Skip to main content

A Genetic Programming Approach to Cost-Sensitive Control in Wireless Sensor Networks

  • Chapter
  • First Online:
Computational Intelligence in Wireless Sensor Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 676))

Abstract

In some wireless sensor network applications, multiple sensors can be used to measure the same variable, while differing in their sampling cost, for example in their power requirements. This raises the problem of automatically controlling heterogeneous sensor suites in wireless sensor network applications, in a manner that balances cost and accuracy of sensors. We apply genetic programming (GP) to this problem, considering two basic approaches. First, we construct a hierarchy of models, where increasing levels in the hierarchy use sensors of increasing cost. If a model that polls low cost sensors exhibits too much prediction uncertainty, the burden of prediction is automatically transferred to a higher level model using more expensive sensors. Second, we train models with cost as an optimization objective, called non-hierarchical models, that use conditionals to automatically select sensors based on both cost and accuracy. We compare these approaches in a setting where the available budget for sampling is considered to remain constant, and in a setting where the system is sensitive to a fluctuating budget, for example available battery power. We show that in both settings, for increasingly challenging datasets, hierarchical models makes predictions with equivalent accuracy yet lower cost than non-hierarchical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. github code public repository. http://git.io/vfmGB. Accessed: 2015-04-18

  2. UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets.html. Accessed: 2015-02-03

  3. Snowcloud: a complete system for snow hydrology research. ACM (2013)

    Google Scholar 

  4. Alippi, C., Anastasi, G., Galperti, C., Mancini, F., Roveri, M.: Adaptive sampling for energy conservation in wireless sensor networks for snow monitoring applications. In: IEEE 4th International Conference on Mobile Adhoc and Sensor Systems, MASS 2007, 8–11 October 2007, Pisa, Italy, pp. 1–6 (2007)

    Google Scholar 

  5. Bair, E.H., Davis, R.E., Finnegan, D.C., LeWinter, A.L., Guttmann, E., Dozier, J.: Can we estimate precipitation rate during snowfall using a scanning terrestrial lidar? In: International Snow Science Workshop, pp. 923–929. Anchorage, AK (2012)

    Google Scholar 

  6. Brockhoff, D., Zitzler, E.: Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Parallel Problem Solving from Nature-PPSN IX, pp. 533–542. Springer, Berlin (2006)

    Google Scholar 

  7. Buckingham, D., Skalka, C., Bongard, J.: Inductive learning of snowpack distribution models for improved estimation of areal snow water equivalent. J. Hydrol. (2015)

    Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hall, D., Llinas, J.: Multisensor Data Fusion. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  10. Hornby, G.: ALPS: the age-layered population structure for reducing the problem of premature convergence. In: Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8–12, 2006, pp. 815–822 (2006)

    Google Scholar 

  11. de Jong, E.D., Pollack, J.B.: Multi-objective methods for tree size control. Genet. Program. Evolvable Mach. 4(3), 211–233 (2003)

    Article  Google Scholar 

  12. Kim, D.: Structural risk minimization on decision trees using an evolutionary multiobjective optimization. In: Genetic Programming, pp. 338–348. Springer, Berlin (2004)

    Google Scholar 

  13. Koushanfar, F., Slijepcevic, S., Potkonjak, M., Sangiovanni-Vincentelli, A.: Error-tolerant multimodal sensor fusion. In: IEEE CAS Workshop on Wireless Communication and Networking, pp. 5–6 (2002)

    Google Scholar 

  14. Koza, J.R.: Genetic Programming: On the Programming of Computers by means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  15. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements: maximizing information while minimizing communication cost. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp. 2–10. ACM (2006)

    Google Scholar 

  16. Maleki, S., Pandharipande, A., Leus, G.: Two-stage spectrum sensing for cognitive radios. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, 14–19 March 2010, Sheraton Dallas Hotel, Dallas, Texas, USA, pp. 2946–2949 (2010)

    Google Scholar 

  17. Malloy, M.L., Nowak, R.D.: Near-optimal adaptive compressed sensing. IEEE Trans. Inf. Theory 60(7), 4001–4012 (2014)

    Article  MathSciNet  Google Scholar 

  18. Martinelli, A.: Vision and IMU data fusion: closed-form solutions for attitude, speed, absolute scale, and bias determination. IEEE Trans. Robot. 28(1), 44–60 (2012)

    Article  Google Scholar 

  19. Papadimitriou, C., Beck, J.L., Au, S.K.: Entropy-based optimal sensor location for structural model updating. J. Vib. Control 6(5), 781–800 (2000)

    Article  Google Scholar 

  20. Pohl, C., Genderen, J.V.: Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(5), 823–854 (1998)

    Article  Google Scholar 

  21. Ren, H., Rank, D., Merdes, M., Stallkamp, J., Kazanzides, P.: Multisensor data fusion in an integrated tracking system for endoscopic surgery. IEEE Trans. Inf Technol. Biomed. 16(1), 106–111 (2012)

    Article  Google Scholar 

  22. Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII, Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, New York (2011). doi:10.1007/978-1-4419-7747-2_8

  23. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 287–294. COLT ’92, ACM, New York, NY, USA (1992). doi:10.1145/130385.130417

  24. Skalka, C., Frolik, J.: Snowcloud: a complete data gathering system for snow hydrology research. In: Real-World Wireless Sensor Networks, pp. 3–14. Springer, Berlin (2014)

    Google Scholar 

  25. Smith, D., Singh, S.: Approaches to multisensor data fusion in target tracking: a survey. IEEE Trans. Knowl. Data Eng. 18(12), 1696–1710 (2006)

    Article  Google Scholar 

  26. Tabari, H., Marofi, S., Abyaneh, H.Z., Sharifi, M.R.: Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput. Appl. 19(4), 625–635 (2010)

    Article  Google Scholar 

  27. Tappeiner, U., Tappeiner, G., Aschenwald, J., Tasser, E., Ostendorf, B.: GIS-based modelling of spatial pattern of snow cover duration in an alpine area. Ecol. Model. 138, 265–275 (2001)

    Article  Google Scholar 

  28. Waltz, E.L., Buede, D.M.: Data fusion and decision support for command and control. IEEE Trans. Syst. Man Cybern. 16(6), 865–879 (1986)

    Article  Google Scholar 

  29. Wang, D., Ahmadi, H., Abdelzaher, T.F., Chenji, H., Stoleru, R., Aggarwal, C.C.: Optimizing quality-of-information in cost-sensitive sensor data fusion. In: Distributed Computing in Sensor Systems, 7th IEEE International Conference and Workshops, DCOSS 2011, Barcelona, Spain, 27–29 June, 2011, Proceedings, pp. 1–8 (2011)

    Google Scholar 

  30. Willett, R., Martin, A., Nowak, R.: Backcasting: adaptive sampling for sensor networks. In: Proceedings of the Third International Symposium on Information Processing in Sensor Networks, IPSN 2004, Berkeley, California, USA, April 26–27, 2004, pp. 124–133 (2004)

    Google Scholar 

  31. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  32. Zhao, H.: A multi-objective genetic programming approach to developing pareto optimal decision trees. Decis. Support Syst. 43(3), 809–826 (2007)

    Article  Google Scholar 

  33. Zowj, A.Y., Bongard, J.C., Skalka, C.: A genetic programming approach to cost-sensitive control in resource constrained sensor systems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11–15, 2015, pp. 1295–1302 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF awards PECASE-0953837 and INSPIRE-1344227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsoon Yousefi Zowj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zowj, A.Y., Bongard, J.C., Skalka, C. (2017). A Genetic Programming Approach to Cost-Sensitive Control in Wireless Sensor Networks. In: Abraham, A., Falcon, R., Koeppen, M. (eds) Computational Intelligence in Wireless Sensor Networks. Studies in Computational Intelligence, vol 676. Springer, Cham. https://doi.org/10.1007/978-3-319-47715-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47715-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47713-8

  • Online ISBN: 978-3-319-47715-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics