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Abstract

The paper investigates a new Patchwork

model for structured population in evolution-
ary search, where population size may vary.
This model allows control of both popula-
tion diversity and selective pressure, and its
operators are local in scope. Moreover, the
Patchwork model gives a signi�cant ex-
ibility for introducing many additional con-
cepts, like behavioral rules for individuals.
First experiments allowed us to observe some
interesting patterns which emerged during
evolutionary process.

Category: arti�cial life, agents

1 Introduction

In this paper we investigate a new model, which com-
bines properties of the island and di�usion models;
moreover, a structured population of this model may
vary in size. This Patchwork model allows great
exibility in introducing additional concepts, like self-
organized criticality, age of individuals, migration, spe-
ciation, and it can be used for both stationary and
non-stationary environments. The idea of the Patch-
work approach is to introduce biological concepts of
ecology and population biology to evolutionary algo-
rithms. The modeling technique is closely related to
multi-agent systems, where a system is represented by
autonomously interacting entities. One major di�er-
ence between Patchwork model and traditional evo-
lutionary algorithms is the representation of individ-
uals. In the Patchwork model, individuals are rep-
resented as autonomous mobile agents, which live in
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a virtual ecological niche and interact with their en-
vironment through their sensors and motors. Their
decisions are based on local information that they col-
lect with their sensors and their actions solely a�ect
their local environment. Further, each individual has
speci�c properties such as its maximum life span, abil-
ity to breed, (�tness dependent) mortality, and pref-
erences in decision-making. Another important design
feature of the Patchwork model is the spatial struc-
ture of the population, i.e. agents move and interact
in a two-dimensional grid space. Each grid cell (called
a patch) has local spatial properties, such as the max-
imum number of individuals it can carry.

Additional motivation for this work was based on the
observation that the issue of self-adapting values of
parameters of an evolutionary algorithm is one of the
most important and promising areas of research in
evolutionary computation, as it has a potential of ad-
justing the algorithm to the problem while solving the
problem.

The paper is organized as follows. The following sec-
tion discusses briey the related work on population
size and structured population. Section 3 presents
some intuitions behind the new model, whereas sec-
tion 4 de�nes the details of the model. Section 5
provides the implementational details of the simpli-
�ed Patchwork model and gives the results of some
experiments. Section 6 concludes the paper.

2 Related work

Several researchers have investigated the size of pop-
ulation for genetic algorithms from di�erent perspec-
tives. Grefenstette [15] applied a meta-GA to control
parameters of another GA (including populations size
and the selection method). Smith [26] proposed an al-
gorithm which adjusts the population size with respect
to the probability of selection error. Arabas et al. [1]



investigated a genetic algorithm with varying popu-
lation size (GAVaPS); this algorithm introduced the
concept of \age" of a chromosome, which is equivalent
to the number of generations the chromosome stays
\alive". In this approach the age of the chromosome
replaces the concept of selection and, since it depends
on the �tness of the individual, inuences the size of
the population.

As all evolutionary algorithms maintain a population
of solutions, they are parallelizable in a natural way.
As we mentioned in the Introduction, a population of
individuals can be structured in di�erent ways. The
main two categories include the island model, where
several sub-populations evolve in parallel and the dif-
fusion model, where individuals are partitioned across
the processors. Research on these models concentrated
on the speci�c issues which are unique to these mod-
els. For the island model these included number and
sizes of sub-populations, their communication topol-
ogy, number of migrants and epoch lengths (�xed or
variable), migrant selection strategies, etc. For the dif-
fusion models [23] these included techniques for select-
ing parents, recombination techniques, size and shape
of demes, etc. [23].

Note, however, that both the island model and dif-
fusion model assume a �xed size of the population.
In the di�usion model the population size is constant;
most of the research was connected only with sizes of
the neighborhood. In the island model, usually each of
N sub-populations had a �xed number � = M=N in-
dividuals. Of course, in general, each sub-population
may have di�erent size of �i (where

PN
i=1 �i = M).

The migration process may decrease the size of one
sub-population and increase the size of some other
population (thus keeping M constant), but in most
implementations �i's are kept constant (as a new mi-
grant replaces one of existing individuals). However,
the size of the population is one of the most important
choices for the evolutionary search, since it inuences
population diversity and selective pressure. The pro-
posed Patchworkmodel tackles this problem by pro-
viding adaptive population size; it combines the ideas
of island and di�usion models, allowing also introduc-
tion of additional concepts, taken from the research on
multi-agent environments and arti�cial life.

Since Darwins The expression of emotion in man and

animals [8], people have been aware of the major role
emotions play in behaviour. Particularly since Dama-
sios Descartes error [9] people have been aware of the
major role emotions play in decision-making. Natu-
rally there has been much modeling of emotions in
the multi-agent and individual based modeling com-

munities, also much argumentation for the necessity of
emotions for \believable" robots and software agents.
Typical accessible articles with reference to further lit-
erature are [2, 7]. However, today's biologists consider
motivation as the base of decision making [21]. Usu-
ally motivation is de�ned as a composition of shifting
priorities for di�erent behavioral drives.

The other major concept we borrow from the biolog-
ical, multi-agent and individual based modeling com-
munities is that of adaptation to degenerating envi-
ronments. Our individuals adapt by moving to a new
patch in the patchwork (hence the name of the pro-
posed model). Biological individuals have also sev-
eral other mechanisms: hypermutation, changing from
asexual to sexual reproduction [13].

The idea to model the evolution of autonomous agents
in an ecological niche has been introduced in ALife
and ecology. One general purpose approach in AL-
ife is called SWARM [22], which basically consists of
Object C libraries for modelling of arti�cial ecology.
In ecology, so called individual-based models have be-
come very popular in the past years [18]. However,
only very few approaches truly represent individuals
as autonomous agents and mimic evolution [20, 10].

The �nal aspect present in the Patchwork model
is that of self-adaptation. The issue of controlling val-
ues of various parameters of an evolutionary algorithm
is one of the most important and promising areas of
research in evolutionary computation: it has a poten-
tial of adjusting the algorithm to the problem while
solving the problem [11]. The Patchwork model
incorporates some \self-adaptation ideas" [16, 25] as
an agent carries additional chromosomes (apart from
a solution chromosome) which determine its behav-
ioral patterns; the values present in these additional
chromosomes are self-adaptive. The ideas behind the
Patchwork model are discussed in the following sec-
tion of the paper.

3 The idea

In all implementations of di�usion models for evolu-
tionary algorithms there was a one-to-one mapping
between individuals and processors: the number of in-
dividuals is equal to the number of processors (con-
sequently, the population size remains constant at all
times). If the interconnection topology of a di�usion
model is a grid (Fig. 1(a)), a single individual corre-
sponds to each grid cell. In the Patchwork model
(for grid interconnection topology) a variable number
of individuals corresponds to each grid location (Fig.
1(b)).
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Figure 1: A grid interconnection topology in classical
di�usion models (a) and in the Patchwork model (b)

This simple modi�cation triggers many consequences.
First of all, on each grid location we may have zero,
one, or more (up to �) individuals; thus the size of the
population is variable with maximum value of �g2 (for
a grid g � g). Second, the model can be considered
as a special version of the island model, where each
sub-population occupies one grid location: additional
rules would de�ne migration policies (from one grid
location to another). These rules would imply �xed
interconnection topology with adaptive ow of indi-
viduals between grid cells, which de�nes where and
when an individual would move. Additionally, in con-
trast with the island model, some sub-populations can
stay empty for some number of generations. Third,
due to a clear structure of the whole population, the
model borrows heavily from the di�usion model: the
metric of the grid plays important part in various ac-
tions of the population. However, in contrast to other
di�usion models, an individual can migrate from one
location of a grid to some other location.

The main aspect of the Patchwork model is, how-
ever, that each individual is modeled as a mobile agent
that act in a two-dimensional virtual world. These mo-
bile agents are extended by a set of adaptive behav-
ioral rules; they interact with each other only within
grid cells. These rules determine the actions of in-
dividuals; e.g., their desire to reproduce or migrate.
Each individual makes a bid for its desired action; the
action may or may not take place. In other words,
the concurrent events are handled by a two step pro-
cess: �rst, agents make decisions and schedule actions;
and second, the simulation shell executes the scheduled
actions and resolves temporal conicts. For instance,
when agents within the same grid cell decided to mate,
their intention is �rst scheduled, but not immediately
executed. Here, a bid for reproduction might be unsuc-
cessful because of lack of a partner or because there is
no room for an o�spring; even if o�spring is produced,
it may not be competitive enough to be included in

the population. Similarly, a bid for migration might
be unsuccessful due to bids of other individuals and/or
over-crowding.

4 The model

Each individual (agent) in the population consists of
two parts: its genome and so-called motivation net-

work. Its genome is represented as a set of three chro-
mosomes: (1) solution chromosome, (2) chromosome
of standard deviations, and (3) chromosome of param-
eters. The solution vector ~x is used for calculating the
�tness of the agent; we assume the existence of an ob-
jective function: eval(x1; : : : ; xn)! IR and the �tness
F of an agent depends only on eval. The �tness func-
tion F takes values from the range [0; 1]; the higher the
�tness, the better the agent. The second vector ~� is a
vector of standard deviations: mutations are realized
by replacing ~x by ~xt+1 = ~xt +N(0; ~�), where N(0; ~�)
is a vector of independent random Gaussian numbers
with a mean of zero and standard deviations ~�. The
third vector ~p plays important part in the motivation
network of an agent. A motivation network (which
mimics the decision-making process of animals) [19]
consists of (i) a set of mapping functions fi, (ii) a set
of operations opi, (iii) motivation variables mvj , (iv)
a decision-maker, and (v) behavior patterns bpk (Fig.
2).

There is a set ~f of prede�ned functions fj (1 � j � q);
these functions (so-called mapping functions) are used
for determining the behavior of the agent (more pre-
cisely, they de�ne so-called motivation variables of the
agent). Each of the function fi takes up to s pa-
rameters (the values of these parameters are given in
the vector ~p = (p1; : : : ; ps)) plus an additional input
I (the input I may include the values taken from
the agent's sensors, internal state of the agent, etc).
Thus fj(p1; : : : ; psj ; I)! [0; 1], for j = 1; : : : ; q, where
sj � s. Motivation variable mvi is de�ned by an op-
eration opi applied to a subset of functions fj 's.

In general, at each time step, the network receives in-
formation from the input variables, i.e., stimuli from
sensors and internal states, which is mapped to the mo-
tivation variables (these input variables are included in
I). Note that there is a many-to-many relationship be-
tween mapping functions fi and motivation variables
mvj . The value of each motivation variable ranges
from 0.0 (no motivation) to 1.0 (maximum motiva-
tion) and is given by one or more mapping functions,
which are speci�ed by a subset of the agent's genes.
Finally, the decision-maker determines and schedules
a behavior pattern according to the motivation vari-



able with the presently highest value. In other words,
a motivation network selects an action from a behav-
ioral repertoire (e.g., mating, moving, �gthing, etc).

An agent interacts with its environment in the fol-
lowing way: Behavioral genes ~p together with input
variables I determine the values of mapping functions
fi's, which, in turn, de�ne the values of motivation
variables mvj . Then a decision maker selects a behav-
ior pattern bpk (see Fig. 2), which may or may not be
executed (a decision is made during the conict reso-
lution stage on the basis of the agent's �tness).
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Figure 2: The structure of a motivation network.
Motivation variables mvi are de�ned by an opera-
tion opi applied to a subset of mapping functions
f1(~p; I); : : : ; fq(~p; I); a \decision maker" selects one
of these variables as a \behavior pattern"

The outline of the control structure of the Patch-

work model is given in Fig. 3. The Patchwork
model maintains a population of agents, P (t) =
fa1; : : : ; an(t)g for iteration t. Each agent represents
a potential solution to the problem (in terms of its so-
lution vector ~x, which determines also some measure
of its \�tness"). Each agent has a speci�c location
(x; y) on the grid. A new population (iteration t+ 1)
is formed by following a sequence of steps. First, a
behavior pattern for each agent is determined by its
motivation network. Second, for each grid location,
each behavior pattern is considered in turn (the order
of behavior patterns is �x and remains the same for
the whole process). The conict-resolution procedure
selects more �t agents for performing their desired ac-
tion. For example, if two agents desire to move to a
particular location (which can accommodate only one
new agent), the �tter one is selected. Then, for each

procedure Patchwork Model
begin

t 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t t+ 1
for all agents in the population do

determine agent's behavior pattern
for each grid location (x; y) do

for each behavior's pattern bpi do
resolve conicts
for each agent at (x; y) with bpi do

perform action
remove agents who died from P (t)
evaluate P (t)

end

end

Figure 3: The structure of the Patchwork model
evolutionary algorithm

agent within the grid location with the same behavior
pattern, an appropriate action is performed. For ex-
ample, the behavior pattern of \mating" would trigger
a speci�c sequence of actions (selection of a partner,
application of variation operators|crossover and mu-
tation, placement of an o�spring in this grid location,
if possible), whereas the pattern of \moving" triggers
some other sequence of actions (determination of di-
rection of the move and move itself, if possible). Note
that in the Patchwork model, the central compo-
nent of any evolutionary algorithm, the selection pro-
cess, is hidden here in the \resolve conicts" and \per-
form action" components, as all decisions whether an
agent makes a successful action (e.g., mating or mov-
ing) are resolved there.

Note that the order of behaviors' patterns in the loop
\for each behavior's pattern bpi do" is important.
Due to the conict resolution module, the develop-
ment of the population depends on whether the be-
havior \moving" is considered before or after \mat-
ing", as new immigrants (or new o�spring) can take
last available slots in a grid location.

The reproductive success of an agent is another im-
portant aspect of the model. It is crucially a�ected by
its probability of survival (i) as an adult and (ii) as
a juvenile. Adult agents die either when they reach a
maximal age (age) or earlier, with a probability in re-
spect to their speci�c mortality m (death rate), which
is negatively correlated with their �tness. This de-



sign corresponds to natural selection in real biology.
However, the precise design of the correlation model is
crucial. In fact, it could happen that the population
either might crash and get extinct (too high mortal-
ity) or would quickly become very crowded (too low
mortality). So, how do we determine an appropriate
mapping from �tness to mortality? In nature, popu-
lations expand until they reach the carrying capacity
of their environment, i.e., the maximum number of
individuals that can survive in a certain area due to
limitation of resources or increase of predators or para-
sites. For instance, the maximal population density of
predators is food constrained by the number of avail-
able prey items. Thus, natural systems are able to
auto-regulate mortality by density dependent factors.
However, this mechanism works only when ecosystems
are close to an equilibrium. Rapid changes of the envi-
ronment can signi�cantly reduce or enhance the mean
�tness of a species and might either lead to extinction
or population explosion. One solution for this prob-
lem can be found in analytical models of constrained
population growth. For example, mortality might be
population density dependent: m = pop size=�g2, i.e.,
the ratio of the current population size and the maxi-
mal population size.

On the other hand, the mortality of juveniles is deter-
mined as follows. During mating, agents are grouped
as parents according to their �tness. After recombi-
nation of the parental genes, o�spring is introduced to
the local grid cell. Each couple is allowed to produce
a �xed number of o�spring. Afterwards, we rank all
new local juveniles according to their �tness and kept
as many of the best as there is space left.

5 Experiments with a simpli�ed

model

In this section we describe (1) some implementational
details of a simpli�ed Patchwork model, and (2) the
results of some experiments performed on two land-
scapes.

In all experiments reported in this paper the following
assumptions were made: (1) the size of the grid struc-
ture is 9� 9, i.e., g = 9, (2) the maximum number of
agents per grid location is 14, i.e., � = 14. Thus the
maximum number of agents in the whole environment
is 14�81 = 1134, however, the population was initial-
ized with 200 agents, (3) the number of variables of
solution vector ~x is 2, i.e., n = 2, (4) the vector of stan-
dard deviations ~� is removed; Gausian mutation was
applied with an initial standard deviation of 4, which
linearly declined to 0.001 after 600 simulation time

steps (as opposed to self-adaptive value), (5) the pa-
rameter vector ~p is either empty (�rst experiment) or
it consists of a single parameter (second experiment);
in the latter case it takes a random value from [0; 5],
(6) the set of input variables I for an agent a consists
of one variable y (i.e., I = fyg); its value is equal to
the number of other agents present in the same grid
location as the agent a. Thus 0 � y � � � 1 = 13,
(7) the maximum age of an agent is 4 generations, i.e.,
age = 4, (8) there are two motivation variables only:
mating and moving, (9) the order of behavior patterns
is �xed: the behavior \mating" is considered before
\moving", (10) the mortality rate m is the average of
two measures: m = (m1 +m2)=2, where m1 is deter-
mined by the �tness (i.e., the value of the objective

function) of the agent: m1 = M�F (~x)
M

, where M is
the maximum objective value and m2 is determined

by population density at time t: m2 =
pop size(t)

��g2
, (11)

mating and reproduction occurs only within the lo-
cal environments, i.e., the grid cells. An agent that
decided to mate has reproductive success if (i) it can
�nd a mate, (ii) there is space for more individuals in
its grid cell, and (iii) its o�spring has a higher �tness
compared to o�spring of other agents from the same
space. Mating agents recombined their genetic code
by standard operators: 1-point crossover and Gaus-
sian mutation, (12) the decision to move results in a
movement to a neighbored cell. Moving directions are
initially random, but are gradually changed by a small
random angle (in the current version, from the range
(��=4; �=4)) before an agent moves, (13) the move-
ments are not performed when agents try to cross the
boundary of the virtual world (however, it would be
straightforward to modify this by assuming toroidal
grid structure).

In this simpli�ed version of the Patchwork model,
the motivation network was �xed for all agents. There
are two prede�ned functions (see Fig. 2):

f1(y) = maxf0;minf1; ygg, and
f2(p1; y) = maxf0;minf1; 1� p1 � y=�gg.

The values of motivation variables were determined as

mvmate = minff1(y); f2(p1; y)g, and
mvmove = 1�minff1(y); f2(p1; y)g.

Thus, the motivation of an agent to mate is 1, when
one other agent is in the same local patch, and drops
linearly with the number of local neighbours. When
no local agents are present, the motivation to mate is
zero.

In each patch, the number of potential o�spring was



equal to the number of local agents. Agents with a
higher �tness had proportionally more matings. The
best o�spring were inserted in available positions (if
any) in the grid. All runs were made for 1000 time
steps. The results presented in section 5.1 are mean
values of 50 repeated runs per experiment.

5.1 Results

We have tested the performance of a simpli�ed Patch-
work model on two landscapes. In each of these sce-
narios, agent's behaviour was either (i) prespeci�ed or
(ii) included a self-adaptive component.

It is interesting to investigate the relationship between
values of motivation variables during a run: at di�er-
ent stages of evolutionary process, an agent may have
better motivation to mate or to move. Figure 4 shows
a characteristic shift of an agent's motivational state
from mating to moving at time t = 26 due to a change
from a small number to a large number of other agents
at the grid location of the agent.
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Figure 4: The values of motivation variables for mov-
ing and mating at time t 2 [25; 32]

Figure 5 shows our �rst test function:

eval1(x1; x2) = (50�jx1�50j+40sin( 5
18�x1))

+(50� jx2 � 50j+ 40sin( 5
18�x2)),

where 0 � xi � 100 for i = 1; 2. Its global maximum
value of 175.63284 is at (x1; x2) = (52:167; 52:167).

The Patchwork model with prespeci�ed agent be-
haviour reached the �tness optimum 175.63284 after
614 time steps (Fig. 6). The population size was stable
(around 500 agents, i.e., less than 50% of the allowed
maximum population size (Fig. 7)).

The model with self-adaptive behaviour was of com-
parable quality, but operated with a higher mean pop-
ulation size. During the run, the gene p1 controlling
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Figure 5: The landscape of objective function eval1
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the slope of the motivation level function for mating
decreased from a mean of 2.50 at t = 0, to 0.73 at
t = 100, to 0.59 at t = 1000. This change inuenced
the distribution of values of motivation variables for
di�erent number of neighbors. Hence, agents tried
to mate more frequently towards the end of the runs.
This e�ect is also visible in Fig. 8, which shows a se-
ries of close-up views to the arena of the patchwork
at di�erent simulation times for agents with evolving
decision-making. In the beginning, agents explored the
arena (�lled circles). After a while, most patches are
occupied by agents. Finally, agents mainly preferred
to mate (small rectangles) instead of moving (circles).

t = 5t = 0

t = 200 t = 1000

Figure 8: The arena at di�erent time steps. Small cir-
cles indicate o�spring, large circles { moving adults,
squares { mating adults. Agent brightness corresponds
to �tness, i.e., the darker the color the higher the �t-
ness

Another test-function was the Scha�er's function F6:

eval2(x1; x2) = 0:5 +
sin2
p
x2
1
+x2

2
�0:5

[1:0+0:001(x2
1
+x2

2
)]2
,

where �100 � xi � 100 (Fig. 9). This function has a
global minimum value of 0 at (x1; x2) = (0; 0).

Here, optimisation process took longer, but got close
to the optimum at t = 120 for the �xed behaviour
case (Fig. 10) and at t = 200 for the self-adaptive
behaviour case. In both cases, population sizes stayed
stable (Fig. 11). As in the previous case, agents pre-
ferred to mate more frequently as simulation time in-
creased, though not as much as for test-function eval1.
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6 Conclusions

The experiments demonstrated that the system con-
verges to the optimum (on selected two landscapes);
during the run it \controls" its population size. It
would be interesting to investigate further signi�cance
of various parameters of the model, e.g., the inuence
of mortality rate m on the results, etc. Also, the next
version of the model would include motivation network
with self-adaptive components at all levels; this version
should be also useful for non-stationary environments.

Further, the proposed Patchwork model generalizes
previously proposed models for parallel implementa-
tions of EAs. Additionally, an agent in this model con-
sists of two parts (genome and motivation network),
which allow (1) exploration of self-adaptive capabili-
ties of an agent and (2) investigation on behavior pat-
terns of the agents. As a side e�ect, the population
size varies during the run. The model could be used
to investigate the e�ect of additional sensors and be-
havior patterns. For instance, \moving" is bene�cial
when (i) no mates are available or (ii) the available
space for breeding is very limited. Interestingly, the
encounter of individuals with a high �tness had di�er-
ent e�ects. An individual with a high �tness should
stay, because it is competitive enough to mate with
another individual of high �tness. On the other hand,
an individual with a low �tness should stay only if the
local population density is very low. An appropriate
behavior would require a sensor which could perceive
the �tness of other individuals.
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