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Abstract

Aircraft 
ight challenges both human pilots
and arti�cial (auto-) pilots. Aircraft ma-
neuvering supplies a rich and complex task
for machine learning. A rudimentary 
ight
test maneuvering agent (FTMA) possesses
the potential to be moved from aircraft to
aircraft in a robust but general manner. This
study presents an FTMA, whose adaptive
qualities are tested in two, NASA developed,
hi-�delity 
ight simulations|the X-31A En-
hanced Fighter Maneuverability Demonstra-
tor and the F-106 Delta Dart. These two air-
craft possess dramatically di�erent dynamics
and control laws. The agent approach con-
tributes generality of interface and adapta-
tion to this complex problem.

Keywords: adaptive behavior, aircraft maneuver-
ing, arti�cial neural networks, genetic algorithms, hy-
brid intelligent models, intelligent agents, reinforce-
ment learning

1 Introduction

Aircraft maneuvers help aerospace engineers rate air-
craft performance and identify potential hazards. Ma-
neuver autopilots have been designed to improve the
quality and repeatability of dynamic maneuvers, but
these autopilots augment the aircraft's control laws.
Hence, a general maneuver autopilot, that may be
moved from aircraft to aircraft is not possible due to
the tight coupling of the autopilot to the aircraft's dy-
namics.

Machine learning may �ll the role of maneuver autopi-
lot in initial simulation studies. This o�ers 
exibility,
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in that the agent may then be moved to another air-
craft type and retrained. The agent presented here
learns a maneuver policy for the rudimentary task of
starting from one 
ight condition (a set altitude and
speed) and transitioning to another 
ight condition.
While a relatively mundane task, climbing to a pre-
set altitude and accelerating can be counterproductive
tasks. This simple test proves quite challenging and
shows the complexity of maneuvering in the 
ight en-
vironment.

Previous aircraft studies using genetic algorithms
(GAs) employed simpli�ed models of the aircraft's dy-
namics (Smith & Dike, 1995; Stroud, 1998). These
studies proved bene�cial in evaluating combat strate-
gies, but to serve 
ight test, fully 
ight veri�ed models
need consideration. Ryan (1995) evolved stick trajec-
tories o�-line to seek out the ways the X-31A might
depart from controlled 
ight. This work used the hi-
�delity X-31A simulation developed by NASA's Hugh
L. Dryden Flight Research Center at Edwards Air
Force Base, California. Simulations, like the X-31A,
model the aircraft's aerodynamics, control laws, en-
gines, equations of motion, etc. (Norlin, 1995). Us-
ing Dryden's hi-�delity 
ight simulations, an agent-
based approach to maneuvering is studied. This en-
vironment, composed of six degrees-of-freedom (three
translational, three rotational), allows motion in three
dimensions with multiple hazards, e.g., crashing or de-
parting from controlled 
ight.

Building an agent to work in such as hostile and highly-
dimensioned environment presents many challenges.
The adopted design doctrine chooses to hybridize re-
inforcement learning (RL), arti�cial neural networks
(ANNs), and genetic algorithms (GAs).



2 An Arti�cial Chuck Yeager: The

FTMA

Intelligent behavior may be described as a two-part
process of predicting and acting (Fogel et al., 1966).
The agent predicts long-term cost with a genetics-
based arti�cial neural network (Smith & Cribbs,
1996b). The prediction of long-term cost re
ects a de-
sire to minimize the sum of future (discounted) costs
incurred by the agent. Bellman's equation,

V (xt) = rt + 
 � V (xt+1);

expresses the sum of discounted future costs given the
current state. This sum of future cost is commonly
referred to as value. This study uses Q-values, i.e., an
extension of value relating long-term expected cost as a
function of a given state and a speci�c action (Watkins
& Dayan, 1992),

Q(xt; at) = r(xt; at) + 
 max
8a2A

Q(xt+1; at+1):

Here, the feedback signal from the environment,
r(xt; at); is maximized. This follows the assumption
that feedback is reward-based. For cost, one simply
changes the maximum operator to a minimum opera-
tor, or simply expresses cost as negative reward. The
latter representation is adopted for this study. For no-
tational convenience, the quantities r(xt; at); Q(xt; at)
and Q(xt+1; at+1) shall be referred to as rt; Qt; and
Qt+1 respectively.

In complex environments, the possibility of previously
unseen states is a distinct possibility. To accommodate
unseen states, the agent needs a mechanism to gener-
alize from past experience. This study uses an ANN
to perform its predictions due to the ANN's general-
ization properties. The ANN approximates Q-values
given the current state. The outputs of the ANN are
Q-values|one for each action. The aircraft's state
variables are:

� Longitudinal: longitudinal stick de
ection
(�LONG); Angle-of-Attack (AOA), attitude (�);
pitching rate (q), forward velocity (U); throttle
position (�THR);Mach number (M); altitude (H);
climb rate ( _H); and

� Lateral-directional: Lateral stick de
ection
(�LAT ); roll rate (p), bank angle (�); Angle-of-
Sideslip (AOS), heading angle (	); yaw rate (r),
and rudder pedal de
ection (�RP ):

This information describes the motion and cockpit
state of the aircraft. Available in virtually any air-
craft, these variables with an additional constant in-
put of �1:0 compose the input vector to the ANN. To

Table 1: Simple action tableau: Longitudinal control
only.

Action ��LAT ��LONG ��RP ��THR
0 0 0:5% 0 0
1 0 �0:5% 0 0
2 0 0 0 0:5%
3 0 0 0 �0:5%
4a 0 0 0 0

aThis serves as the \no operation" action.

keep the inputs as well conditioned as possible all the
variables listed above are scaled to the range [�1;+1]:

The ANN re�nes its predictions through backpropa-
gation of the Bellman residual,

�wt = � �

�
rt + 
 max

8a2A
Qt+1 �Qt

�
| {z }

Bellman Residual

�rwQt;

where rt denotes the immediate reward at step t; Qt+1

denotes the Q-value for the next step, t + 1; and Qt

denotes the Q-value for the action executed at step t

(Rumelhart et al., 1986; Watkins & Dayan, 1992).

Q(�) represents a hybrid of the method presented
above. Q(�) modi�es the Q-values to consider tem-
poral di�erences greater than one step ahead, i.e, not
only 
maxQt+1 but 
maxQt+1:::


nmaxQt+n (Peng
& Williams, 1996),

�wt = �

� �
rt + 
 max

8a2A
Qt+1 �Qt

�
� rwQt

+

�
rt + 
 max

8a2A
Qt+1 � max

8a2A
Qt

�

�

t�1X
k=0

(
�)t�krwQk

#
:

The second term in this equation forms a weight up-
date in the gradient direction of the maximumQ-value.
This is sometimes referred to as an on-policy update,
since the desired goal of these methods are to exploit
the maximum Q-values for each time step. Q(�) has
been shown to accelerate learning in many instances
(Peng & Williams, 1996).

The agent interacts with the aircraft by manipulat-
ing the cockpit controls, i.e., stick and throttle. The
FTMA modi�es the aircraft controls at 0.1 second
intervals (10Hz). The agent's actions increment or
decrement the position of each control by a set per-
centage of the full range of the control. These per-
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Figure 1: Agent architecture. Note, for simplicity, the
agent depicted uses only three state variables and three
actions (Q-values). The agent described in the text
possesses 17 state variables and �ve actions (Q-values).

centages compose the agent's action tableau. Table 1
shows the action tableau used in this study.

A simple action selection procedure, �-greedy, chooses
actions from the agent's action tableau based on the
Q-values (Sutton & Barto, 1998). This method selects
the action possessing the highest Q-value uniformly,
with probability 1� �: The probability, �; controls the
evaluation of alternative actions (exploration) instead
of the highest Q-value.

Figure 1 depicts a the agent architecture. The order
of execution for the agent is:

1. scaled state information and feedback from the
last action are received from the aircraft,

2. ANN evaluates the state (producing Q-values),

3. all state, feedback, and Q-value information is
stored in the history bu�er for training at end
of trial,

4. action is selected via �-greedy selection and Q-
values, and

5. the action sent to the aircraft.

This sequence is executed for each step in a trial. At
the end of the trial the sequence is replayed in reverse
order to facilitate training via Q(�).

2.1 Why the GA?

Whitehead and Choate (1996) point out that cov-
erage of an entire, high-dimension space, by regu-
larly spaced radial bases succumbs to the curse-of-

dimensionality (Albus, 1975; Bellman, 1961). To com-
bat the \curse," Whitehead and Choate suggest GA
manipulated bases. GA-based classi�cation also oc-
curs in studies involving RL and boolean classi�ca-
tion (Smith & Cribbs, 1996c; Wilson, 1990). Regular
spaced grids over multiple dimensions have been sug-
gested in many applications (Sutton & Barto, 1998),
but again regular coverage of large spaces may prove
impractical.

GA-based input selection allows the topology of the
ANN to adapt based on some form of correlation to the
networks performance. Hence, learning and evolution
are tied together allowing learning to �ne tune weights
while the GA selects connections.

The GA selects unique input subsets, which dynami-
cally shapes the ANN to aid its predictions (Smith &
Cribbs, 1996b). The FTMA di�ers from Smith and
Cribbs' (1996a; 1996b) architecture, where the input-
to-hidden layer weights are �xed at �1; 0; or + 1; in
favor of two-layers of tunable weights with the GA se-
lecting input variables. A modi�ed version of Smith
and Cribbs (1996b) �tness function is used here. Fit-
ness is determined by,

fi = Di � [�i(x) + (1� �) + �i(x) � (1� �)] :

This measure correlates each hidden layer node's �ring
state to the ANN's overall accuracy. Each hidden layer
node is an individual in the GA population. Thus �j
denotes the jth node's �ring state where,

�j =

�
0; fj(x) � 0
1; fj(x) > 0

:

The function, fj(�), denotes the output value of
hidden-node j: The ANN's prediction accuracy, (1��)
is derived from,

� =

����rt + 
max8a2AQt+1 �Qt

rt + 
max8a2AQt+1

���� :
Di represents the node's decisiveness rating which cor-
responds to the variance of a given node's output
weights normalized by the largest output weight vari-
ance in the hidden layer. Through Di individual fea-
tures that relate to speci�c action, i.e., connections
that bias few outputs, are favored due to the desire for
a set of distinct feature detectors to base predictions.
This caveat could be handled by either evolving the
output connectivity along with the input connectivity
or by working out an arbitrary connectivity scheme.
The Di method avoids complex issues due to the pos-
sibility of recurrent connections in the arbitrary con-
nectivity case, and avoids long genomes which could
drastically a�ect the GA's search e�ciency.



Table 2: Agent architecture summary.

Component Description

RL Method Q(�) as de�ned in Rummery & Niranjan (1994) and
backward replay (Lin, 1991).
� Discount Parameter, 
 = 0:99

� Trace Decay Parameter, � = 0:7

Predictive Engine Genetics-based ANN:
� Multi-layer Feedforward ANN composed of bipolar sigmoidal
activation neurons in the hidden layer and linear sum output
neurons.

{ Each neuron possesses unique input connectivity similar
to macro-classi�ers (Wilson, 1994).

{ Learning Rate, � (varies with Aircraft)

{ Momentum Parameter, �m = 0:8

� Steady-State GA using 10% of population:

{ Tournament Selection (tourney size 2),

{ two-point crossover (pc = 0:9),

{ point mutation (pm = 0:01),

{ deterministic replacement of worst individual(s).

Action Selection �-greedy action selection (� = 0:1)

3 The Problem: Capture Altitude

and Mach Number

The agent's assignment is to learn to maneuver the
aircraft from level 
ight at 8000 feet and a 0.6 Mach
number to 10,000 feet and a 0.65 Mach number. This
sort of maneuver takes place numerous times during

ight test and is generally used for staging more com-
plex maneuvers.

To accomplish this task the agent receives feedback
from the environment in the form of immediate cost.
The cost function uses a distance to target scheme for
both altitude and Mach number. The functional,

rt = GH �

����H �H�

Htol

����+GM �

����M �M�

Mtol

���� ;

depicts the immediate cost. The gain terms, GH and
GM ; bias the distance to weight the two goals. Addi-
tionally, the tolerances, Htol and Mtol; provide a sen-
sitivity bias. Table 3 speci�es the values used here.

Table 3: Cost function parameters. Note that the gain
factor sign re
ects cost (negative reward).

Parameter Value

Desired Altitude, H� 10,000 feet
Altitude Tolerance, Htol 100 feet
Altitude Gain, GH {8

Desired Mach Number, M� 0.65
Mach Number Tolerance, Mtol 0.001
Mach Number Gain, GM {16

4 Results and Discussion

Training the FTMA involves repeatedly subjecting the
agent to the aircraft. In each trial the FTMA maneu-
vers the craft until either the end of the trial (120 sec-
onds) or until the aircraft crashes or departs. Training
parameter sensitivity de�nitely factors into the move
from aircraft to aircraft. For the purposes of this
study, the Q(�) parameters were �xed. Table 2 sum-
marizes the values used. The only value changed was
the ANN learning rate, which was � = 0:009 for the



X-31A, and � = 0:008 for the F-106.

4.1 X-31A Behavior

Training the X-31 FTMA for 1495 simulated 
ights
produced an agent with prediction accuracy of approx-
imately 70%: Figure 2 shows the learning curve in ab-
solute, mean relative error for each trial. Figure 2 also
shows the number of steps the FTMA takes in each
trial. During Evaluation the exploration probability, �;
is set to zero, i.e., pure exploitation. The X-31 FTMA
was evaluated in trials 1495 through trial 1500.

Figure 3 shows an interesting behavior observed near
the end of training. The agent noses the aircraft to-
wards the ground to increase speed. The agent then
uses the added speed to \zoom" skyward. With ad-
ditional thrust (more throttle, see Figure 4) the agent
begins an oscillation that takes it through the altitude
goal, but overshoots the altitude goal. Interestingly
the Mach number goal occurs several times in the ma-
neuver.

Evaluation revealed an FTMA that uses a \pure stick"
control policy. Figure 5 shows the control trajecto-
ries that produced in an evaluation trial of the X-31A.
Figure 6 shows the X-31 FTMA passing through the
altitude goal 4 times and an oscillating Mach number.

4.2 F-106 Behavior

Training the F-106 FTMA produced a 75% accurate
agent. Unlike the X-31 FTMA, all evaluation trials

ew the allotted 120 seconds. Figure 7 shows the
training history of the F-106 experiment. As in the X-
31 experiment, the F-106 FTMA was trained in 1495
simulated 
ights. Exploratory steps (during training)
occurred with probability � = 0:1:

Trial 1493 (Figure 9) characterizes the F-106 FTMA
during the last stages of training. The agent achieves
the altitude goal near step 1200 (the end of the trial).
The Mach number behavior is oscillatory, but upon
examination of the graph's scale the oscillations are
bounded between 0:54 Mach and 0:6 Mach. In light of
non-zero exploration (this is a training trial), the be-
havior is encouraging due to small oscillation in Mach
number and the trend toward the altitude goal.

Evaluation shows the same trend toward the altitude
goal and stabilized Mach number at approximately
0:56 Mach. The similarity in behavior both during
training (Figure 9) and in evaluation (Figure 10) show
the FTMA to use predominantly longitudinal stick
combined with minor throttle adjustments. Figure 10
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Figure 2: X-31A FTMA performance metrics. The
upper graph relates the absolute mean relative error
during training. The lower graph shows the number
of steps (decisions) the agent made in each trial. The
thick black line in the lower graph is the windowed
average of the last 25 trials.
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Figure 3: X-31A altitude and Mach number behavior
near end of training.
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Figure 4: X-31A longitudinal stick and throttle lever
position near the end of training.
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Figure 5: X-31A longitudinal stick and throttle lever
position during an evaluation trial.
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Figure 6: X-31A altitude and Mach number behavior
during the evaluation.
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Figure 8: F-106 FTMA altitude and Mach number
behavior near the end of training.
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Figure 9: F-106 FTMA altitude and Mach number
behavior during an evaluation trial.
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Figure 10: F-106 control trajectories during evalua-
tion.



shows the control trajectories during evaluation (trial
1497). The max frequency oscillation in controls relate
back to the �xed increment/decrement action scheme
adopted in this study.

5 Conclusions and Future Work

The basic FTMA discussed here provides some adap-
tive qualities to aircraft maneuvering. While an initial
investigation into genetics-based agents for 
ight test,
the potential to move from one aircraft to another in a
general way has great potential. The agent described
here found several unique departures, mainly dealing
the simulations' look-up tables.

The FTMA shows an ability to work with the dy-
namics of di�erent aircraft. The 32,000 pound, F-106,
weighs roughly twice that of the X-31. The additional
mass most likely contributes to the more stable behav-
ior of the F-106 FTMA. This stems from the additional
mass reducing the overall agility of the aircraft. Also
the control laws and control surfaces dramatically dif-
fer in each aircraft. The varying policies adopted in
each of the simulations show that the FTMA adapts
to its aircraft and its assigned goals.

The linear cost functional used embodies a simple
distance-to-goal method. The overshoot of the goals
prevalent in both simulations suggest that an integra-
tive cost function, or a cost function that considers
the momentum characteristics of aircraft, may provide
better information to the FTMA.

Because RL can have sparse reward schemes a di�er-
ent reward approach might yield better results. One
thought is a point-based scheme where way-points of
a maneuver encourage trajectory following behavior.

Comparison of RL methods in the FTMA may assess
the bene�ts of di�ering methods. Two areas of in-
spiration involve TD(�) hybrids and on-policy versus
o�-policy learning (Rummery & Niranjan, 1994; Sut-
ton & Barto, 1998). These issues are currently under
study in the FTMA.

Acknowledgments

This work was supported by the NASA Graduate Stu-
dent Research Program (GSRP) [grant NGT 4-52403].
I want to thank the outstanding personnel at NASA
Dryden Flight Research Center; especially, Joe Bar-
nicki, Bob Clarke, Steve Jensen, John Kelly, Joe Pahle,
and Keith Schweikhard for their contributions and pa-
tience.

I would also like to thank my advisor, Rob Smith, who

helped me �nd funding for my graduate education. I
do not believe I would ever have stuck out the Ph.D.
without his advice and friendship.

Finally, I thank my parents who have had to put up
with my \professional student" status for far too long.

References

Albus, J. S. (1975). A new approach to manipulator
control: The cerebellar model articulation con-
troller. Transactions of the ASME Journal of
Dynamic Systems, Measurement, and Control,
220{227.

Bellman, R. E. (1961). Adaptive control processes: A
guided tour. Princeton, NJ: Princeton Univer-
sity Press.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Ar-
ti�cial intelligence through simulated evolution.
New York: John Wiley.

Lin, L.-J. (1991). Programming robots using reinforce-
ment learning and teaching. In Proceedings of
the Ninth National Conference on Arti�cial In-
telligence, Vol. Two, 781{786.

Norlin, K. A. (1995, October). Flight Simulation Soft-
ware at NASA Dryden Flight Research Center
(Tecnical Memorandum 104315). Edwards, CA:
NASA Hugh L. Dryden Flight Research Center.

Peng, J., & Williams, R. W. (1996). Incremental
multi-step Q-Learning. Machine Learning, 22,
283{290.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
(1986). Learning representation by backpropa-
gating errors. Nature, 1986 (323), 533{536.

Rummery, G. A., & Niranjan, M. (1994). On-line
Q-learning using connectionist systems (Tech.
Rep. CUED/F-INFENG/TR 166). Cambridge
CB2 1PZ, England: Cambridge University En-
gineering Department.

Ryan, G. W. (1995, August). A genetic search tech-
nique for identi�cation of aircraft departures
(Contractor Report 4688). Hugh L. Dryden
Flight Research Center, Edwards, CA: NASA.

Smith, R. E., & Cribbs, H. B. (1996a). Combined bio-
logical paradigms: A neural, genetics-based au-
tonomous systems strategy. In Conference Pro-
ceedings of Biologically Inspired Autonomous
Systems: Computation, Cognition, and Con-
trol, Durham, NC.



Smith, R. E., & Cribbs, H. B. (1996b). Cooperative
versus competitive system elements in coevolu-
tionary systems. In FROM ANIMALS TO AN-
IMATS 4: Proceedings of the 4th International
Conference on Simulation of Adaptive Behav-
ior, Cape Cod, MA.

Smith, R. E., & Cribbs, H. B. (1996c). Par-
simonious neural, genetics-based Q-learning
for autonomous systems. In Proceedings of
An International Workshop on Learning for
Autonomous Robots (ROBOLEARN-96), Key
West, FL.

Smith, R. E., & Dike, B. A. (1995). Learning novel
�ghter combat maneuver rules via genetic al-
gorithms. International Journal of Expert Sys-
tems, 8 (2), 247{276.

Stroud, P. D. (1998). Adaptive simulated pilot.
Journal of Guidance, Control, and Dynamics,
21 (2), 352{354.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA:
MIT Press.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-Learning.
Machine Learning, 8, 279{292.

Whitehead, B. A., & Choate, T. D. (1996).
Cooperative-competitive genetic evolution of
radial basis function centers and widths for time
series prediction. IEEE Transactions on Neural
Networks, 7 (4), 869{880.

Wilson, S. W. (1990). Perceptron redux: Emergence of
structure. In S. Forrest (Ed.), Emergent Com-
putation: Proceedings of the Ninth Annual In-
ternational Conference of the Center for Non-
linear Studies on Self-Organization, Collective,
and Cooperative Phenomena in Natural and Ar-
ti�cial Computing Networks, 249{256, Amster-
dam. North-Holland.

Wilson, S. W. (1994). ZCS: A zeroth level classi�er
system. Evolutionary Computation, 2 (1), 1{18.


