evolutionary Feature Construction. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14326. Springer, Singapore. https://doi.org/10.1007/978-981-99-7022-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7022-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7021-6

  • Online ISBN: 978-981-99-7022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics