
How Not to Be a Black-Box: Evolution and Genetic-Engineering of High-Level Behaviours�

Ik Soo Lim
LIG, DI

Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland

iksoolim@email.com

Daniel Thalmann
LIG, DI

Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland

thalmann@lig.di.epfl.ch

Abstract

In spite of many success stories in various do-
mains, Genetic Algorithm and Genetic Program-
ming still suffer from some significant pitfalls.
Those evolved programs often lack of some im-
portant properties such as robustness, compre-
hensibility, transparency, modifiability and us-
ability of domain knowledge easily available.
We attempt to resolve these problems, at least
in evolving high-level behaviours, by adopting
a technique ofconditions-and-behavioursorigi-
nally used for minimizing the learning space in
reinforcement learning. We experimentally vali-
date the approach on a foraging task.

1 Introduction

Genetic Algorithm (GA) and Genetic Programming (GP)
have a large number of successful applications in many do-
mains. Much of their popularity is due to the fact that GA
and GP are competitive if the space to be searched is large,
is known not to be perfectly smooth and unimodal, or is
not well understood, or if the fitness function is noisy, and
if quickly finding a sufficiently good solution is enough[4],
[6]. However, those evolved programs by GA/GP often
lack of some important properties such as robustness, com-
prehensibility, full specification, modifiability and taking
advantage of domain knowledge easily available, each of
which is important for GA/GP paradigm to be more widely
accepted and used.

Evolved motion-controller programs are, for example, of-
ten “brittle” in that they only work for a particular task
rather than a general skill: slight perturbations may make
the programs fail [2], [9]. Even though the size of them

�In theProceedings of Genetic and Evolutionary Computation
Conference (GECCO-99).

may be small, these programs are usually ‘opaque’ to hu-
man interpretation [2], [9], [12]. This opaqueness leads to
more drawbacks. It may be difficult to tell how it will work
for a given condition before actually running the program
on it. It is not easy to modify an evolved program for a rel-
evant but different task nor to encode and take advantage of
some domain knowledge easily available.

The motivation behind this work, in particular, comes from
the fact that a few number of GA/GP applications were
done [2], [7], [12] in computer animation which is our main
interest[13], but still suffer from many of these pitfalls and
are not much followed-up. We attempt to resolve these
problems, at least in evolving high-level behaviours, by
adopting a technique ofconditions-and-behavioursorig-
inally used for minimizing state space in reinforcement
learning[5]. We use a foraging task as a test-bed for the
approach.

This paper is organized as follows. In SectionBehaviours
and Conditions, we introduce the benefits of them. Sec-
tion The Foraging Problemdescribes the task for which
a policy has to evolve and an experimental framework for
it. SectionExperimentsgives the experimental results and
DiscussionsandConclusionsfollow it.

2 Behaviours and Conditions

2.1 Why Behaviours and Conditions?

Behaviours are goal-driven control laws that achieve
and/or maintain particular goals such ashomingandwall-
following. Abstracting away the low level details, be-
haviours can be used as the basic representation level for
control in mobile robots [5]and computer animation [8].

Behaviours are triggered byconditions, predicates on sen-
sor readings that map into a proper subset of the state space.
Each condition is defined as the part of the state that is nec-
essary and sufficient for activating a particular behaviour.
The truth value of a condition determines when a behaviour



can be executed and when it should be terminated, thus
providing a set of events for the agent’s control algorithm.
This condition set is typically much smaller than the agent’s
complete state space[5].

Reformulating states and actions into conditions and be-
haviours effectively reduces the search space, which is
then defined at a higher level of description due to the
abstracting-away of the details: what GA/GP has to do is
then to find a mapping from the power set of conditions to
behaviours into the most effective policy for a given task
(Table1).

2.2 More than Reducing Search Space

Since a policy defined at a high-level description is evolved
rather than a mechanical motion controller of low-level
states and actions, it is robust: evolved programs for me-
chanical motion controllers are often fragile that extra ef-
forts have to be given to make them robust[2], [9].

While programs evolved by typical GA/GP are not usually
easy to interpret[2], [12], this high level description pro-
vides an easy interpretation of an evolved policy. This is
useful both in studying the evolved policy [1] and in mod-
ifying it. Those evolved by typical GA/GP are not prone
to modifications so that the evolutionary process with a
new fitness function may have to be re-run even for a small
change in the programs’ output[2].

Since a behaviour is mapped for each of the conditions, an
evolved policy becomes transparent for every possible con-
dition: a full specification of the policy! Most of programs
evolved by typical GA/GP do not provide this sort of trans-
parency so that they have to be actually run on it to see
its performance for a given condition. It has to be noted
that the easy interpretation does not necessarily imply this
transparency. In [1], a parse tree was used for specifying
an agent’s policy which still provides easy interpretation
of it. It is not, however, a mapping from the power set of
conditions to behaviours since not only behaviour but also
condition primitives comprise the nodes of the tree: in fact,
one of the best evolved policy consisted of only behaviour
nodes without a single condition node so that its perfor-
mance was not transparent on any condition.

Since an agent’s policy is specified in parallel rather than
sequentially, it is easier to modify part of the policy with
less affecting the rest of others. If it was sequential
such as a parse tree which is skimmed through by a con-
troller successively performing each primitive encountered
in nodes[1], a change in a preceding node could affect the
following nodes so that it is not so prone to modifications.

If there is domain knowledge easily available, it may be
encoded in genotype and reduce search space further. Do-

main knowledge, if any, are usually taken advantage of in
the form of fitness functions. This implicit use of domain
knowledge still leaves a human user to set its correspond-
ing parameters in fitness functions[1], [5]. If this domain
knowledge can be expressed in terms of conditions-and-
behaviours as in the following section, this can easily be
encoded as part of genotype in the beginning and the search
process has to fill in only the rest of others.

We experimentally validate these points on a foraging prob-
lem.

3 The Foraging Problem

Foraging problem’s goal is to make an agent find and take
home samples in an unpredictable environment. This bio-
logically inspired problem serves as a canonical abstraction
of a variety of real-world applications such as demining and
toxic clean-up[5] and has been used in a lot of possible de-
rived applications in artificial intelligence and artificial life
(for more reference, see [1]).

The basic behaviour repertoire, given to the agent apriori ,
consists of the following fixed set:

� homing: move to a home base

� grasping: grasp a sample

� dropping: drop a sample

� wandering: move to a random location

These behaviours are ‘protected’ as protected division %
is typically pre-set to return, say 1, when divided by 0 in
GP[4]: homingdoes nothing if it is called when no home
base is seen. Similarly,graspinganddroppingdo so for no
sample seen.

A simple GA was used to search the appropriate conditions
for triggering each of the above behaviours. Since only the
space of conditions necessary and sufficient for triggering
the behaviour set is considered, the state space is reduced
to the power set of the following clustered condition predi-
cates:

� any-home?: is any home base seen?

� at-home?: is the agent at a home base?

� any-sample?: is any sample not collected seen?

� carrying-sample?: is the agent carrying any sample?



Condition Behaviour Behaviour Behaviour
at-home? carrying-sample? any-sample? any-home? hand-written evolved engineered

0 0 0 0 wandering
0 0 0 1 wandering homing
0 0 1 0 grasping !
0 0 1 1 grasping homing !
0 1 0 0 wandering
0 1 0 1 homing wandering
0 1 1 0 wandering
0 1 1 1 homing
1 0 0 0 ?
1 0 0 1 wandering
1 0 1 0 ?
1 0 1 1 grasping !
1 1 0 0 ?
1 1 0 1 dropping !
1 1 1 0 ?
1 1 1 1 dropping !

Table 1: : The foraging polices. Ahand-writtenone, anevolvedone with a heterogeneous fitness function, and an genetic-
engineered-&-evolved one with a monolithic fitness function. Sinceany-home? is neverFALSE if at-home?TRUE,
behaviour entries for these impossible conditions are left out and marked with ‘?’. Only the entries different from those of
thehand-writtenone are shown in the second and the third policy. ‘!’ is marked for the genetic-engineeredparts of the
third policy to be the same as their counterparts in the thehand-writtenone.

3.1 Genetic Code for an Agent’s Foraging Policy

The agent’s foraging policy is specified as a table consist-
ing of columns for conditions and a column for their cor-
responding behaviours as inTable 1. An 1-d array corre-
sponding to this behaviour column is used as the genotype:
one of the simplest possible genotypes!

3.2 Fitness Function for the Foraging Policy

A monolithic function is typically used for a fitness func-
tion in GA/GP. Constructing such a monolithic fitness func-
tion could be a complicated task in some domains having
dynamic features such as this foraging problem, since the
environment may provide some immediate rewards and de-
layed reinforcement. To enable and accelerate the search
process, both of heterogeneous rewarding functions and
progress estimating functions were lately used which took
advantage of implicit domain knowledge [1], [5].

In our experiments reported here, we used only the hetero-
geneous functions for the fitness function though including
the progress estimating functions was reported to improve
the performance of the policy further[5]. This is partly be-
cause of simplicity, but mainly because we would like to
focus on those aspects mentioned earlier such as ease of
interpretation and modification of the evolved policy rather
than the performance improvement.

The following events produce immediate positive rein-
forcement:

� E1: grasped-sample

� E2: dropped-sample-at-home

The following event results in immediate negative rein-
forcement:

� E3: dropped-sample-away-from-home

The events are combined into the following heterogeneous
reinforcement function:

R(c) =

8>><
>>:

r1 if E1

r2 if E2

r3 if E3

0 otherwise

r1; r2 > 0; r3 < 0

The fitness function is a sum of the reinforcementR re-
ceived over timet:

X
t

R(c; t)



4 Experiments

The agent has a limited visual depth of field with a view
angle of 360 degree and the experiments were done with
the following parameters:

Population = 300, Generation = 300,
PCrossover = 0.7, PMutation = 0.1

r1= 2, r2 = 100,r3= -2

4.1 The Basic Foraging Task

Due to notorious difficulties of evaluating this sort of per-
formance, we define convergence as a particular desired
policy as done in[5]. We simply compare a hand-written
policy and an evolved one(Table 1): only those entries dif-
ferent from their counterparts in the first one are shown
in the second. Sinceany-home? is neverFALSE if at-
home?TRUE, behaviour entries for these impossible con-
ditions are left out and marked with ‘?’ inTable 1. The
size of the search space is then reduced from416 to 412.

Among twelve entries in the evolved policy, three are dif-
ferent from those in the hand-written one:(12 � 3)=12
= 75% of the correct policy (Table 1, Figure 1). If the
progress estimating functions had been used in addition
to the heterogeneous reward functions, the performance of
the evolved policy might have been improved as reported
in[5].

4.2 Variations on the Theme

4.2.1 Many Homes

The location of the home base is not known to the agent in
our experiment: the agent has to look for it when homing
while the world coordinate of the home base was available
to the agent in the previous work[5]. This coordinate-free
homing allows the evolved policy to be more genuine and
flexible. We ran it in other situation where there are two
home bases and the same policy still works well (Figure
2).

4.2.2 Carrying More than One Sample

During the evolution of the foraging policy,carrying-
sample? was TRUEwhile it carried at least one sam-
ple. Since the evolved policy does not have any en-
try of graspingfor conditions ofcarrying-sample?TRUE,
the agent can bring home only one sample at a time
even though it may encounter another in the mid of
the way. By interpreting the condition more gen-
uinely such ascarrying-sample(s-enough-not-be-able-to-
take-any-more)?, the same policy can allow the agent to

bring home many samples at a time: two samples at a time
were considered to be enough as if carrying one in the right
hand and the other, the left hand (Figure 3).

4.2.3 Genetic Engineering rather than Rewarding

Due to this transparent representation of genotypes with
conditions-and-behaviours, some of domain knowledge
may be directly encoded in the genotype rather than be
implicitly informed of by fitness functions. For the con-
ditions satisfying bothcarrying-sample?FALSEandany-
sample?TRUE, graspingneeds to be encoded: this cor-
responds to the rewarding forE1. For those ofat-
home?TRUEandcarrying-sample?TRUE, dropping: this
is equivalent to the rewarding forE2. These genetic-
engineered parts of a genotype are labeled as ‘!’ inTable
1.

Then, a GA has to simply fill in the rest of the entries
for a foraging policy whose size of the search space is re-
duced from412 to 47. The fitness function now becomes
a monolithic function: the number of samples collected at
the home base when a policy’s running ends. A foraging
policy evolved and was the same as the hand-written one
(Table 1).

The following are some of possible benefits from this
‘gene-manipulation’ compared to the use of the heteroge-
neous fitness functions:

� less load in monitoring conditions and behaviours for
the fitness evaluation during the evolution.

� less burden in choosing parameter values than that of
the heterogeneous functions.

� both domain knowledge informed of and reduction of
search space : only the knowledge informed of in the
case of the heterogeneous functions.

4.2.4 Porting the Evolved Policies into 3D Computer
Animation

Running a policy during the evolution was done in a rather
crude simulation of sensing and behaviours and those two
of the evolved policies inTable 1 worked well in it. The
first policy of 75% correctness, however, did not performed
well when we ported these policies into 3D computer an-
imation where more tight management of sensing and be-
haviours were employed such as a limited view angle of
the agents. In the beginning of the animation, it seemed
to be all right. When samples near the home bases were
already collected, the agents collected other samples and
startedhoming. But, the agent soon stoppedhomingbe-
fore completing it and switched intowanderingthenhom-
ing and so on: they never reached a home base .



Figure 1: : The basic foraging. Clockwise, from upper left.

Figure 2: Many homes. Clockwise, from upper left.



Figure 3: Carrying more than one sample at a time. Clockwise, from upper left.

We, however, were soon able to see where it went wrong
and how it had to be corrected by simply monitoring the
conditions and the behaviours during the animation. When
the condition was 0111, it startedhoming. If no sample was
seen when the agent reached near a home base, the condi-
tion became 0101 and it invokedwandering: the remedy
was to replace it withhoming.

The easy-to-comprehend and easy-to-modify representa-
tion of the genotype allowed us to pin down the problem
of the not perfect policy and correct it. This is very impor-
tant in practical use of GA/GP and black-box-like solutions
evolved by typical GA/GP do not allow it.

5 Discussion and Conclusion

One problem in scaling-up the current approach is that it
uses thepower setof conditions: forn conditions,2n en-
tries have to be specified. One way to overcome the prob-
lem would be to use a learning classifier system[3] where
a default hierarchy is employed: a default hierarchy is a
multi-level structure in which classifiers become more gen-
eral as the top level is ascended. To keep the classifier sys-
tem comprehensible, transparent, modifiable and usable of
domain knowledge, implementing it asstimulus-response
system[10][11] would be important.

We used conditions-and-behaviours technique to make
evolved solutions by a GA robust, comprehensible, trans-
parent, modifiable and usable of domain knowledge easily
available. We experimentally validated the approach on the

foraging task and the variations including its realization of
3D computer animation.

References

[1] S. Calderoni and P. Marcenac. Genetic Programming
for Automatic Design of Self-Adaptive Robots.Pro-
ceedings of EuroGP’98, Lecture Notes in Computer Sci-
ence (LNCS 1391), pp. 163-177, Springer Verlag, 1998.

[2] L. Gritz and J. K. Hahn. Genetic Programming Evo-
lution of Controllers for 3-D Character Animation. in
Koza, J.R., et al. (editors),Genetic Programming 1997:
Proceedings of the 2nd Annual Conference, pp. 139-
146. July 13-16, 1997, Stanford University. San Fran-
cisco: Morgan Kaufmann.

[3] J. H. Holland.Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Bi-
ology, Control, and Artificial Intelligence, 2nd ed. Cam-
bridge, Mass: MIT Press, 1992.

[4] J. R. Koza.Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. Cam-
bridge, MA: The MIT Press, 1992.

[5] M. Mataric. Reinforcement Learning in the Multi-
Robot Domain.Autonomous Robots, v4 n1, pp.73-83,
January 1997.

[6] M. Mitchell. An Introduction to Genetic Algorithms.
The MIT Press, 1996.



Figure 4: 3D Computer Animation of the Foraging Policy. Upper left and lower left: a bird-eyes view of the animation’s
beginning and ending. Upper right and lower right: some close-ups.

[7] J. T. Ngo and J. Marks. Spacetime Constraints Re-
visited. Proceedings of SIGGRAPH ’93, pp. 343-350,
1993.

[8] C. W. Reynolds. Flocks, Herds and Schools: A
Distributed Behavioural Model.Proceedings of SIG-
GRAPH ’87, pp. 25-34, 1987.

[9] C. W. Reynolds. Evolution of Corridor Following Be-
haviour in a Noisy World. From Animals To Animats
3: Proceedings of the Third International Conference on
the Simulation of Adaptive Behaviour, pp. 402 - 410.
MIT Press, 1994.

[10] R. A. Richards and S. D. Sheppard. Three-
dimensional Shape Optimization Utilizing a Learning
Classifier System. In Koza, John R., Goldberg, David
E., Fogel, David B., and Riolo, Rick L. (eds.)Proceed-
ings of the First Annual Conference on Genetic Pro-
gramming, July 28-31, 1996, Stanford University; Cam-
bridge, MA: The MIT Press.

[11] G. R. Roberts. Dynamic planning for Classifier Sys-
tems.Proceedings of the Fifth International Conference
on Genetic Algorithms, Morgan Kaufmann, San Mateo,
CA, 1993, pp. 231-237.

[12] K. Sims. Evolving 3D Morphology and Behaviour by
Competition.Artificial Life, v1 n4, pp. 353-372, 1994.

[13] N. Magnenat-Thalmann and D. Thalmann (eds),
Computer Animation ’97, IEEE Computer Society
Press, 1997.


