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Abstract
This paper discusses the simulation results of a
model of biological development for neural
networks based on a regulatory genome. The
model’s results are analyzed using the
framework of Heterochrony theory (McKinney
and McNamara, 1991). The network
development is controlled by genes that produce
elements regulating the activation, inhibition,
and delay of neurogenetic events. The genome
can also regulate the gene expression
mechanisms. An ecological task of foraging
behavior is used to test the model with an
evolving population of artificial organisms.
Organisms evolve an optimal foraging behavior
and the ability to adapt to changing
environments. The adaptive strategy consists in
changes of network architecture that are
determined by the regulatory rearrangment of
neurogenetic events. Results show how
heterochronic changes play an adaptive role in
the evolution of neural networks.

1 HETEROCHRONY AND
DEVELOPMENT IN NEURAL
NETWORKS

In living organisms the existence of a variable and plastic
ontogenesis is strictly related to the evolution of a
regulatory genome, i.e. a genotype whose main role is to
control the functioning of simple ontogenetic events.
Even though some genes directly codify for structural
molecules, most of the genes' product consists of
regulatory elements, such as enzymes. These regulatory
genes act as ON-OFF switches of the complex chain of
biochemical events that constitute the three main
phenomena of cellular development: mitoses, cell
differentiation, and migration. A regulatory ontogenetic
development consists of a variety of interactions between
the growing organism and its environment. The
interaction acts in, and between, different levels, from the
molecular level (genes, proteins, enzymes) to the cellular
level (nucleus, cytoplasm), to the inter-cell level (cell
assemblies, organs and tissues) and to the organism level
(behavior). In such a regulatory development, the timing

of the events, i.e. their temporal activation/inhibition, and
their rate, i.e. the frequency of occurrence of the
phenomena, both have a strong impact. The temporal co-
occurrence of two or more events can prove essential for
allowing the activation of a biological phenomenon. Even
the spatial relation between sub-structures of the
developing organism is a key factor. The spatial
interaction between cells can induce the phenomena of
cell differentiation or cell migration. These classes of
interactions, especially the temporal relations occurring
during the organism's development, constitute the
phenomenon known as heterochronic change.
Heterochrony (McKinney and McNamara, 1991) is the
study of the effect of changes in timing and rate of the
ontogenetic development in an evolutionary context. In
particular, heterochonic classifications are based on the
comparison of ontogenies that differ for the onset of
growth, the offset of growth and the rate of growth of an
organ, or a trait or other biological instances. These three
kinds of change correspond respectively to the following
couples of heterochonic phenomena: Predisplacement and
Postdisplacement for an anticipated and postponed growth
onset, Hypermorphosis and Progenesis for a late and early
offset, and Acceleration and Neoteny for a faster and
slower rate of growth (see also Gould, 1977).

Ontogenesis is complex and therefore is hard to be
studied only with classical biological sciences. Therefore
a complementary modeling method, the synthetic
approach of Artificial Life, has been proposed as a
possible way for understanding such systems (Langton
1992). Moreover, the advantages of modeling neural and
behavioral development through neural networks has been
repeatedly stressed (Elman et al., 1996). The modeling of
development using neural networks has received a strong
impulse in recent years. In the majority of today's
development models a single developmental phenomenon
is simulated, usually regarding the network connectivity.
Some works study the effects of the pruning/adding of
connections and units in the neural network (e.g. Ash's
1989 work on node creation for backpropagation
networks). In other models the indirect mapping of the
network connectivity into a genotype string is studied. For
example Kitano (1990) uses rewriting rules to encode the
weight connection matrix. Nolfi and Parisi (1995) use a
more biologically-based representation of network



connectivity. The simulation of the phenomenon of cell
division has been studied in different works that use the
recursive mapping of Lindenmayer grammars. For
example, in Belew (1993) and Gruau (1994) the final
topology of the network is determined by the units'
duplications which are controlled by the rewriting rules
encoded in the genotype.

This kind of models of development has the limit of not
dealing with an important aspect of the developing
systems, namely the high interaction among the different
developmental phenomena. In growing neural systems,
the cells interact with each other, so that one cell can
induce migration or death in the neighboring cells.
Moreover, as we have said, the effect of the regulatory
genes in controlling the complex events of cellular
development has to be considered.

A different modeling approach is the simultaneous
simulation of many neurodevelopmental phenomena. One
of such models is the work of Dellaert and Beer (1994) on
the co-evolution of body and brain in artificial organisms.
In their work an organism is developed after many cycles
of cell division, differentiation and axonal growth. The
design of the developmental events is directly inspired to
the biology of development, albeit in a very simplified
way. This model shows that the simulation of a complex
biologically-inspired development is possible and can be
successful. However, the authors point out that adding
complexity is more difficult to deal with in this kind of
model. In fact, they use hand-written genetic instructions
to control the organism’s development.

A model of development for neural networks that includes
different biological phenomena such as cell duplication
and axonal growth have been tested by Cangelosi, Parisi
& Nolfi (1994). Here the control of the develoment events
is not directly based on biologically-inspired mechanisms,
but uses a rewriting rules grammar. Another model of
biological development for neural networks had been
proposed by Kitano (1995). He tested a new
computational model of neurogenesis based on cellular
metabolitic processes. The model proved capable of
evolving large neural networks and of exhibiting the
phenomenon of cell differentiation. Eggenberger (1997)
also developed a system for evolving 3D organisms using
mechanisms of gene expression. But these two models of
organisms’ morphology have not been tested with
behavior-based neural network simulations.

The model that will be presented here aims at the
simultaneous simulation of many biologically-inspired
phenomena for the development of neural networks in
artificial organisms. The goal is to design a model which
permits a high level of interaction between different levels
of the developing system, and between the genetically-
encoded information and the environment in which the
network is growing. For this purpose a regulatory genome
is used in which most of the genes produce elements
whose role is to control the activation, inhibition, and
delay of the developmental events. The phenomena
occurring during neural network development (cell

duplication, differentiation, migration, axonal growth and
synaptogenesis) are directly inspired by their real
biological functioning (Purves & Lichtheim, 1985). Due
mainly to the present limitations of the simulation
techniques, a high level of simplification is used, while
retaining the essential features of the biological
phenomenon. At present, our goal is not to obtain a
completely realistic model of biological development, but
to simulate an adaptive behavior model of a developing
system which allows a high level of interaction among its
substructures, in order to study their role in the evolution
of developing neural networks.

2 MODEL DESCRIPTION 1

The core of this model of biological development for
neural networks consists in the encoding of the regulatory
genotype, and in the neurogenetic mechanisms that will
develop the neural networks using the genetic
information.

At the beginning of neural development the organism's
neural system consists of a single egg cell with its own
genome and a set of 23 elements present in the
intercellular environment (see Table 1). Some of these
elements act as RECEPTORS for extracellular signaling.
Others are STRUCTURAL elements for the activation
and execution of developmental events. Others are pure
REGULATORY elements for the modulation of gene
expression, and do not play any direct role in the
development. The structural elements can regulate gene
expression, while the receptors cannot.

The physical environment in which the egg cell will grow
consists of a 2D grid of 7*20 cells. The grid has a
polarized orientation in the y dimension. The upper pole
corresponds to the organism’s muscle tissue side, and the
lower pole to the sensory tissue side. The initial
intracellular elements are considered to be inherited from
the parent organism. Their distribution, i.e. the initial
amount of each element, will function as the zygote's
pattern formation mechanism. During development, the
amount of these elements, together with the other
environmental conditions, will determine the activation,
inhibition or delay of the developmental events.
Moreover, these elements act also as regulators of gene
expression.

2.1 DEVELOPMENTAL EVENTS

Five developmental events occur cyclically during the
neural network’s growth: Cell duplication, Cell
differentiation, Cell migration, Axonal growth, and
Synaptogenesis. For example, the cell duplication process

                                                       
1 Readers who are interested in this model can download the program
that is currently available on the World Wide Web at the URL:
http://gracco.irmkant.rm.cnr.it/angelo. In this site it is possible to
download the source C files and the compiled program with graphics for
XWindows. The data files of some of the simulations described in the
paper are also available.



consists in the replacement of the mother cell with two
new daughter cells. The physical displacement of the new
cells, and their differentiation (i.e. the splitting of the
mother cell's elements), is determined by the environment
available around the mother cell and by the amount of the
two elements responsible for mitosis (see Table 1). The
choice of these two elements is inspired by the role played
by cyclin and the kinase enzyme, which are known to be
the two mayor regulatory proteins for mitosis (Marx,
1989).

NAME EFFECTS
DUP_time Cell duplication timing

DUP_posi New cell position

MIG_pote Migration movement

MIG_pole_R Sensitivity to migration signal

MIG_subA Migration signal of type A

MIG_subB Migration signal of type B

MIG_subA_R Sensitivity to migration signal A

MIG_subB_R Sensitivity to migration signal B

DIF_sens_R Sensitivity to input tissue

DIF_moto_R Sensitivity to output tissue

AXO_adhA Adhesion molecule of type B

AXO_adhB Adhesion molecule of type B

AXO_adhA_R Sensitivity to adhesion molecules A

AXO_adhB_R Sensitivity to adhesion molecules B

SYN_trop Synaptogenesis and weight value

SYN_ach Excitatory synapses and weight

SYN_gaba Inhibitory synapses and weight

SYN_ach_R Receptor for excitatory synapses

SYN_gaba_R Receptor for inhibitory synapses

REG_A Gene regulation function

REG_B Gene regulation function

REG_C Gene regulation function

REG_D Gene regulation function

Table 1 - List of cellular elements. For each element is
reported its typology and function. The name indicates the
developmental events the element takes part in (first three
capital letters) and its specific role (the other four letters).

Elements with a final R are receptors.

2.2 GENE REGULATION

An additional and basic developmental event is the gene
expression mechanism. The genotype structure consists of
a binary string which can be divided into 23 segments, or
genes. Each gene has an operon structure, that is a

regulatory region, and an expression region. The
regulatory region is used during gene expression. The
element is also constituted by a binary string. The element
is structured in a regulatory region and a structural region.
The element’s regulatory region will match the genes’
regulatory string segment. The element whose regulatory
region matches completely the binary sequence of the
inductor region will be the inductor. The element
matching the inhibitory region will be the inhibitor.
Depending on the presence of one or both regulatory
elements, the gene will be expressed or inhibited. As a
result if its expression, some complementary copies of the
structural region of the gene will be released into the
intracellular environment. The number of copies is
proportional to the amount of the inductor element.

2.3 NEUROGENESIS

Given this element and genotype structure, and having
defined the way the five developmental events function,
the process of the neural network growth can be described
as follows. An external clock signals the 10 discrete time
steps. During each time step the five developmental
events and the gene expression process are executed in
sequence. Gene expression is the first mechanism to be
executed. It will determine the new distribution of
elements in the intracellular and extracellular
environment. This change constitutes the major cell
differentiation process. All following events will be a
function of this differential distribution of elements. Cell
division follows the genotype expression, and then cell
migration happens. The axonal growth and
synaptogenesis are executed in parallel. They start at time
step 10.

Each developmental process implies a drop (cost) in the
amount of elements involved. A distinction must be made
concerning the metabolitic cost of the process. For
example, cell division, being a more global mechanism
for the cell, has a higher cost, i.e. it causes a larger
decrease in the element’s amount. Other processes, such
as the elongation of single axonal segments, have a lower
cost. The criterion for defining the process costs cannot be
completely biologically plausible. The parameters have
been chosen in such a way to equilibrate the different
processes and to facilitate the development of
feedforward neural networks.

3 SIMULATION
A genetic algorithm (Holland, 1975; Goldberg, 1989) is
used for evolving populations of artificial organisms. An
ecological neural network (Econet) framework is
implemented (Parisi, Cecconi & Nolfi, 1990). Organisms
live in a simple 2D environment. A neural network
controls organism’s behavior. The genotype of the initial
population is randomly initialized, and the initial
distribution of elements in the egg cell is assigned at
random. The 100 organisms of the population are
developed and tested individually in each generation.



After the fitness test, organisms are ordered on the basis
of their fitness value. The 20 individuals with the highest
fitness are selected and reproduce 5 offspring each. The
genetic operator is applied to the new 100 (20*5)
organisms and then the cycle of development-evaluation-
selection and reproduction is repeated.

In the simulation reported here, the reproduction is
agamic and the genetic operator is the single bit mutation.
An average rate of mutation of 0.4 % is used (range
between 0 and 0.8%). The reason for this low mutation
rate is the high sensitivity of a regulatory genome to
mutations. In fact the effect of single mutations in a
model with a complex and indirect genotype-phenotype
has been shown to be a critical factor for the evolution of
organisms with an optimal behavioral performance
(Cangelosi, Parisi & Nolfi, 1994). In other simulations,
the crossover was also used.

The feasibility of regulatory development for adaptation
to environmental changes is the hypothesis we want to
test. For this reason a two-stage, two-task simulation
setting is used. In the first evolutionary stage, the
organisms are selected according to their performance in a
foraging task (Food Task). The fitness formula
corresponds to the number of foods collected. In the
second evolutionary stage the behavioral task is
complicated by changes in the environment. Dangers are
introduced, together with food (Food&Danger Task). This
task requires that organisms adapt their food approaching
strategy to a new behavioral pattern for approaching only
foods and avoiding dangers (fitness = number of collected
food minus number of touched dangers). To do this,
organisms need to restructure their neural network, for
example by adding or readapting some sensory and
hidden neurons to the new processing needs. The way to
re-adapt the neural network is by modifying its
architecture.

The first stage takes 250 generations to evolve organisms
for the foraging task. After the last generation, the best 33
organisms are selected and reproduce 3 offspring each.
The new population lives in the new environment for
another 250 generations in order to evolve a proper
behavioral strategy for the second task. In each
generation, the organisms are tested for 5 epochs, that is
they live in five environments with different distributions
of food, or food and danger elements. Once an element is
reached, it disappears and the fitness of the organism is
updated. The organism is allowed to make 150 moves per
epoch.

The sensory information for the input layer of the neural
network is the Euclidean distance and the angle of
orientation of the closest food. The angle of orientation is
the absolute angle with respect to the face of the
organism. In the second task, another bit of information is
available to signal the “quality” (food=0, danger=1) of the
perceived element. In order to input the distance,
orientation, and quality of food, the neural network must
develop the specialized type of sensory unit. The type of
input unit is decided during the functional differentiation

that occurs once the cells reach the lower pole of the
developing grid. A similar functional differentiation is
used for the output units, where two types of motoneurons
can develop. The binary pattern of activity of the two
types of motor units will determine one of the four
possible moves: go one cell forward (activations: 1 1),
turn 90 degrees right (0 1) or left (1 0), or do nothing (0
0).

4 RESULTS
To test the robustness of the model a large amount of data
were collected. The experimental plan included the two-
stage two-task simulations plus other tests with different
parameters (e.g., continuous axon growth compared to
discrete growth). In this paper we will concentrate on the
comparison of the two-stage results.

Within the 250 generations of the first evolutionary stage
the probability of evolving successful populations of good
foragers is quite high (p=0.87, 13 out of 15 replications).
By way of example, the left side of the chart on figure 1
(from generation 1 to 250) shows the fitness curves of 3
successful populations. The data refer to the average
performance of the best 20 individuals in each run. The
number of generations necessary to reach an optimal
fitness level is variable, with an average of 128
generations, and a range from 25 to 230. Indeed, in one
simulation the organisms evolved an optimal behavior
after only 25 generations, maintaining this good
performance until the 250th generation.

Figure 1: Fitness curves of 3 sample populations in the
two-stage two-task simulations. The curves refer to the

average fitness of the best 20 organisms in each
population.

The fitness curve is characterized by sudden increases
followed by stable periods. Each fitness jump takes only
one or very few generations. This sudden increase
corresponds to a functional change in the organism’s
behavior and in its neural network. This is a clear case of
punctuated equilibrium (Gould, 1977). The evolutionary
process does not follow a continuous increase in the level
of adaptation to the environment, but it is characterized by
a prolonged period of stable fitness, followed by a sudden
increase in the fitness value. In the genetic algorithms and
neural network literature, this nonlinear, punctuated trend
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is known to be associated with models using an indirect
genotype-phenotype mapping (cfr. Miglino, Nolfi &
Parisi, 1996). The regulatory genome for a biological
development used here is an advanced form of this class
of complex genotype-phenotype mapping.

For the populations subjected to the second stage of
evolution (Food&Danger Task), the probability of
evolving an optimal behavior within the 250 generations
is 0.83 (N=12). Even in this case, we observe sudden
jumps of fitness in the range of one or a few generations
(figure 1, generations 251-500). The average evolutionary
time needed to achieve a significant fitness increase is 90
generations.

The behavior of the evolved organism is optimal in both
evolutionary stages. The Food Task is accomplished very
well, since the good forager organisms are able to reach
all the perceived food elements. In the discriminative
Food&Danger Task of the second stage, the behavioral
performance is also quite optimal. In the 10 simulations,
during the organism's lifetime an average of only 2 danger
elements are touched, versus the collection of an average
of 20 food elements.

5 DISCUSSION
There is a large number of variables that can be monitored
during the gene regulation process and the network
neurogenesis. Moreover, the model is quite complex, and
it implies the co-occurrence and interaction of different
factors (genetic, cellular and environmental). To make the
presentation of the development data and their discussion
and interpretation more effective, we will focus on the
developmental events which occurred during the process
of adaptation between the tasks of the two evolutionary
stages. The organism's neural networks are evolved, in the
first stage, according to their performance in the foraging
behavior. That is, during evolution a developmental
pattern is selected that is able to produce a functional
network. This network should develop at least two
sensory units that can detect the position (angle and
distance) of the food, some motor units for approaching it,
and a pattern of connection including or not a hidden units
pathway. Because of the environmental change during the
second stage, i.e. the introduction of dangers, some
modifications in the neural developmental process will be
necessary. A dramatic solution could be the total
substitution of the already evolved neurogenetic process
with a completely new ontogenesis. But the evolutionary
cost of this operation is too high, since the second task is
related to the foraging behavior. In fact at least some of
the neural structures are still necessary for controlling the
approaching behavior towards the foods. A completely
new development would require rebuilding even this
functional structure. Instead, a more economic solution is
to readapt the already evolved functional development to
the new behavioral demands of the changed environment.
The evolutionary algorithm can be useful to try to evolve
some changes in the development process that will cause
the re-adaptation of the organism's neural network.

We analyzed the distribution of neurogenetic changes that
allowed organisms to successfully restructure and readapt
their neural networks for the new Food&Danger task .
Frequency data in the 10 populations suggest that all
developmental events, except the migration, were
involved to readapt the ontogenesis for coping with new
behavioral requests. The events related to axon growth
and synaptogenesis were the one most frequently used. In
fact even small adjustments of the connectivity pattern
can prove very functional for the evolution of good
networks.

Now we will use a theoretical schema to analyze these
data. In the initial section we have introduced the
Heterochrony theory as a framework for the comparison
of different ontogenies. This framework uses the
evolutionary changes in the ontogenetic development as a
meaningful criterion for classifying the role of the
developmental changes and for analyzing the flux of
interactions regulating ontogenesis. The heterochonic
changes are the changes in the rate, onset, and offset of
growth of single traits. Our model includes a basic
property of the biological system, that is a development at
the cellular level based on a regulatory genome. Therefore
we can use this framework to account for the functional
role of the developmental changes in the neural network's
adaptation to environmental changes. For example, the
distinction between global and local heterochronies can
be used here. It is useful to distinguish the role of the
developmental changes according to the way they affect
the ontogenesis. The global heterochronies include those
changes that affect the very early stages of development,
and whose consequences are significant in all organisms.
For example, a change in the first stage of cell duplication
can have effects on more than one trait or organ. The local
heterochronic changes, instead, act later and affect only a
limited part of the developing system. Global
heterochronic changes were normally non functional
because they resulted in a non-fully connected neural
network. The functional heterochronies that we observed
in the simulation were mainly local, since they affected
only substructures of the neural networks, such as the
input units level, the axon growth process in few units,
late cell divisions, etc... This can be explained by the fact
that the second behavioral task is closely related to the
first, and so the developmental changes that are necessary
for adaptation must be small, i.e. local. In the case in
which environmental changes required the development
of completely new, unrelated neural structures, we would
expect more global phenomena, such as a large addition
of new cells to build different processing pathways.

In the 10 successful two-stage, two-task populations,
different examples of local heterochronic changes were
found. To explain how these heterochronies work, and to
show their adaptive value, we will use few examples. In
the first case (population 6, generation 326 and following)
we have a case of adaptive local Progenesis and
contemporaneous cell-cell induction effect due to spatial
interaction. At generation 326, all the individuals of the
population maintain the strategy of reaching every



element they see, even if the danger elements cause a
fitness decrease. This is because there is no input unit for
the detection of the information of food “quality”
(danger/food). All the cells that reach the lower sensory
row differentiate into detectors of the food’s orientation
angle. A few mutations in the descendant of the best
organism were enough to cause significant changes in
development. In the ancestor, the two sensory cells for the
input of orientation originate from a common founder
cell. In the descendant, this founder cell stops duplicating
at time step 6, leaving two free spots in the sensory area
of the developing grid. This is a case of local Progenesis,
because the offset of the mitotic sequence is anticipated.
At the same time, there is a change in the cell
displacement of other cell duplication branches. In the
upper side of the developmental grid, two new cells,
coming from a different mitosis branch, occupy the space
left free in the sensory area. What happens in the
descendant is that at time step 7 a newly formed cell will
change position moving to the lower row. This new
displacement will induce a dividing cell to place one of its
daughters in the lower input area. Because of these spatial
interactions, the progeny of this cell ends up in the two
spots left free by the Progenesis. These ontogenetic
phenomena are shown more clearly in the morphogenetic
tree in figure 2. The morphogenetic tree is a graphic
representation of a cell duplication tree using the two
dimensions of time and space. It facilitates the
understanding of the developmental events, and their
temporal and spatial interactions (see Arthur, 1984).

Another example of local heterochronic changes is the
rearrangement of the connectivity pattern in a different
population. A prolongation (Hypermorphosis) of one or
more axon trees causes the addition of new connections,
or the linking between distant cells. Instead, an early
offset of the axonal growth (Progenesis), localized in only
few cells, can function as a mechanism of connection
pruning. At generations 309 and 310 of the population 2,
we observed the simultaneous phenomena of local
Hypermorphosis and Progenesis of the axon growth. The
axon starting from two hidden units and one input unit is
longer in the descendant and determines the adding of
new functional connections that were not present in the
ancestor's neural network. At the same time some
connections are pruned in other hidden units. All these
changes are the results of the same few changes in the
regulatory genome.

In later generations of the same population another
interesting example or heterochrony for temporal
interaction during development was found. A change in
the temporal order of the synaptogenesis event caused the
adjustment of some functional connection weights. This
derived by a case of local Predisplacement between the
ancestor's and descendant’s neural developments. During
neurogenesis many events happen simultaneously, such
us the axon growth in different neurons. In our model,
because implementation does not allow parallel execution
of events, it is necessary to find a serial solution. When
developmental events occur in parallel, the units are

ordered according to the amount of the elements involved
in the event regulation. This order is used for the
sequential execution of the events. For example, the
axonal growth at the last time step should be executed in
parallel for each neuron. Therefore the system orders the
cells according to the amount of the axon potentiality
element. The growth of the first axonal segment starts
from the cell with the highest element amount to that with
the lowest level. Then the second axonal segment is
grown using the same order, and so on. The weight of a
connection is a function of the distribution of many
intracellular elements, such as the trophic element in the
cell receiving the synapses (see Table 1). The order in
which an axon reaches the target cell’s body is relevant to
the strength of the connection. Earlier connections will
have higher weight values because of the greater
availability of elements in the two connecting cells. If an
axon reaches a cell after some delay, it has less chance of
establishing a strong connection.

Figure 2: Morphogenetic trees for the neural network
development of the best organism in population 6

(ancestor in generation 326 and descendant in generation
327). See text for explanation.

This is the phenomenon that occurs during generations
326 and 327 of the population 2. In fact, two cells that
connect to the same target neuron switch the order in
which their axon reaches the target unit. The cell that
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connected early in the ancestor’s neural network, in the
descendants’ network will connect later, and therefore its
connection strength is lowered (from -1.47 to -1.43). At
the same time, the cell that in the ancestor's network
connected later, now anticipates the synapse causing a
weight increase (from -1.50 to -1.54). This phenomenon,
the only relevant change occurred in the development of
the two organisms, determines a significant improvement
in the Food&Danger behavior. Because of these weight
changes, the descendant organism is better adapted to the
environment. In fact its fitness increases significantly
because the organism stops before it approaches the
danger elements. In the ancestor it was not able to avoid
reaching the danger. The changes in the temporal order of
the axon growth (Predisplacement of axons) is the
mechanism that explains this significant adaptive change,
and as we explained, it depends on the intracellular
amount of structural elements acting as axon potential.

Among the observed adaptive ontogenetic changes, the
phenomena of the single or multiple connection weight
adjustment, depending on changes in the development
course, are found frequently in the simulations. Another
common developmental change is the differentiation of
some sensory cells from detectors of the element position,
to detectors of the food/danger quality. This is because in
the behavioral task it is essential to evolve and use this
information on the perceived element in order to choose
between the approaching and avoiding strategy.

6 CONCLUSIONS
The simulation results suggest that the model is robust
enough, at least for the class of problems required by the
simulated behavioral tasks. Through genetic algorithm it
is possible to evolve populations of organisms with
optimal task performance. In similar models with
complex genotype-phenotype mapping (e.g. Cangelosi et
al, 1994) the probability of evolving optimal behavior was
much lower. In the present work, even though the model
is based on a regulatory genotype for the control of
complex biological development, functional neural
networks are easily selected and evolved.

Another important conclusion suggested from the analysis
of heterochronic changes, is that the introduction of a
model of biological development based on a regulatory
genome is a good resource for adaptation. Data analyses
showed the adaptive role of mechanisms of neural
plasticity in response to the behavioral requests of a
changing environment. With a classical neural network
training algorithm, such as a back-propagation method, or
even a genetic training method for fixed architectures, the
re-training of a neural network to accomplish new
behavioral requests would require almost a complete re-
initialization of the learning process. The introduction of
development, instead, provides a different approach by
allowing the adaptive mechanisms of ontogenesis to
evolve new functional structures. The introduction of a
flexible model of development could prove useful in
overcoming some of the limitations of current

connectionist models, such as the scaling problem. Here
the quantitative advantage for a developmental-based
model is not immediate or obvious for small-scale
problems, such as the foraging tasks. However is our
feeling is that there could be benefits in larger scale
problems. The resources of developmental mechanisms
could help overcoming some of the limitations of current
neural network models.

Further testing and enhancements of this model could take
different directions. A first approach could be trying out
its suitability for problems of greater complexity. It would
require the use of some analytical method to assess and
quantify the objective advantages of utilizing a
developmental-based model versus fixed-architecture
models. A second direction could regard the simulation of
evolutionary theories and phenomena. The data reported
show the possibility of studying some interesting
heterochrony phenomena. Therefore, the simulation of a
specific and well known example of Heterochrony could
promote a fuller understanding of the evolutionary
mechanisms of natural selection. Moreover, a final
direction could use this simulation method to study
biological development and the mechanisms of gene
regulation.
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