
Persistence, Search and Autopoiesis

Oliver Sharpe

School of Cognitive and Computing Sciences, University of Sussex
Brighton BN1 9QH, UK. ++44 1273 748 253

olivers@cogs.susx.ac.uk

Abstract

The purpose of this paper is mainly to intro-
duce the concept of `persistence' into the dis-
cussion of dynamical systems and Arti�cial
Life. First it is shown how persistence can
be used to help understand the behaviour of
evolutionary search algorithms. Then the no-
tion of persistence is discussed in relation to
the types of dynamical systems that will be
capable of modelling autopoietic systems. It
is argued that the �rst models of emergent
autopoiesis will either require an exponential
growth in the number of particles involved in
the model or it will be based on some kind
of search algorithm that approximates this
growth.

1 Introduction

Persistence is a characteristic that distinguishes be-
tween di�erent types of objects in our world: alive or
dead, stable or unstable. The fact that some objects
are able to persist, both in static and dynamic ways,
and others are not appears to be a cornerstone of why
interesting things happen in our universe. Hence, the
class of dynamical systems in which persistence plays
an important role should be a very interesting class of
systems.

This paper is mainly a position paper rather than a
results based paper. It looks at the nature of search
in terms of persistence and then at how the notion
of persistence of objects has implications for dynami-
cal systems capable of supporting autopoiesis. It will
be assumed that the reader already knows a fair bit
about dynamical systems (Kau�man, 1993), search al-
gorithms (Goldberg, 1989) and autopoiesis (Maturana
& Varela, 1980).

2 Understanding the dynamics of
search

The commonunderstanding of search is that it is `look-
ing for something'. However, for describing a kind of
dynamics, this kind of de�nition will not do as it relies
too much on intention and ignorance. What if no one
is interested in the solution? What if we already know
the best solution? When a genetic algorithm (GA from
now on) is run on a problem wont it always be doing
search, independent of why it is run and what the user
already knows about the problem? So for describing
such dynamics we need to look at another kind of def-
inition. A de�nition that is independent of the human
user, a de�nition that can look at the dynamics of
a given system and determine whether it is or is not
search.

A �rst attempt at such a de�nition would be the fact
that all search involves some kind of generate and test
rhythm. However, a simple algorithm that generates a
random genotype and then tests it, without saving the
best found so far, is not a search algorithm, as even
if by chance it generated and evaluated the best point
in the solution space, it would not keep it but would
carry on in its random waste of time. Search is about
actively choosing and keeping certain states of the sys-
tem. Search is about the persistence of certain types
of sub-states of the system, the active persistence of
those states. In fact, generally the sub-states that are
persisting are only replaced by sub-states that will per-
sist for longer. Hence a possible operational de�nition
of search could be:

Search is the accumulation and maintenance

of persistence.

From any random initial state a search process will
�rst `�nd' states that will persist and then it will `keep'
those states. However, to properly understand such a
de�nition we need to have a clearer notion of persis-



Search

Non search

Time

P
er

si
st

an
ce

Figure 1: Distinguishing between search like and non-
search like processes

tence. So let's look at a de�nition of a kind of persis-
tence and see what it shows us about search.

3 Measuring Static Persistence

So how could we measure the level of persistence in
the state of a GA over time? In this paper we are only
going to look at a very simple measure of static persis-
tence. Although it is simple, this measure already illu-
minates some interesting behaviours of the systems to
which we will apply it. Only a few examples are given
as the main purpose is to demonstrate the potential
uses of looking at persistence rather than to support
this particular measure of persistence. For clarity of
writing I will refer to the sub-state of a state as being
a particle of the state. This is so that instead of hav-
ing to constantly refer to the state of the sub-state of
the state, I can instead simply refer to the state of a
particle. A GA has a population of individuals, each
with a genotype. So the state of the GA at any given
time is the state of the population. If we output the
state of the GA after every generation then we can get
a trace of the history of the state of the GA. If the GA
has binary genotypes then such a trace could start o�
something like the following:

00110000100000111011 10010010010110001111 . .

10101011011001001111 10111011011001101111

10101011011001001111 10101011011001001111 . .

. .

. .

Each locus of each of the individual's genotypes is a
state holding `particle' of the system. So a GA run-
ning with a population of 20 individuals each with
genotypes of length 10 bits long would be a dynam-
ical system with 200 binary state holding particles.

We are going to look at a measure of the amount of
static persistence within the state over time. So this

is the degree to which the states of the particles re-
main �xed over time. Hence the degree of persistence
of the whole state is linearly dependent on the degree
of persistence of each particle's state. So, how can
we measure the persistence of a particle's state, espe-
cially as a function of time. The simple measure that
we will look at here takes the persistence of the state
of a particle at a given time to be the percentage of the
whole time for which the particle has been in its cur-
rent state. So this is a measure that is knowledgeable
of the whole trace of the GA rather than being cal-
culated independently for each time step. This makes
sense, as persistence is a relation over time, but unfor-
tunately this means that it cannot be easily used as
an online measure of persistence.

So we can de�ne the algorithm for measuring the static
persistence of a trace as follows:

� 1) Give the algorithm a trace, T, of length L time
steps with dimension N. (by dimension I mean
that there are N particles within the state)

� 2) Associate with each particle the % time for
which its current state persisted. (this will be
order 2L for each particle so O(N*L) in total )

� 3) Add all of the persistences of each particle at
each time point to get the static persistence of the
state at each time point: (this will be order N for
each time point L so again O(N*L) in total)

So measuring static persistence of an N particle system
over L time steps is O(N*L). We can write some pseudo
code for such an algorithm as follows:

The major variables:

T[N, L] = trace of process.

P[N, L] = persistence of each state of

each particle.

S[L] = static persistence measure for

the trace over time.

start (variables for calculating length

finish of persistence of a state)

First calculate each particles static persistence:

for (i = 0; i < N; i++) {

start = 0; finish = 0;

while (start < L) {

while ((T[i, start] == T[i, finish])



&& (finish < L))

finish++;

for (j = start; j < finish; j++)

P[i, j] = (finish - start) / L;

start = finish;

}

}

Then calculate the whole state's static persistence:

for (t = 0; t < L; t++) {

S[t] = 0;

for (i = 0; i < N; i++)

S[t] = S[t] + P[i, t];

S[t] = S[t] / (N * L);

}

3.1 Examples of measuring static persistence

So now that we have de�ned a measure of persistence,
let's look at what it `sees' when looking at the traces
of various di�erent dynamical systems, �rst of all the
dynamics of some stochastic search algorithms on NK
landscapes (Kau�man, 1993).

3.2 Dynamics of stochastic search on NK

landscapes

The three search algorithms that we will look at are a
simple stochastic hill-climber, a multi-start bit ipping
hill-climber and �nally a GA.

The GA used is very simple, using a population of 20,
a mutation rate of an average of 2 bit ips per locus
per generation and uniform cross-over. Selection is im-
plemented as steady state 3 player tournaments. The
best two individuals make an o�spring that replaces
the worst of the three. The NK landscapes are a set of
tunably rugged abstract search spaces widely used in
the theoretical GA literature. The graphs presented
here for all of the search algorithms were run on NK
landscapes with N = 50 and K = 4 using next-door
neighbours.

All of the graphs are presented with the data of the �t-
ness performance over time as well to compare the tra-
ditional way of understanding how the GA is perform-
ing. As the �tness values have no particular meaning
on an NK landscape, except for their ordering, the �t-
ness values were scaled for greater clarity. It is impor-
tant to note that the measure of persistence used here
is not biased in either direction of time. If the same
data is supplied to the measure but in reverse order
(the search trace backwards) then the resulting per-

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pe
rs

ist
en

ce
 a

nd
 F

itn
es

s

Time measured in evaluations

Persistence
Adjusted Fitness

Figure 2: Stochastic hill-climbing on an NK landscape
with N = 50 K = 4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 500 1000 1500 2000 2500 3000 3500 4000

Pe
rs

ist
en

ce
 a

nd
 F

itn
es

s

Time measured in evaluations

Persistence
Adjusted Fitness

Figure 3: Multi-start hill-climbingon an NK landscape
with N = 50 K = 4

sistence graph is also in reverse order, but otherwise
identical. It is also worth restating that the persistence
measure used has no knowledge of the �tness values of
the di�erent genotypes in the population. It only gets
fed the binary strings of the genotypes.

3.3 The dynamics of non-search algorithms

As a comparison to the dynamics of the stochastic
search algorithms here we will also look at the what
the same persistence measure `sees' when looking at
the dynamics generated by a few other well known
types of dynamical systems, and then the di�erences
and similarities will be discussed.

3.4 Discussing the Results

Figures 2 to 5 are of the stochastic search algorithms
on the NK landscapes. Figure 2 is of the stochastic
hill-climber and clearly shows how the level of persis-
tence, as measured by this static measure, increases
rapidly as the search of the hill-climber �nds �tter so-
lutions in the early time steps of the trace. Once the
hill-climber has reached the �ttest point it will reach,
the persistence also soon levels o� to the highest level
of persistence. Notice how changes in �tness are often



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700 800 900 1000

Pe
rs

ist
en

ce
 a

nd
 F

itn
es

s

Time measured in generations

Persistence
Adjusted Fitness

Figure 4: GA with mutation rate 2.0 on an NK land-
scape with N = 50 K = 4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250

Pe
rs

ist
en

ce
 a

nd
 F

itn
es

s

Time measured in generations

Figure 5: Exactly the same trace as in �gure 4 above
but only `seen' by the persistence measure for the �rst
250 generations

0.0038

0.004

0.0042

0.0044

0.0046

0.0048

0.005

0.0052

0.0054

0 100 200 300 400 500 600 700 800 900 1000

St
at

ic 
Pe

rs
ist

en
ce

 M
ea

su
re

Time

Figure 6: A random trace

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 100 200 300 400 500 600 700 800 900 1000

St
at

ic 
Pe

rs
ist

en
ce

 M
ea

su
re

Time

Figure 7: Asynchronously updated 1 Dimensional CA

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800 900 1000

St
at

ic 
Pe

rs
ist

en
ce

 M
ea

su
re

Time

Figure 8: Asynchronously updated 1 Dimensional CA

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

0 200 400 600 800 1000 1200 1400

Pe
rs

ist
en

ce

Time

Figure 9: Synchronously updated 1 Dimensional CA

matched by changes in the persistence level.

Figure 3 shows the persistence trace of a multi-start
hill-climber. Each of the sharp downwards drops in the
persistence level is where the algorithm has re-started
its search. Despite these jumps, an underlying trend
of generally increasing persistence can still be seen.

Figures 4 shows a trace of a GA being run for a long
time on the NK landscape. As the population con-
verges around high levels of �tness, so too does the
persistence level of the whole state. It is interesting
to note how towards the end of the persistence trace
the persistence level drops o� quite considerably. This
is because this measure of persistence can only tell if
a given state has persisted for a long time within the
length of the trace. The measure has no way of know-
ing how persistent a given state would have been if the
trace had been longer. Hence, any change of state to-
wards the end of a trace automatically leads to a lower
persistence level regardless of how well the new state
could have persisted if given the chance.

Figure 5 is of the exact same trace as �gure 4, but
only the �rst 250 generations have been given to the
persistence measure. The comparison between the two
clearly shows the problem that this persistence mea-
sure has with the ends of traces as it cannot know how
persistent the new states at the end of a trace will be.



0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 50 100 150 200 250 300 350

Va
rio

us

Time

Figure 10: Game of Life

However, it is still possible to see that the dynami-
cal system being measured has pushed up the level of
persistence. This is quite impressive considering that
the persistence measure gets no information about the
�tness of the population.

Figure 6 shows the trace of a completely random trace,
and clearly the persistence measure is showing noth-
ing but randomness. Figure 7 shows the persistence
trace of a 1-dimensional asynchronously updated cel-
lular automaton with 100 cells, each with a possible of
5 di�erent states. The graph is clearly di�erent from
that of the random trace, but also it is clearly not a
search process. Figure 8 shows what the persistence
trace looks like when the same 1-D CA gets stuck at
a point attractor. Figure 9 shows a synchronously up-
dated version of the same 1-D CA when it gets into
a cyclical attractor. Figure 10 shows the persistence
measure applied to the trace of Conway's Game of Life
2-D cellular automaton (Berlekamp, Conway, & Guy,
1985) when a glider (�gure 12b) collides with another
cyclic object (�gure 12a) roughly at time 60 causing
the two to disintegrate completely by roughly time 240.
The main persistence being measured here is the per-
sistence of the `OFF' or white cells of the CA.

So this persistence measure has clearly highlighted
some very di�erent features of some very di�erent dy-
namical systems. Obviously much more work needs to
be done, but these examples are meant to show why
persistence is an interesting characteristic of dynami-
cal systems that should be explored further. In partic-
ular, persistence has been used here to show an objec-
tive di�erence between those systems that are display-
ing a search like dynamics and those that are not. It
is worth noting that any system that `�nds' its point
attractors is likely to give a trace of increasing persis-
tence.

Indeed the notion of persistence is heavily related
to that of attractors. An attractor is a state from
which the system cannot leave, the ultimately persis-

Figure 11: Static objects in Game of Life

a)

b)

Figure 12: Cyclic objects in Game of Life

tent state. So, in a way, a measure of persistence is
a measure of the degree to which a given state is an
attractor. It is interesting to note that for modelling
evolution, we do not really want a dynamical system
that gets completely stuck. We don't want attractors,
but rather we would like temporary attractors that
persist for a while before evolving into something new.
It is with these thoughts in mind that I �rst became
interested in the notion of persistence. Having shown
how persistence can give us some new insights into the
dynamics of search processes, let's move on to looking
at persistent objects.

4 The Persistence of objects

So far, the static persistence measure that we have
looked at measures the persistence of the whole sys-
tem's state. Next I want to discuss the persistence of
objects within the dynamical system. For the Game of
Life CA there are some static objects (�gure 11) whose
persistence could easily be measured with a modi�-
cation to the static persistence measure used earlier.
However, the more interesting objects in the Game of
Life are the objects, such as gliders (�gure 12b), who
not only persist in a cyclical way but also persist over
di�erent holding particles or `cells' in CA terminology.
The object is a relational object that moves across
the grid of cells in the same sense that a wave trav-
els through the water. Let's call objects of this type
cyclically persistent relational objects (CPROs). We
will use the persistence of CPROs to help motivate an
argument about the kinds of dynamical systems that
could be used to model emergent autopoiesis.

4.1 Modelling Autopoietic Systems

So we'd like to understand in which types of dynam-
ical systems it is likely that autopoiesis can be inves-



Time

P
er

si
st

an
ce `Glider'

Comet

Life

Figure 13: The di�erent styles of persistence of a
comet, a `Glider' and life

tigated. The `virus of matter' that is life seams to
be slowly increasing its ability at persisting in a gener-
ally persistence unfriendly universe. Comets and rocks
break up into smaller and smaller rocks, slowly disin-
tegrating (�gure 13). The continued existence of rocks
on earth is supported by the continuing creation of
huge rocks, mountains, by plate tectonics which recy-
cles the oldmaterial to make new rocks. So it is not the
rocks themselves that enable rocks in general to persist
on earth. In contrast, organisms before disintegrating
give birth to other organisms that are almost identi-
cal to the parent. In this way mouse objects maintain
the existence of mouse objects in a cyclical manner
that involves only the mice. So we can crudely see a
mouse as a version of a CPRO. Not only over its life
time does the mouse CPRO remain a mouse whilst be-
ing `held' by di�erent particles, but also any o�spring
mice are, in a sense, continuations of the same rela-
tional pattern, the same CPRO, but in a di�erent set
of particles.

So, to look at which types of dynamical systems could
support the emergence of an autopoietic system, we
can �rst assume that it must at least be able to sup-
port CPROs. Furthermore, for the autopoiesis to have
`emerged' I mean it must have evolved itself into exis-
tence rather than being placed there by the designer.
Hence the CPROs must not only be able to persist
over time, but they must also be free to increase their
ability at persisting, free to evolve. So let's have a look
at the stability of CPROs within dynamical systems.

4.2 Markov Chain models

Given a CPRO, when some environmental e�ect on the
CPRO occurs, let's call it a mutation to the CPRO,
then this alteration can either make the CPRO more
stable, equally stable or less stable. Let's say that 51%
of the mutations are deleterious and 49% are advanta-
geous, then a simple random walk Markov chain model
(Syski, 1992) can predict the expected extinction time

Time

P
er

si
st

an
ce

Figure 14: A Markov Chain model of persistence as a
random walk will predict a �nite time before extinc-
tion if the deleterious mutation rate is greater than the
advantageous mutation rate

for such a CPRO. Once the CPRO has reached the
point of having no ability at persisting then it will
disintegrate and will not exist any more (�gure 14).
The Markov chain model predicts that given a set of
such CPROs, there is an expected �nite time after
which all of them will have disintegrated assuming that
the chances of mutations occurring to them does not
change. As the majority of dynamical systems will
have a much larger percent of mutations being dele-
terious to CPROs this shows the precarious position
of CPROs in such dynamical systems. Irrespective of
how the CPROs come in to being, they are inherently
unstable on average in the long run. This is exactly
the case of rocks in our universe.

So in such a dynamical system, to get a CPRO to be
stable in the long run requires considerable thought on
the part of the designer of the system. In the Game of
Life, CPROs are generally stable so long as they are
not interfered with. Usually when they are interfered
with they either break up into smaller CPROs or they
completely disintegrate. One way to ensure that a
dynamical system has an increase in persistence would
be to set up the system in such a way that, given a
particular starting state, the CPROs that occur are
likely to have mutations to them that will result in
better persistence. This is a tall order and it suggests
a set of rules for the system that are designed with
the di�erent levels of persistence in mind. I cannot
help but imagine that in such systems persistence will
increase, but only up to the point that the designer has
built into the system. To get ever more complex forms
of persistence will require the designer to put ever more
complex rules into the system to ensure that that the
likely mutations to CPROs will on average increase
and not decrease their persistence.

However, in a system where deleterious mutations to



Time

P
er

si
st

an
ce

Figure 15: Replication is at the heart of a persistence

ratchet. This useful dynamic comes at the cost of ex-
ponential growth in the number of objects

objects are more likely than advantageous mutations
(in terms of their ability to persist as individual ob-
jects) then for those objects to continue to persist over
very long periods of time, let alone to increase their
ability at persisting, they must either be the product
of a process that will actively make new objects to
replace the old ones or they must be self-reproducing.

4.3 Replication as a Persistence Ratchet

So what is really needed to enable a general increase
in persistence to occur is some equivalent of replica-
tion. Replication is at the heart of ensuring that per-
sistence at least does not decrease, and therefore has
a chance that it will occasionally increase (�gure 15).
Replication acts like a ratchet on persistence. Once we
have replicating cyclically persistent relational objects
(RCPROs) then we are in business. The only other
thing that we need is to have the rate of replication
being larger than the rate of mutation. So now we are
in the position where given a simple RCPRO, its num-
bers will grow exponentially. As we know that the rate
of mutation is less than the rate of replication we can
guarantee that even if all of the mutations that occur
are deleterious this type of RCPRO will still persist.
Hence if nothing else, the level of persistence in the
system will not go down. Replication has given us a
ratchet on persistence. Now if an advantageous mu-
tation occurs to a RCPRO, however unlikely, once it
occurs it too can take hold in such a way.

With this persistence ratchet in place, persistence in
the system will generally increase with time. So any
system that is capable of supporting such a persis-
tence ratchet and therefore capable of supporting au-
topoiesis, will also be exhibiting the dynamics of a
search process as de�ned earlier.

A weaker form of the persistence ratchet guarantee
is that the number of deleterious mutations that are

likely to occur is less than the number of replications
that are likely to occur in a given time. If most of
the mutations that are likely to occur will be neutral
then it is relatively easy to have this weaker guarantee
holding true. So with RCPROs it is possible to have
ever increasing levels of persistence even if the chance
of a given RCPRO mutating into a more persistence
RCPRO is small.

The only cost of all this replication is that the dy-
namical system must potentially support exponential
growth in the number of instances of RCPROs. For
example, long periods with mainly neutral mutations
will result in such exponential growth. Although �nite
resources in the system could potentially give rise to a
form of co-evolution between the RCPROs, there must
be su�cient room in the system to ensure that the
replication ratchet is de�nitely in place. As the num-
ber of deleterious mutations in most systems is likely
to be large compared to even the neutral mutations,
therefore the growth rate must be similarly large. So,
to get autopoietic systems to emerge in a dynamical
system not only must the system support RCPROs
but also it must be able to support them growing at
a rate that is fast enough to preserve the persistence
ratchet. The danger here is that this means that the
number of particles in the system will be growing, po-
tentially in an exponential fashion. Hence, even if we
are generous with the algorithm's complexity and say
that it is O(n) where n is the number of particles, then
as the number of particles increases over time we will
have a decrease in the performance of the algorithm,
potentially it will slow down at an exponential rate.
This is not good news. It renders this kind of model
of autopoiesis e�ectively intractable.

If we want to study autopoiesis we have to �nd tools
with which the study is a tractable proposition. In
the next section I make the argument that traditional
generate and select search algorithms can be used as
an approximate model of these search processes that
occurs in dynamical systems that can support persis-
tence ratchets and hence emergent autopoiesis. They
make the modelling tractable by removing the ex-
ponential growth whilst maintaining the persistence
ratchet.

4.4 Search as an approximate model of

Exponential Growth

The only way out of this exponential slow down is to
somehow make an approximation of such a system by
trimming the exponential growth to reduce the num-
ber of calculations that are necessary, thereby enabling
the simulation to be feasible. The most important



Time

P
er

si
st

an
ce

Figure 16: Using a search algorithm can enable a
tractable approximate model of the search processes

that occurs in dynamical systems that can support
persistence ratchets.

thing that must be preserved in this approximation is
the persistence ratchet as this is the key to why the
system was interesting in the �rst place. The best
way to achieve both of these goals is to remove from
the system RCPROs that have just had deleterious
mutations, and thereby remove all of the calculations
required in modelling their decreased persistence (�g-
ure 16). In this way all of the attention of the model
can focus on RCPROs that maintain the same level of
persistence or higher levels of persistence, hence pre-
serving the persistence ratchet. Alternatively we could
keep only the best N RCPROs. This requires some
measure that can be applied to RCPROs to see which
are the ones that have a higher than average ability at
persisting - a higher �tness. Those with lower �tness
are removed from the simulation as they are unlikely
to lead to higher levels of persistence and are there-
fore considered to be a waste of CPU cycles. Hence
we have an approximation of a system with exponen-
tial growth that works by concentrating the attention
of the simulation on only those RCPROs with higher
than average �tness - a search algorithm.

As with any approximate method, such a search pro-
cesses cannot capture all of the subtleties of the system
that it models. The quality of the approximation will
depend heavily on the quality of the �tness function
that assesses the ability of RCPROs at persisting. If
this �tness function is very accurate then the approx-
imation should be e�ective. The di�culty is that a
good �tness measure would be able to assess the ability
of a given object at persisting which is much harder
than simply observing how well on object persisted
in the past. However, even the a poor �tness func-
tion based on past persistence performance of objects
would be able to preserve a persistence ratchet and
thereby give us an approximation of the persistence
ratchet achievable through exponential growth.

So this is my argument for why a search algorithm is
likely to be the �rst type of engine for a dynamical
system used to model autopoiesis. This is not because
I think it would be the best way to model autopoiesis,
nor is it because autopoiesis will require a search pro-
cess and therefore why not use a search algorithm. The
argument is simply saying that for the time being, a
search algorithm will be the only way of modelling a
dynamical system with a persistence ratchet that can
support emergent autopoiesis in a tractable way.

5 Conclusions

This paper has introduced persistence as a very inter-
esting characteristic of dynamical systems. It has been
shown how a persistence measure applied to the whole
state of a dynamical system can show us whether or
not it is displaying search like dynamics. The per-
sistence of objects within dynamical systems has then
been used as the basis for an argument about the kinds
of dynamical systems that could be capable of support-
ing emergent autopoiesis. With this argument came
the idea of the persistence ratchet that is necessary
to support increasing levels of persistence in generally
persistence unfriendly dynamical systems. This persis-
tence ratchet can either be manifested as exponential
growth in the number of objects involved in the system
or by a search algorithm to approximate this growth.

Future work will try to look for dynamical systems
that can support RCPROs as well as static objects,
but where most objects do not last forever. For this
work a measure of cyclic persistence will have to be
developed. It should be capable of measuring the per-
sistence of objects within the state and not just the
level of persistence of the whole state.

Reference

Berlekamp, E., Conway, J., & Guy, R. (1985). Win-

ning Ways. For your mathematical plays., Vol.
2: Games in Particular. Academic Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-
Wesley.

Kau�man, S. (1993). Origins of Order. Oxford Uni-
versity Press, New York.

Maturana, H. R., & Varela, F. J. (1980). Autopoiesis
and Cognition: The Realization of the Living.
Reidel Dordrecht.

Syski, R. (1992). Passage Times for Markov Chains.
IOS Press.


