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Abstract

Genetic algorithms have proven to be a pow-
erful tool in solving computationally diÆcult
problems. We present a technique for using
genetic algorithms to learn a domain-speci�c
problem solver. This technique uses a collec-
tion of search-based problem solvers, each us-
ing a di�erent, genetically biased search pro-
cedure. Problem solvers compete in parallel
to show that their search procedure, with its
genetic bias, is the best; faster systems are
permitted to pass their genetics on to the
next generation. We compare two di�erent
techniques for learning based on two basic
policies for evaluating the �tness of a prob-
lem solver. One policy assumes that problem
solvers should be equally good at all prob-
lems. The alternative �tness estimate as-
sumes that a search procedure may be very
good at one kind of problem, but very bad
at other kinds of problems. This paper eval-
uates the e�ectiveness of this learning tech-
nique and compares the two di�erent learning
policies in the domain of nonlinear planning.

1 Introduction

For many computationally hard problems, search is
the only completely reliable means of obtaining a so-
lution. Weak search techniques have the advantage of
being domain-general but often su�er from a combina-
torial explosion in the state space. Strong techniques
can reduce search by exploiting the structure of the do-
main, but successful application of strong techniques
to one class of problems may not help with di�erent
problems. Learning o�ers the possibility of acquiring
the advantages of strong techniques through domain-
general means.

This paper presents a technique for using genetic al-
gorithms to learn how to solve search problems more
quickly. E�ectively, we learn a good problem solver
for some domain of interest. We compare two di�er-
ent policies for evaluating the �tness of a search-based
problem solver. One policy is built around the assump-
tion that a good problem solver should perform well
on all problems in the domain of interest. The alter-
native policy reects the belief that, even in a single
domain, a good problem solver will be better at some
problems than it is at others.

In the following sections, we �rst describe our tech-
nique for using genetic algorithms to learn more e�ec-
tive search procedures. We describe two alternative
policies for measuring the �tness of a search-based
problem solver. We then compare our approach to
related work in applying genetic algorithms to com-
putationally diÆcult problems. We describe an imple-
mentation of our technique in the domain of nonlinear
planning and present empirical results against a suite
of simple planning problems. Finally, we summarize
the most signi�cant results of this work and consider
some open issues that remain to be explored and di-
rections for future research.

2 Learning to be a Better Problem

Solver

We separate the task of learning from the task of prob-
lem solving. Figure 1 illustrates the two-level organi-
zation of our approach. At the domain level, domain-
speci�c search is used to solve some problem of in-
terest. At this level, a pool of di�erent search-based
systems compete in parallel to solve the problem; each
system uses a di�erent search procedure to solve the
same problem. The intent is that problem solvers be
suÆciently di�erent that one will solve the problem
quickly. Individual systems are di�erentiated by their
genetic makeup (their chromosome). The search pro-
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Figure 1: Two-level organization of problem-solving
and learning tasks

cedure for the problem solvers at the domain level is
sensitive to a number of tunable parameters speci�ed
in the chromosome. The problem solver is designed so
that adjusting these parameters may have a substan-
tial e�ect on the search order, but it will not a�ect
search completeness. Learning is a process of re�n-
ing the genetic bias of a problem solver in an e�ort to
reduce search and improve performance.

Learning is handled at the manager level. The man-
ager is responsible for selecting a genetic bias for each
problem solver. As the system is exposed to more
problems, it attempts to re�ne the genetic makeup
of its pool of problem solvers. When a new problem
must be solved, the manager gives each problem solver
a copy of the problem along with a unique chromo-
some. All problem solvers attempt to complete the
problem using their assigned chromosome. Problem
solvers work in parallel, e�ectively trying to show that
their chromosome is better than those of their competi-
tors. As soon as one �nds a solution, it is reported to
the user via the manager. However, the manager per-
mits the remaining solvers to continue to work on the
problem until they �nd a solution or a new problem is
submitted. The solution time for each solver gives the
manager a measure of the �tness for the correspond-
ing chromosomes. Periodically, the manager runs a
simple genetic algorithm[Goldberg, 1989] to produce
a new population of chromosomes.

This two-level organization demonstrates two di�erent
kinds of search occurring concurrently. At the domain
level, problem solvers search through the space of pos-
sible solutions to the target problem. Meanwhile, the
manager performs a search through the space of pos-
sible problem solvers. This separation o�ers a number

of attractive properties.

� As the system is exposed to more problems, its
performance can be expected to improve. Ideally,
the system will learn a good way to solve problems
like the ones it has seen in the past. Thus, even in
a single domain, it may learn a bias that reects
the bias in the kinds of problems that actually
occur.

� Although the problem solvers are domain-speci�c,
the manager is completely domain-general. It re-
�nes the genetic makeup of its problem solvers
without any dependence on the operation of the
solvers or the meaning of their chromosomes.

� Learning does not a�ect the quality of the solu-
tions generated by the problem solvers. Solvers
are implemented so that their genetic bias inu-
ences search order but not search completeness.
Thus, even if the genetic algorithm learns a bad
problem solver, it will never produce an incorrect
solution.

3 Related Work

Genetic algorithms have proven to be an e�ec-
tive tool at solving computationally diÆcult prob-
lems. Perhaps the most common approach is to
use genetic algorithms directly to develop a solu-
tion to some problem of interest. Each chromo-
some in the population can be interpreted as an ap-
proximate solution. An appropriate domain-speci�c
�tness function can be used to discriminate be-
tween better and worse approximations of a solution.
This approach has been used e�ectively in domains
like boolean satis�ability [De Jong and Spears, 1989],
scheduling [Davis, 1985] and the traveling sales-
person problem [Michalewicz, 1992, Jog et al., 1989,
Grefenstette, 1987].

Our approach di�ers from these techniques in that
genetic algorithms are used to synthesize a problem
solver rather than a problem solution. While the chro-
mosome population used by direct methods consists of
approximately correct solutions, the problem solvers
used by our technique are guaranteed to be correct
but exhibit approximately optimal performance. Since
it is possible to tell when an exact solution has been
found, direct methods generally enjoy obvious termi-
nation conditions. Since it may be unclear whether
or not an optimal problem solver even exists, appro-
priate termination conditions for our learning proce-
dure are much less obvious. This lack of a termination



condition is compensated by an obvious, domain inde-
pendent basis for evaluating �tness. Since improved
solution time is always the desired outcome, no sepa-
rate �tness function must be developed.

There is a sense in which our learning technique is
a very restricted example of genetic programming
[Koza, 1992]. Both techniques seek to derive a pro-
gram or program fragment that accomplishes a speci�c
task. Our approach focuses on learning only an e�ec-
tive search order rather than learning an entire prob-
lem solver. Restricting the scope of learning means
that our technique cannot explore the space of all pos-
sible problem solvers. However, this restriction per-
mits guarantees about the correctness of the resulting
problem solvers that would not be possible if all fea-
tures of the problem solver were a product of genetic
programming.

Our policy of re�ning the performance of a search-
based system through parameter adjustment is a com-
mon technique and is reminiscent of such well-known
systems as Samuel's checkers player [Samuel, 1967].
The technique described in this paper takes advan-
tage of the fact that a small change in the search pro-
cedure can have a dramatic inuence on search per-
formance. This phenomenon has been e�ectively ex-
ploited as a basis for competitive parallel search tech-
niques [Ertel, 1990, Hogg and Williams, 1993,
Sturgill and Segre, 1997]. If di�erent search proce-
dures exhibit suÆciently varied performance, it may
be possible to reduce expected solution time by sim-
ply performing multiple, di�erent searches in parallel.
As soon as one one of the searches �nds a solution,
work done by the others can be discarded. The par-
allel operation of problem solvers at the domain level
is intended to exploit this variation in performance
across di�erent search procedures. This variation is
also the basis for our learning mechanism. The hope
is that small re�nements in the search ordering policy
may result in substantial reductions in solution time.

4 Fitness and Search

Search problems represent a special situation in which
to try to learn. While some search-based systems may
be uniformly better than others, there are generally no
uniformly best systems. For every problem instance,
there is a search order that is best. Even a good solver
will be better on some problem instances than it is on
others. Measuring �tness of a chromosome based on its
performance on a single problem instance might give a
poor picture of its overall quality. To compensate, the
manager uses performance of a chromosome across a
number of problem instances as the basis for its �tness.

This variation in performance across problem in-
stances also obscures the question of what kind of
problem solver should be learned; is it more appro-
priate to learn a system that solves many problems
quickly or is it better to learn systems that perform
well on individual problem instances? We address
this question by comparing two contrasting policies
for learning.

� Generalist: Under the generalist policy, a chro-
mosome is assigned a �tness value based on its
total solution time across 10 problems. The in-
tent is that this will foster problem solvers that
are pro�cient on a general population of prob-
lems. Since di�erent problems vary in diÆculty,
summing solution times across multiple problem
instances would give disproportionate signi�cance
to diÆcult and easy instances. To give each prob-
lem instance equal weight in the �tness, solution
time for a problem instance is normalized with re-
spect to the average solution time for that prob-
lem across the rest of the chromosome population.
Thus, in a population of n chromosomes, if ti;j
is the reciprocal of the solution time 1 for chro-
mosome i on problem instance j, the �tness for
chromosome k is given by:

�tnessk =

10X

j=1

n tk;jPn

i=1 ti;j

� Specialist: Under the specialist policy, chromo-
somes are considered good as long as they solve
some problems quickly. Since the only basis of
comparison is their collection of peer chromo-
somes, performance is considered good if it sur-
passes that of peer solvers. Under the specialist
policy, solution times are normalized just as they
are in the generalist case. However, the chromo-
some k is assigned a �tness value according to its
maximum, normalized solution time.

�tnessk =
10

max
j=1

n tk;jPn

i=1 ti;j

Informally, the specialist policy is intended to encour-
age the development of a community of expert problem
solvers, each specialized to solve a particular class of
problem instances. Of course, an ideal problem solver

1Fitness is based on reciprocal solution time so
that greater �tness values will correspond to better
performance.



would be good at all di�erent types of problem in-
stances. However, the two-level learning system de-
scribed in this paper will perform well even if its pool
of problem solvers includes only a few that are suited
to the current problem. When a problem is submitted
to the manager, all problem solvers compete in paral-
lel to solve it. The turnaround time, the time it takes
for the manager to respond with a solution, reects
the performance of the fastest solver working on the
problem. Turnaround time will be low as long as each
generation contains at least one chromosome that is
well-suited to a given problem. We believe that the
specialist learning policy has the potential to reduce
turnaround time by allowing chromosomes to special-
ize on di�erent types of problems.

5 Evaluation

To evaluate the proposed learning technique and to
compare the performance of the alternative �tness
metrics, we have implemented a manager and a search-
based problem solver for STRIPS-style planning. A
plan is a sequence of operators that transforms a given
initial state to some desired goal state. States are
represented as a set of propositions that are true
in the state. Each operator is de�ned by a pre-

condition list (propositions that must be true in or-
der to apply the operator), an add list (propositions
that become true after the operator is applied) and
a delete list (propositions that are no longer true af-
ter the operator is applied). Our problem solver
is modeled after the systematic, nonlinear planner
[McAllester and Rosenblitt, 1991]. Here, a plan is de-
�ned as a partially ordered set of operators rather than
a totally ordered sequence. The partial order among
operators represents two kinds of ordering constraints:

� A causal link from operator a to operator b indi-
cates that a must be applied before b because a is
used to satisfy a precondition � of b.

� If there is a causal link from a to b, and some
operator c has � in its delete list, operator c is
called a threat. If c is applied between a and b, the
preconditions of b may no longer be true when it's
time to apply it. A safety condition is an ordering
constraint that requires operator c to occur either
before a or after b.

Rather than using propositions alone, our planner uses
a lifted representation in which preconditions, add lists
and delete lists may contain variables.

To emable learning, our planner is supplemented with
many search parameters that are speci�ed in a 120-bit

chromosome. The value of this chromosome inuences
the search order in two ways. Conjunctive search or-
der is determined by associating a score with each un-
satis�ed precondition and each potential threat. The
search procedure gives priority to working on those
parts of the plan that have the best score. This score
is a weighted sum based on the answers to the follow-
ing:

� In general, is it better to add causal links or safety
conditions �rst?

� For an unsatis�ed precondition:

{ Does the precondition require addition of a
new operator to the plan?

{ How many di�erent operators are capable of
satisfying the precondition?

{ How many other operators in the plan have
identical preconditions?

{ How many operators in the plan are capable
of deleting this precondition?

{ Is the precondition ground or does it contain
variables?

� For a potential threat, is the threatened precon-
dition ground or does it include variables?

The weighting associated with each of these features
is determined by the chromosome.

Our planner uses a depth-�rst iterative deepening
search procedure. It begins by considering only very
small plans. If no small plans are found, it considers
larger and larger plans. Thus, the set of plans it con-
siders early in the search is determined by its metric
for plan size. This metric is computed as a weighted
sum of the number of operators, the number of unsatis-
�ed preconditions and the number of potential threats.
Again, the signi�cance of each of these features is de-
termined by the chromosome.

We generated a pool of 50 planning problems. All 50
were examples of sliding tile puzzles like the one in
Figure 2. A solution for one of these problems was a
plan for moving a particular tile to a speci�ed desti-
nation. The suite of problems was randomly divided
into 25 training problems and 25 testing problems.
The system was allowed to learn for 45 generations
on the training problems using a population of 100
chromosomes. Performance of these chromosomes was
then evaluated using the 25 testing problems. This
separation between training and testing reects an in-
tent that the system learn more than just shortcuts for
solving the 25 training problems quickly. Ideally, the
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Figure 2: Sample problem for planning domain.

learned search bias will improve performance on the
25 problems in the testing set even though the system
is not permitted to learn from these.

Tests were conducted on a network of workstations
running the Linux operating system. Solvers were run
on a collection of 9 75Mhz Pentium systems and the
manager was run on a 166Mhz Pentium. Since the
manager's population of 100 chromosomes is much
larger than the number of available processors, each
processor was used to run many problem solvers in
sequence.

Problems in both the training and testing sets are
quite varied in diÆculty. To prevent a solver from
spending most of its time on a small number of very
diÆcult problems, search time was limited to two min-
utes for each problem. If a search exceeded this bound,
the problem went unsolved and the threshold value of
120 seconds was optimistically taken as the solution
time for the corresponding chromosome.

Figure 3 presents performance of the planner using the
generalist learning policy. Each line in the �gure plots
the solution time for one of the 25 testing problems.
The vertical axis gives the average solution time in mil-
liseconds over all 100 chromosomes in each generation.
The generation axis presents the performance change
over 45 generations of learning. Observe that, as lines
move in the direction of higher generation numbers,
they tend to drop with respect to average solution
time. This demonstrates how experience on the train-
ing problems generalizes to the improved performance
on many of the testing problems.
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Figure 3: Average solution time over 45 generations of
the generalist learning policy

Seven of the 25 testing problems in Figure 3 are never
solved within the two-minute time limit. These exhibit
no visible performance improvement, but since their
actual solution time is unknown, the e�ectiveness of
learning on these problems is also unknown. All of the
remaining problems show some performance improve-
ment with experience. In fact, some problems that are
unsolved in the �rst generation become solvable with
suÆcient experience.

Figure 4 presents solution times under the specialist
learning policy. This learning system eventually solves
the same 18 problems as those solved within two min-
utes by the generalist system. Although the inuence
of learning appears to be less smooth here, most prob-
lems show signi�cant performance improvement after
45 generations. Some even show more than a 10-fold
reduction in solution time.

Figure 5 compares summary results for learning un-
der both the generalist and specialist policies. Each
line shows average solution time for the 18 problems
that are solved within the time bound. Thus, a line in
this �gure represents the average of many lines from
Figure 3 or Figure 4. The �gure indicates that the spe-
cialist policy does not yield as much performance im-
provement as the generalist policy. Although special-
ist chromosomes perform better in some regions of the
graph, the generalist policy exhibits a distinct advan-
tage after the twentieth generation. It should be noted
that this �gure gives disproportionate weight to the
more diÆcult problems. Performance improvement on
a diÆcult problem will have a greater inuence on the
total solution time than equivalent performance im-
provement on an easy problem. However, even when
solution times are normalized to give equal emphasis
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Figure 4: Average solution time over 45 generations of
the specialist learning policy
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Figure 5: Comparison of average chromosome perfor-
mance in generalist and specialist learning policies

to all problems, the generalist policy demonstrates a
similar advantage.

By presenting the average solution times at each gen-
eration, Figures 3 and 4 focus on the general �tness of
the chromosome population in each generation. This
gives a measure of how much the system is learning,
but it may not be the most appropriate measure of
overall performance improvement. Since performance
on an individual problem depends on turnaround time,
the solution time of the fastest chromosome on each
problem may be a more meaningful measure of learn-
ing. Figure 6 plots the performance of the fastest chro-
mosome on each problem using the generalist learning
policy. Figure 7 gives a similar plot for learning with
the specialist policy. Although these �gures show that
turnaround times are typically much lower than av-
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Figure 6: Turnaround time over 45 generations of the
generalist learning policy
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Figure 7: Turnaround time over 45 generations of the
specialist learning policy

erage solution time, there is still visible performance
improvement in most problems.

Figure 8 gives summary results for Figures 6 and 7.
This �gure plots turnaround time under each polciy
averaged across all 18 solved problems. Observe that,
while the generalist policy showed an advantage in Fig-
ure 5, the specialist policy seems to be the better sys-
tem here. Thus, while the generalist policy seems to
produce a chromosome population that is more �t on
average, the population under specialist learning seems
to contain chromosomes that are better suited to in-
dividual problems.

The higher degree of variation in chromosomes learned
under the specialist policy is demonstrated in Figure 9.
Each point in this �gure represents one of the 18 prob-
lems solved during the testing phase. This �gure plots
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Figure 8: Comparison of turnaround time in generalist
and specialist learning policies
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Figure 9: Comparison between standard deviation in
solution times for specialist and generalist learning
policies after 45 generations of learning

the performance on each problem after 45 generations
of learning. However, instead of plotting actual so-
lution times, the �gure gives the standard deviation
in solution time across all 100 chromosomes. Small
values indicate a high degree of similarity in the popu-
lation, while large values indicate greater variation in
performance from one chromosome to the next. The
X axis plots the standard deviation in solution times
for chromosomes learned under the generalist policy.
The Y axis gives corresponding values for the special-
ist policy. Observe that nearly all points in this graph
lie above the diagonal, indicating that chromosomes
in the specialist population exhibit a higher degree of
performance variation than those in the generalist pop-
ulation.

6 Conclusion

We �nd many results of this work to be encouraging.
Firstly, the search bias learned against a suite of train-
ing problems seems to generalize to improved perfor-
mance on similar problems outside the training set.
We take this as evidence that the system is learning
general properties of the target domain rather than
simply learning to solve a particular set of problems
quickly. Secondly, learning resulted in performance
improvement in the best performance of chromosomes
in each generation and not just the average perfor-
mance. This indicates our technique was able to de-
velop new, better chromosomes, and did not not sim-
ply �lter out the poor ones as it learned. Finally, the
specialist learning policy seems to be e�ective at devel-
oping specialized chromosomes for particular kinds of
problems. Although the overall �tness of chromosomes
learned under the specialist policy is not as high as the
generalist policy, specialist seems better at producing
problem-solving experts.

We recognize one particular weakness with our current
planner implementation. The inuence of the chromo-
some on the search order is rather restricted. Since
the chromosome may inuence search order only by
adjusting the weights on hand-selected search param-
eters, the potential for learning is limited to the op-
timal adjustment of these parameters. We have be-
gun to experiment with more general mechanisms for
introducing a genetic bias into the search procedure.
Although this gives a substantial increase in the chro-
mosome size, we believe that it o�ers greater potential
to tailor system performance to a particular domain
or class of problems.

As work on this parallel learning and problem solv-
ing technique continues, we are implementing problem
solvers for additional domains (e.g. TSP). We are also
investigating alternative learning policies that vary the
order in which training problems are presented and the
order in which di�erent parts of the chromosome are
learned. We hope that the positive results on planning
will carry over to new domains and that re�nement of
the learning mechanism will capture greater potential
for performance improvement.
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