
A Comparison of Some Methods for Evolving Neural Networks

Marko Grönroos

Turku Centre for Computer Science, Åbo Akademi, Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland.
Email: magi@iki.�, Tel. +358 2 215 4072

This poster paper presents an empirical comparison of
four encoding methods for evolving neural networks.
We use an evolutionary algorithm to evolve a pop-
ulation of genetically encoded neural networks. Only
the network topology is encoded, and the connection
weights are trained with a separate neural learning al-
gorithm. The performances of the trained networks are
used as �tness values to guide the evolution of the pop-
ulation. After a number of generations, the best net-
work is picked up from the population.

We use a direct encoding method derived from the one
proposed by Miller, Todd, and Hedge [4]. Each neuron
and connection is encoded separately in the genome.
The graph generation grammar developed by Kitano
[3] is an early encoding method based on context-free
and deterministic L-systems. Connections are deter-
mined from a connection matrix that is generated from
a 1�1 symbol matrix using genetically encoded rewrit-
ing rules that replace each element with a 2 � 2 ma-
trix. In cell space encoding, introduced by Nol� and
Parisi [5], the neurons are encoded with coordinates in
a two-dimensional space. �Axon trees� are grown from
the neurons that form connections when their branch
tips touch other neurons. The fourth method, which we
call here generative cell space encoding, by Cangelosi,
Parisi and Nol� [1], is a derivative of the previous one,
and employs rewriting of neurons according to produc-
tion rules to generate the neurons instead of encoding
each neuron directly.

Our evaluation criteria in the comparison are classi�-
cation accuracy and e�ciency to use only the relevant
input variables. We use three arti�cial problems to
benchmark the input selection ability of the encoding
methods. First is the classic 8-x-8 encoder problem.
The x in the name refers to the fact that the number of
hidden neurons is determined by the evolution process,
as is the network topology generally. The additive

data is generated using a function that has a nonlinear
additive dependence on the �rst two variables, a lin-

ear dependence on the next three and is independent of
the last �ve (pure noise) variables. The interaction

dataset is similar to additive, except that the �rst
two variables have interactive dependence. We use
two real-world problems from the Proben1 problem
database[6] to benchmark the methods according to
classi�cation accuracy: glass (classi�cation of glass
types) and heart (detection of heart disease). These
problems are well known in machine learning bench-
marking.

We conducted evolution experiments with each
method-problem pair. The graph generation grammar
performed best with the classi�cation problems, but
the direct encoding was not very far behind. The direct
encoding and cell space encoding were about equally
e�cient with the input selection problems, surpassing
the two other methods.

Details of the study are given in [2].

References

1. A. Cangelosi, D. Parisi, and S. Nol�. Cell division and
migration in a 'genotype' for neural networks. Network:
Computation in Neural Systems, 5:497�515, 1993.

2. M.A. Grönroos. Evolutionary design of neu-
ral networks. Master's thesis, Computer Sci-
ence, Department of Mathematical Sciences, Uni-
versity of Turku, Finland, 1998. Available from
http://www.iki.�/magi/opinnot/gradu/.

3. H. Kitano. Designing neural network using genetic algo-
rithm with graph generation system. Complex Systems,
4:461�476, 1990.

4. G.F. Miller, P.M. Todd, and S.U. Hegde. Designing
neural networks using genetic algorithms. In J.D. Schaf-
fer, editor, Proceedings of the Third International Con-
ference on Genetic Algorithms, pages 379�384. Morgan
Kaufmann, 1989.

5. S. Nol� and D. Parisi. Growing neural networks. Tech-
nical report, Institute of Psychology, CNR, Rome, 1992.

6. L. Prechelt. Proben1 - a set of neural network bench-
mark problems and benchmarking rules. Technical Re-
port 21/94, Fakultät für Informatik, Universität Karl-
sruhe, 76128 Karlsruhe, Germany, 1994.


