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Abstract

The simultaneous exploration of tradeo�s be-
tween program memory, data memory and ex-
ecution time requirements (3D) for DSP (dig-
ital signal processing) algorithms in embed-
ded computing environments is a demanding
application and example par excellence of a
multi-objective optimization problem. In or-
der to solve this problem, two evolutionary
algorithms are shown to be successfully appli-
cable for exploring Pareto-optimal solutions.
For di�erent well-known target DSP proces-
sors, the trade-o� fronts are analyzed. The
two approaches are quantitatively compared.

1 Introduction

Starting with a data ow graph speci�cation to be im-
plemented on a digital signal processor, we study the
e�ects between instantiating code by inlining or sub-
routine calls as well as the e�ect of loop nesting and
context switching on a target processor (DSP) that is
used as a component in a memory and cost-critical en-
vironment, e.g., a single-chip solution. For such appli-
cations, a careful exploration of the possible spectrum
of implementations is of utmost importance because
the market of these products is driven by tight cost
and performance constraints. Frequently, these sys-
tems are once programmed to run forever. Optimiza-
tion and exploration times in the order of hours are
therefore neglectable.

We present the �rst systematic optimization frame-
work for exploring implementation trade-o�s in the
3-dimensional run-time/program memory/data mem-
ory space of implementations, and we compare two
evolutionary algorithm based Pareto-front exploration
approaches to solve this multi-objective optimization
problem.

The methodology begins with a given synchronous
dataow graph [Lee and Messerschmitt, 1987] as used
in many rapid prototyping environments as in-
put for code generators for programmable dig-

ital signal processors (PDSPs) [Buck et al., 1991,
Lauwereins et al., 1990, Ritz et al., 1992].

Example 1 A practical example is a sample-rate con-
version system. In Fig. 1, a digital audio tape (DAT),
operating at a sample rate of 48 kHz is interfaced
to a compact disk (CD) player operating at a sam-
pling rate of 44.1 kHz, e.g., for recording purposes, see
[Vaidyanathan, 1993] for details on multistage sample
rate conversion.
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Figure 1: CDtoDAT conversion benchmark

As reported by DSP analysts (e.g., the DSPStone
benchmarking group [Zivojnovic et al., 1994]), today's
DSP compilers still produce several 100%s of overhead
with respect to assembly code written and optimized
by hand. A commonly used approach in SDF-based
design environments that avoids the limitations of cur-
rent compiler technology is to store optimized assem-
bly code for each actor in a target-speci�c library and
to generate code from a given schedule by instantiat-
ing actor code in the �nal program. By doing this, the
inuence of the compiler technology may be taken out
as one unknown factor of e�ciency.

Prior work on code size minimization of SDF sched-
ules has focused on an inline code generation model
[Bhattacharyya et al., 1996]. The total memory re-
quirement may then be approximated by a linear com-
bination of the (weighted) number of actor appear-
ances in a schedule. Evidently, so called single ap-
pearance schedules (SASs), where each actor appears
only once in a schedule, are program memory optimal
under this model. However, they may not be data
memory minimal, and in general, it may be desirable
to trade-o� some of the run-time e�ciency of code in-
lining with further reduction in code size by using sub-
routine calls, especially with system-on-a-chip imple-
mentations. For example, if only a very small amount
of program memory is available for a signal process-



ing subsystem, but the data memory and speed con-
straints are not tight, then a compact looped schedule
organization with heavy use of subroutines would be
desirable. Similarly, if the data memory and execu-
tion time are severe "bottlenecks", but program space
is abundant, then a minimal bu�er schedule organi-
zation (which typically precludes the use of extensive
looping [Bhattacharyya et al., 1999] with inline code)
would be preferable.

The present study extends our previous work
[Teich et al., 1998] where a single-objective EA was
used to minimize data memory requirements for a re-
stricted class of schedules (SAS) and implementations
(no subroutine calls). Here, we seek to explore the di-
mensions of program memory, data memory, and exe-
cution time requirements simultaneously for arbitrary
schedules, a demanding multi-objective optimization
problem. For its solution, two evolutionary algorithm
based approaches are compared in Section 4 First, the
optimization problem and metrics are formally de�ned
(Section 2 and 3). Sections 5 and 6 deal with aspects
of the EAs, and the experiments performed, respec-
tively, including a quantitative comparison of the two
EAs for solving the exploration problem.

2 SDF Scheduling Framework

De�nition 1 (SDF graph) An SDF graph G de-
notes a 5-tuple G = (V;A; produced; consumed; delay)
where

� V is the set of nodes (actors)
(V = fv1; v2; � � � ; vjVjg).

� A is the set of directed arcs. With source(�)
(sink(�)), we denote the source node (target
node) of an arc � 2 A.

� produced : A! N denotes a function that assigns
to each directed arc � 2 A the number of pro-
duced tokens produced(�) per invocation of actor
source(�).

� consumed : A ! N denotes a function that as-
signs to each directed arc � 2 A the number of
consumed tokens per invocation of actor sink(�).

� delay : A! N0 denotes the function that assigns
to each arc � 2 A the number of initial tokens
delay(�) that reside on �.

Example 2 The graph in Fig. 1 has jV j = 6 nodes (or
actors). Each presents a function that may be executed
as soon as its input contains at least consumed(�) data
tokens on each ingoing arc �, see the numbers anno-
tated with the arc heads. E.g., actor B requires one
input token on its input arc, and produces 2 output
tokens on its outgoing arc when �ring. In the shown
graph, delay(�) = 0 8� 2 A. Hence, initially, only ac-
tor A, the source node, may �re. Afterwards, B may
�re for the �rst time. After that, however, node C still
cannot yet �re, because it requires consumed(�) = 3
tokens on its ingoing arc, however, there are only two

produced by the �ring of B. In general, many �ring
sequences of actors may evolve.

A schedule is a sequence of actor �rings. A properly-
constructed SDF graph is compiled by �rst construct-
ing a �nite schedule S that �res each actor at least
once, does not deadlock, and produces no net change
in the number of tokens queues associated with each
arc. When such a schedule is repeated in�nitely, we
call the resulting in�nite sequence of actor �rings a
valid periodic schedule, or simply valid schedule.

Example 3 For the CDtoDAT graph in Figure 1,
the minimal number of actor �rings is obtained as
q(A) = q(B) = 147, q(C) = 98, q(D) = 28; q(E) =
32; q(F ) = 160. The schedule (1(7(7(3AB)
(2C))(4D))(32E(5F ))) represents a valid schedule.

Each parenthesized term (n S1 S2 � � � Sk) is re-
ferred to as schedule loop having iteration count n and
iterands S1; S2; � � � ; Sk. We say that a schedule for an
SDF graph is a looped schedule if it contains zero or
more schedule loops. A schedule is called single ap-
pearance schedule, or simply SAS in the following, if it
contains only one appearance of each actor.

Example 4 The schedule (1(147A)(147B)(98C)
(28D)(32E)(160F )) is a valid SAS for the graph shown
in Fig. 1.

2.1 Code generation model

For each actor in a valid schedule S, we insert a code
block that is obtained from a library of prede�ned ac-
tors or a simple subroutine call of the corresponding
subroutine, and the resulting sequence of code blocks
(and subroutine calls) is encapsulated within an in�-
nite loop to generate a software implementation. Each
schedule loop thereby is translated into a loop in the
target code.

Example 5 For the simple SDF graph in Fig. 2a), a
bu�er model for realizing the data bu�er on the arc
� as well as a pseudo assembly code notation (sim-
ilar to the Motorola DSP56k assembly language) for
the complete code for the schedule S = (1(3A)(2B))
is shown in Fig. 2b), c) respectively. There is a lo-
cation loc that is the address of the �rst memory cell
that implements the bu�er and one read (rp(�)) and
write pointer (wp(�)) to store the actual read (write)
location. The notation do #N LABEL denotes a
statement that speci�es N successive executions of the
block of code between the do-statement and the instruc-
tion at location LABEL. First, the read pointer rp(�)
to the bu�er is loaded into register R1 and the write
pointer wp(�) is loaded into R2. During the execu-
tion of the code, the new pointer locations are obtained
without overhead using autoincrement modulo address-
ing ((R1)+; (R2)+). For the above schedule, the con-
tents of the registers (or pointers) is shown in Fig. 3.



A B
2 3G

�

a)

b)
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code for A
outputs y0; y1
move y0; (R1)+

l

do #3; loop A

loc

move (R2)+; x0

inputs x0; x1; x2

move (R2)+; x1
move (R2)+; x2

do #2; loop B

code for B

loop B :

move y1; (R1)+
loop A :wp(�)

rp(�)

Figure 2: SDF graph a), memory model for arc bu�er
b), and Motorola DSP56k-like assembly code realizing
the schedule S = (1(3A)(2B)).
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Figure 3: Memory accesses for the schedule S =
(1(3A)(2B))

3 Optimization Metrics

3.1 Program memory overhead P (S)

Assume that each actorNi in the library has a program
memory requirement of w(Ni) 2 N memory words.
Let flag(Ni) 2 f0; 1g denote the fact whether in a
schedule, a subroutine call is instantiated for all actor
invocations of the schedule (flag(Ni) = 0) or whether
the actor code is inlined into the �nal program text
for each occurrence of Ni in the code (flag(Ni) =
1). Hence, given a schedule S, the program memory
overhead P (S) will be accounted for by the following
equation:1

P (S) =

jV jX
i=1

(app(Ni; S) � w(Ni) � flag(Ni))

+ (w(Ni) + app(Ni; S) � PS) � (1� flag(Ni))

+ PL(S) (1)

Note that in case one subroutine is instantiated
(flag(Ni) = 0), the second term is non-zero adding
the �xed program memory size of the module to the
cost and the subroutine call overhead PS (code for call,
context save and restore, and return commands). In
the other case, the program memory of this actor is
counted as many times as it appears in the schedule
S (inlining model). The additive term PL(S) 2 N de-
notes the program overhead for looped schedules. It
accounts for a) the additional programmemory needed
for loop initialization, and b) loop counter increment,
loop exit testing and branching instructions. This
overhead is processor-speci�c, and in our computations
proportional to the number of loops in the schedules.

1app(Ni; S): number of times, Ni appears in the sched-
ule string S).

3.2 Bu�er memory overhead D(S)

We account for overhead due to data bu�ering for the
communication of actors (bu�er cost). The simplest
model for bu�ering is to assume that a distinct seg-
ment of memory is allocated for each arc of a given
graph.2 The amount of data needed to store the to-
kens that accumulate on each arc during the evolution
of a schedule S is given as:

D(S) =
X
�2A

max tokens(�; S) (2)

Here, max tokens(�; S) denotes the maximum num-
ber of tokens that accumulate on arc � during the
execution of schedule S.

Example 6 Consider the schedule in Example 4 of
the CDtoDAT benchmark. This schedule has a bu�er
memory requirement of 1471+1472+982+288+325=
1021. Similarly, the bu�er memory requirement of the
looped schedule (1(7(7(3AB)(2C))(4D))(32E(5F )))
is 264.

3.3 Execution Time Overhead T (S)

With execution time, we denote the duration of ex-
ecution of one iteration of a SDF graph comprising
q(Ni) activations of each actor Ni in clock cycles of
the target processor.3

In this work, we account for the e�ects of (1) loop
overhead, (2) subroutine call overhead, and (3) bu�er
(data) communication overhead in our characteriza-
tion of a schedule. Our computation of the execution
time overhead of a given schedule S therefore consists
of the following additive components:

Subroutine call overhead: For each instance of an actor
Ni with flag(Ni) = 0, we add a processor speci�c
latency time L(Ni) 2 N to the execution time. This
number accounts for the number of cycles needed for
storing the necessary amount of context prior to calling
the subprogram (e.g., compute and save incremented
return address), and to restore the old context prior
to returning from the subroutine (sometimes a simple
branch).4

2In [Teich et al., 1999], we introduced di�erent mod-
els for bu�er sharing, and e�cient algorithms to compute
bu�er sharing. Due to space requirements, and for matters
of comparing our approach with other techniques, we use
the above simple model here.

3Note that this measure is equivalent to the inverse of
the throughput rate in case it is assumed that the outer-
most loop repeats forever.

4Note that the exact overhead may depend also on the
register allocation and bu�er strategy. Furthermore, we as-
sume that no nesting of subroutine calls is allowed. Also,
recursive subroutines are not created and hence disallowed.
Under these conditions, the context switching overhead will
be approximated by a constant L(Ni) for each module Ni



Communication time overhead: Due to static schedul-
ing, the execution time of an actor may be assumed
�xed (no interrupts, no I/O-waiting) necessary), how-
ever, the time needed to communicate data (read and
write) depends in general a) on the processor capa-
bilities, e.g., some processors are capable of managing
pointer operations to modulo bu�ers in parallel with
other computations.5, and b) on the chosen bu�er
model (e.g., contiguous versus non-contiguous bu�er
memory allocation). In a �rst approximation, we de-
�ne a penalty for the read and write execution cycles
that is proportional to the number of data read (writ-
ten) during the execution of a schedule S. For exam-
ple, such a penalty may be of the form

IO(S) = 2
X

�=(Ni;Nj)2A

q(Ni)produced(Ni)Tio (3)

where Tio denotes the number of clock cycles that are
needed between reading (writing) 2 successive input
(output) tokens.

Loop overhead: For looped schedules, there is in gen-
eral the overhead of initializing and updating a loop
counter, and of checking the loop exit condition, and
of branching, respectively. The loop overhead for one
iteration of a simple schedule loop L (no inner loops
contained in L) is assumed a constant TL 2 N of pro-
cessor cycles, and its initialization overhead T init

L 2 N.
Let x(L) 2 N denote the number of loop iterations of
loop L, then the loop execution overhead is given by
O(L) = T init

L + x(L) � TL. For nested loops, the to-
tal overhead of an innermost loop is given as above,
whereas for an outer loop L, the total loop overhead
is recursively de�ned as

O(L) = T init
L + x(L) �

 
TL +

X
L0 evoked inL

O(L0)

!
(4)

The total loop overhead O(S) of a looped schedule S is
the sum of the loop overheads of the outermost loops.

Example 7 Consider the schedule (1(3(3A)(4B))
(4(3C)(2D))), and assume that the overhead for one
loop iteration TL = 2 cycles in our machine model,
the initialization overhead being T init

L = 1. The
outermost loop consists of 2 loops L1 (left) and L2
(right). With O(S) = 1+ 1 � (2 +O(L1) +O(L2)) and
x(L1) = 3, x(L2) = 4, we obtain the individual loop
overheads as O(L1) = 1 + 3 � (2 + O(3A) + O(4B))
and O(L2) = 1 + 4 � (2 + O(3C) + O(2D)). The in-
nermost loops (3A), (4B), (3C), (2D) have the over-
heads 1 + 6; 1 + 8; 1 + 6; 1 + 4, respectively. Hence,

or even to be a processor-speci�c constant TS, if no infor-
mation on the compiler is available. Then, TS may by cho-
sen as an average estimate or by the worst-case estimate
(e.g., all processor registers must be saved and restored
upon a subroutine invocation).

5Note that this overhead is then highly dependent on
the register allocation strategy.

O(L1) = 1 + 3 � 18 and O(L2) = 1 + 4 � 14, and O(S)
becomes 115 cycles.

In total, T (S) of a given schedule S is de�ned as

T (S) = (

jV jX
i=1

(1� flag(Ni)) � L(Ni) � q(Ni))

+ IO(S) + O(S) (5)

Example 8 Consider again Example 7. Let the in-
dividual execution time overheads for subroutine calls
be L(A) = L(B) = 2, and L(C) = L(D) = 10 cy-
cles. Furthermore, let code for A and C be gener-
ated by inlining (flag(A) = flag(C) = 1) and by
subroutine call for the other actors. Hence, T (S) =
L(B) � q(B) + L(D) � q(D) + O(S) + IO(S) results in
T (S) = 2 � 12 + 10 � 8 + 115 + IO(S) = 219 + IO(S).
Hence, the execution overhead is 219 cycles with re-
spect to the same actor execution sequence but with
only inlined actors and no looping at all.

3.4 Target processor modeling

For the following experiments, we will characterize the
inuence of a chosen target processor by the following
overhead parameters using the above target (overhead)
functions:

� PS : subroutine call overhead (number of cycles)
(here: for simplicity assuming independence of ac-
tor, and no context to be saved and restored ex-
cept PC and status registers).

� PL: the number of program words for a complete
loop instruction including initialization overhead.

� TS : the number of cycles required to execute a
subroutine call and a return instruction and to
store and recover context information.

� TL; T
init
L : loop overhead, loop initialization over-

head, respectively in clock cycles.

Three real DSPs and one �ctive processor P1 have
been modeled, see Table 1. One can observe that the
DSP56k and TMS320C40 have high subroutine execu-
tion time overhead; the DSP56k, however, has a zero-
loop overhead and high loop initialization overhead;

Table 1: The parameters of 3 well-known DSP pro-
cessors. All are capable of performing zero-overhead
looping. For the TMS320C40, however, it is recom-
mended to use a conventional counter and branch im-
plementation of a loop in case of nested loops.P1 is a
�ctive processor modeling high subroutine overheads.

System Motorola
DSP56k

ADSP
2106x

TI
320C40

P1

PL 2 1 1 2
PS 2 2 2 10
TL; T

init

L 0,6 0,1 8,1 0,1
TS 8 2 8 16



and the TMS320C40 has a high loop iteration over-
head but low loop initialization overhead. P1 models
a processor with high subroutine overheads.

4 Evolutionary Multi-objective
Optimization

The problem under consideration involves three di�er-
ent objectives: program memory, bu�er memory, and
execution time. These cannot be minimized simulta-
neously, since they are conicting { a typical multi-
objective optimization problem. In this case, one is
not interested in a single solution but rather in a set
of optimal trade-o�s which consists of all solutions that
cannot be improved in one criterion without degrada-
tion in another. The corresponding set is denoted as
Pareto-optimal set.

De�nition 2 Let us consider, without loss of gener-
ality, a multi-objective minimization problem with m
decision variables and n objectives:

Minimize ~y = f(~x) = (f1(~x); : : : ; fn(~x)) (6)

where ~x = (x1; : : : ; xm) 2 X and ~y = (y1; : : : ; yn) 2 Y
are tuples. A decision vector ~a 2 X is said to dominate

a decision vector ~b 2 X (also written as ~a � ~b) i�

8i 2 f1; : : : ; ng : fi(~a) � fi(~b) ^

9j 2 f1; : : : ; ng : fj(~a) < fj(~b) (7)

Additionally, in this study we say ~a covers ~b (~a � ~b) i�

~a � ~b or f(~a) = f(~b). All decision vectors which are
not dominated by any other decision vector are called
nondominated. Pareto-optimal points are the non-
dominated decision vectors of the entire search space.

Evolutionary algorithms (EAs) seem to be espe-
cially suited to multi-objective optimization because
they are able to capture multiple Pareto-optimal
solutions in a single simulation run and may ex-
ploit similarities of solutions by crossover. Some
researchers even suggest that multi-objective search
and optimization might be a problem area where
EAs do better than other blind search strate-
gies [Fonseca and Fleming, 1995]. The fact that sev-
eral multi-objective EAs have been proposed since
19856 and that the interest in that �eld has been grow-
ing up to now supports this assumption.

In this study, the Strength Pareto Evolution-
ary Algorithm (SPEA), a recent technique pro-
posed in [Zitzler and Thiele, 1998a], is used. In
Section 6.2, it is compared with another ap-
proach called Niched Pareto Genetic Algorithm
(NPGA) [Horn and Nafpliotis, 1993]. Both methods
are briey described in the following.

6An excellent review of di�erent evolutionary ap-
proaches can be found in [Fonseca and Fleming, 1995].

4.1 Strength Pareto Evolutionary Algorithm

SPEA maintains besides the regular population an ex-
ternal set of individuals that contains the nondomi-
nated solutions of all solutions generated so far. This
set is updated every generation and if necessary re-
duced in size in case the maximum number of members
is exceeded. The reduction is accomplished by a clus-
tering technique which preserves the characteristics of
the nondominated front.

Fitness assignment is performed in two steps:

Step 1: Each solution i in the external nondominated
set is assigned a real �tness value fi 2 [0; 1),
where fi is the number of population mem-
bers j, for which i � j, divided by the popu-
lation size plus one.

Step 2: The �tness of an individual j in the popula-
tion is calculated by summing the �tness val-
ues of all external nondominated solutions i
that cover j.7

Finally, both population and external nondominated
set take part in the selection process. Thereby, binary
tournament selection with replacement is used to �ll
the mating pool.

4.2 Niched Pareto Genetic Algorithm

NPGA combines tournament selection and the con-
cept of Pareto dominance. Two competing individ-
uals and a comparison set of tdom other individuals
are picked at random from the population. If one of
the competing individuals is dominated by any mem-
ber of the set and the other is not, then the latter is
chosen as winner of the tournament. If both individ-
uals are dominated (or not dominated), the result of
the tournament is decided by �tness sharing (see, e.g.,
[Deb and Goldberg, 1989]): The individual which has
less individuals in its niche (de�ned by the parameter
�share) is selected for reproduction.

5 Problem Coding

Each genotype consists of four parts which are encoded
in separate chromosomes:

1. schedule,
2. code model,
3. actor implementation vector, and
4. loop ag.

The schedule represents the order of actor �rings and
is �xed in length because the number of �rings of
each actor is known a priori. Since arbitrary actor
�ring sequences may contain deadlocks, etc., a repair
mechanism is applied in order to map every schedule
chromosome unambiguously to a valid schedule. It

7Since small �tness values correspond to high reproduc-
tion probabilities, members of the external nondominated
set have better �tness than the population members.



bases on a topological sort algorithm, and is described
in [Teich et al., 1998]: at each point in time, the left-
most �reable actor is chosen whose maximum number
of �rings has not been reached yet.

The code model chromosome determines the way how
the actors are implemented and contains one gene with
three possible alleles: all actors are implemented as
subroutines, only inlining is used, or subroutines and
inlining are mixed. For the last case, the actor imple-
mentation vector, a bit vector, encodes for each actor
separately whether it appears as inlined or subroutine
code in the implementation.

Finally, a fourth chromosome, the loop ag, deter-
mines whether to use loops as a mean to reduce pro-
gram memory. For this aim, a dynamic program-
ming looping algorithm is applied to the actor �ring
sequence in order to �nd an optimally looped sched-
ule. This procedure, which has been incorporated in
our system, is a generalization of the GDPPO algo-
rithm presented in [Bhattacharyya et al., 1996]. Since
the run-time is rather high (O(n3)) considering large
n, the algorithm can be sped up by certain parameter
settings|however, at the expense of optimality.8

Due to the heterogeneous chromosomes, a mixture
of di�erent crossover and mutation operators accom-
plishes the generation of new individuals. For the
schedule, order-based uniform crossover and scramble
sublist mutation are used [Davis, 1991]. These opera-
tors only permute the actor �ring sequence and guar-
antee that the number of occurrences per actor re-
mains constant. Concerning the other chromosomes,
we work with one-point crossover and bit ip mutation
(as the code model gene is represented by an integer,
mutation is done by choosing one of the three alleles
at random).

6 Experiments

Two kinds of experiments were performed: design
space exploration for the CDtoDAT example using dif-
ferent processors and comparison of SPEA and NPGA
on nine practical examples. In all cases, the following
EA parameters were used:

generations : 250
population size : 100
crossover rate : 0.8
mutation rate : 0.19

Moreover, before every run a heuristic called AP-
GAN (acyclic pairwise grouping of adjacent nodes
[Bhattacharyya et al., 1996]) was applied to this prob-
lem. The APGAN solution was inserted in two ways
into the initial population: with and without looping.

8This extension is called suboptimal looping in the
following.

9The bit vector was mutated with a probability of 1=L
per bit, where L denotes the length of the vector.

Finally, the set of all nondominated solutions found
during the entire evolution process was considered as
outcome of one single optimization run.

6.1 CDtoDAT Design Space Exploration

SPEA was used to compare the design spaces of the
di�erent DSP processors listed in Table 1; thereby, the
size of the external nondominated set was unrestricted
in order to �nd as many solutions as possible.

The experimental results are visualized in Fig. 4 to
8. Four times, the accelerated looping algorithm has
been used (about 5 hours run-time on a Sun ULTRA
30), one run has also been made with optimal looping
(run-time about 5 days).10

To make the di�erences between the processors clearer,
the plots have been cut at the top without destroying
their characteristics.

The trade-o�s between the three objectives are very
well reected by the extreme points. The rightmost
points in the plots represent schedules that neither
use looping nor subroutine calls. Therefore, they are
optimal in the execution time dimension, but need a
maximum of program memory because for each ac-
tor �ring there is an inlined code block. In contrast,
the leftmost points make excessive use of looping and
subroutines which leads to minimal program memory
requirements, however at the expense of a maximum
execution time overhead.

Furthermore, the inuence of looping and subroutine
calls is remarkable. Using subroutines does not inter-
fere with bu�er memory requirements; there is only
a trade-o� between program memory and execution
time. Subroutine calls may save much program mem-
ory, but at the same time they are expensive in terms
of execution time. This fact is reected by "gaps" on
the execution time axis in Figures 5 to 7. Looping,
however, depends on the schedule: schedules which

10Note that this optimization time is still quite low for
processor targets assumed to be programmed once and sup-
posed to run an application forever.

2000

4000

6000

execution
time

0

2500

5000

7500

10000

program
memory

240

260

280

300

320

buffer
memory

2

4000

6000

execution
time

Figure 4: ADSP 2106x (suboptimal looping)
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Figure 5: TI TMS320C40 (suboptimal looping)
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Figure 6: Processor P1 (suboptimal looping)

can be looped well may have high bu�er memory re-
quirements and vice versa. This trade-o� is responsible
for the variations in bu�er memory requirements and
is illustrated by the points that are close to each other
regarding program memory and execution time, but
strongly di�er in the bu�er memory required.

Comparing the three real processors regarding subop-
timal looping, one can observe that the ADSP 2106x
produces less execution time overhead than the other
processors which is in accordance with Table 1. Sub-
routine calls are most frequently used in case of the
TMS320C40 because of the high loop iteration over-
head.

For processor P1 (Fig. 6), it can be seen that points
at the front of minimal program memory require much
more programmemory than the other processors. This
is in accordance with the high penalty in program
memory and execution time when subroutines are
used. In fact, none of the 186 nondominated points
found used subroutine calls for any actor.

The e�ect of the looping algorithm on the obtained
nondominated front can be clearly seen by comparing
Figs. 7 and 8: Much bu�er memory may be saved in
case the optimal looping algorithm is used, the trade-
o� surface becoming much more at in this dimension.
It is also remarkable that a point with program mem-
ory requirements of 171 was found lowest as opposed to
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Figure 7: Motorola DSP56k (suboptimal looping)
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Figure 8: Motorola DSP56k (optimal looping)

961 for a point with lowest program memory require-
ments when using the suboptimal looping algorithm.
As a result, the optimization time spent by the loop-
ing algorithm has a big inuence on the shape of the
nondominated front.

6.2 Comparison of SPEA and NPGA

Nine practical DSP applications, which were taken
from [Bhattacharyya et al., 1996], form the basis to
compare the performance of SPEA and NPGA. The
number of actors of the corresponding SDF graphs
varies between 12 and 92, the length of the associated
schedules ranges from 30 to 313 actor �rings.

To evaluate the performance of the two EAs, a metric
introduced in [Zitzler and Thiele, 1998b] is used here:

De�nition 3 Let A and B be two sets of decision vec-
tors. The function C maps the ordered pair (A,B) to
the interval [0,1]:

C(A;B) :=
jfb 2 B; 9 a 2 A : a � bgj

jBj
(8)

The value C(A;B) gives the fraction of B that is cov-
ered by members of A. Note that both C(A;B) and
C(B;A) have to be taken into account, since not nec-
essarily C(A;B) = 1� C(B;A). Although, this metric



does not say anything about the distributions and the
distances of the two fronts, it is su�cient here, as the
results will show.

On each example, SPEA and NPGA ran in pairs on
the same initial population, using optimal looping;
then the two resulting nondominated sets were as-
sessed by means of the C function. Altogether, eight
of these pairwise runs were performed per applica-
tion, each time operating on a di�erent initial pop-
ulation. Furthermore, in the SPEA implementation
the population size was set to 80 and the size of the
external nondominated set was limited to 20. Con-
cerning NPGA, we followed recommendations given
in [Horn and Nafpliotis, 1993] and chose tdom = 10
(10% of the population size); the niching parameter
�share = 0:4886 was calculated based on guidelines
given in [Deb and Goldberg, 1989].

Table 2: Comparison of SPEA and NPGA on nine
practical examples11

System C(SPEA,NPGA) C(NPGA,SPEA)
mean min max mean min max

1 99% 97% 100% 12% 10% 17%
2 98% 93% 100% 34% 14% 53%
3 94% 78% 100% 6% 5% 8%
4 99% 95% 100% 4% 2% 8%
5 99% 96% 100% 4% 2% 10%
6 91% 79% 98% 7% 4% 10%
7 97% 89% 100% 8% 5% 17%
8 98% 93% 100% 3% 2% 3%
9 97% 90% 100% 4% 2% 7%

The experimental results are summarized in Table 2.
On all nine applications, SPEA covers more than 78%
of the NPGA outcomes (in average more than 90%),
whereas NPGA covers in average less than 10% of the
SPEA outcomes. This means that the fronts generated
by SPEA dominate most parts of the corresponding
NPGA fronts, whereas only very few solutions found
by NPGA are not covered. Since SPEA incorporates
an elitist strategy in contrast with NPGA, the results
suggest that elitism might be an important factor to
improve evolutionary multi-objective search. This ob-
servation was also made in [Zitzler and Thiele, 1998a].
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