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Abstract

In 1998, Bedau et al. de�ned a set of metrics
for characterizing the long-term evolutionary
dynamics of a system. They argued that
no known arti�cial system demonstrates the
unbounded evolutionary activity observed in
the fossil record. In response we have de-
veloped a series of toy models that approach
and eventually succeed in demonstrating un-
bounded evolutionary activity. The under-
whelming success of the models suggests that
there must be more to open-ended evolution
than just unbounded evolutionary activity as
the term is currently de�ned. We derive some
potential extensions to the metrics and re-
quirements for developing open-ended evolu-
tion in an arti�cial system.

1 INTRODUCTION

The richness of biological life has never been replicated
in our arti�cial models of evolution. Yet, the challenge
to understand the basis of open-ended evolution and to
construct an arti�cial system that demonstrates such
a capacity stands as one of the fundamental unsolved
problems of Arti�cial Life. Thanks to Bedau et al.
(1998) we now have the tools to begin this project.
We have used those tools to construct a model that
arguably shares the same evolutionary dynamics as bi-
ological life.

The attempt to understand the processes biological
evolution encompasses both a scienti�c and an en-
gineering problem. As biologists we would like to
know why life has diversi�ed over the last 3.8 billion
years (Maley, 1998; Benton, 1990). Why isn't life just
one big homogeneous mass of photosynthetic or ther-
mophilic sludge? As engineers, we would like to know

how to tap into the astonishing capacity for innova-
tion demonstrated by biological evolution (e.g., Koza,
1992). Why can't we replicate the richness of biological
life? Why can't we build an open-ended evolutionary
system?

1.1 OPEN-ENDED EVOLUTION

One obstacle to the development of open-ended evolu-
tionary systems has been the lack of a clear de�nition
of the problem. What is the goal? What do we mean
by \open-ended evolution?" Our intuition is that we
would like an evolutionary system to produce \individ-
uals" (organisms?) of a greater complexity and diver-
sity than the initial individuals of the system. What is
more, we would like the evolutionary system, like life,
to continue to produce individuals of increasing com-
plexity and diversity. In part this last requirement is
based on a misperception of the history of life (Mc-
Shea, 1991). Much of modern life is single celled and
its complexity probably hasn't changed much over the
last few billion years.

In order to get a handle on the problem of open-ended
evolution, let us separate out the issues of diversity and
complexity, setting aside the evolution of complexity
for the moment. The diversity of life seems to have in-
creased (non-monotonically) over time (Benton, 1995).
How might we construct an evolutionary system that
also demonstrates an ever-increasing production of di-
versity?

1.2 METRICS AND CLASSES OF

EVOLUTIONARY DYNAMICS

Bedau et al. (1998) have provided a set of metrics for
measuring the evolutionary dynamics of a system, be it
arti�cial or natural.1 The basis of Bedau et al.'s met-

1See Adami (1994) for an entirely di�erent approach to
measuring evolutionary dynamics.



rics is the \component." One must decide at what level
to analyze the evolutionary dynamics of the system.
In the following models, we will identify the genotypes
of the individuals as the components of the systems.
They then de�ne ai(t) as the activity of component i at
time t. While di�erent measurements of activity may
be chosen, a convenient one, used by Bedau et al. is to
let ai(t) be the number of time steps that component
i has existed in the system since its origin. In other
words, ai(t) is the age of component i. However, if
component i has gone extinct, then ai(t) = 0.

We can then use ai(t) to de�ne three metrics of the
evolutionary dynamics of a system. Let D(t) be the
diversity of the system at time t.

D(t) = #fi : ai(t) > 0g (1)

where #f�g means the number of members of the set
(set cardinality).2

The mean cumulative activity, �Acum(t) is the sum of
all the activities of the components that exist in the
model at time t divided by the diversity. That is,

�Acum(t) =
1

D(t)

X
i

ai(t) (2)

The �nal metric is slightly more subtle. We would
like to measure the amount of novel adaptive activity
in the model. The problem comes in the distinction
between new activity that is essentially just random
as opposed to new activity that is the result of natu-
ral selection preserving and augmenting that compo-
nent. Bedau et al. choose to identify components that
have survived past some threshold a0 as new adaptive
activity3. We can then de�ne the new adaptive activity
per component, Anew(t), as the sum of the activities
of the components that reach this threshold in time
step t divided by the diversity.

Anew(t) =
1

D(t)

X
ai(t)=a0

ai(t) (3)

In some cases, when you don't have �ne grained in-
formation about the evolution of a system, it may be
more convenient to count the number of components
whose activity falls into a range a0 � a0 � a1. We
haven't yet described how to determine the adaptive

2See Solow et al. (1993) for a more sophisticated treat-
ment of the issues surrounding the measurement of biolog-
ical diversity for the purposes of conservation.

3They use the term new evolutionary activity. How-
ever, it is really the issue of adaptive activity that they
are interested in so I have chosen to use the slightly more
descriptive term new adaptive activity.

activity threshold a0. This requires the implementa-
tion of a neutral shadow of the model. The guiding
idea is that components with activities ai(t) > a0 are
more likely to exist in the system due to their adaptive
value than merely by chance. To determine the value
of a0 we record the sequence of births and deaths for
every time step of the model. Then we run a \neu-
tral shadow" of the model in which the exact same se-
quence of births and deaths occurs but the individuals
that reproduce and die are chosen randomly from the
current population. Thus there is no natural selection
in the neutral model, because fertility and mortality
are independent of genotype. However, all other as-
pects of the models are equivalent. Thus the neutral
shadow is an experimental control for studying adap-
tive activity in the model. We then compare the dis-
tributions of the activity counters ai of the model and
its shadow for all the components that went extinct as
well as the components that remain at the end of the
run of the model. If we can identify an activity level
beyond which a component is more likely to have sur-
vived due to its adaptive value than by chance. This
point is a0.

Finally, Bedau et al. describe the long term behavior of
the metrics. A metric is considered to be unbounded
if it generally increases over time. More precisely, a
function f(t) is unbounded if and only if

lim
t!1

�
sup(f(t))

t

�
> 0 (4)

where sup(�) is the supremum function (the maximum
so far). So the maximum of the metric must grow at
least linearly with time.

Similarly, a metric is called positive if it does not de-
scend to 0 over time. That is, f(t) is positive if and
only if

lim
t!1

 R t

0 f(t)dt

t

!
> 0 (5)

Bedau et al. (1998) use these metrics to classify the
evolutionary dynamics of both arti�cial and natural
systems. Biological life seems to demonstrate un-
bounded diversity, positive new adaptive activity and
bounded mean cumulative activity (unbounded cumu-
lative activity). Intriguingly, no arti�cial evolutionary
system has been shown to share this class. Thus the
gauntlet has been thrown. Can we design an arti�cial
evolutionary system that shares these characteristics
with life? If not, why not? And if so, what does it tell
us about evolution and our metrics for measuring it?



2 PICKING UP THE GAUNTLET

I love fools' experiments. I am always making
them. Darwin (1896)

All evolutionary systems have a diversity ceiling or car-
rying capacity de�ned by the physics of the system.
In our world, we don't know exactly what this ceil-
ing is. However, we can derive some upper bounds.
The diversity of life on Earth must be bounded by the
number of molecules that compose the planet and its
atmosphere. We can guess at some other bounds on
the Earth's diversity as it probably depends on quan-
tities of limiting resources like carbon atoms and the
input of free energy, as well as the minimum sustain-
able population sizes for each species. Life is probably
no where near these upper limits. Most of the radiant
energy that strikes the Earth goes unutilized (Begon
et al., 1990). This suggests that there must be many
open niches in adaptive space. In other words, I do
not believe that we have yet observed the asymptotic
behavior of life on Earth. An important di�erence be-
tween life on earth and life in the simulated worlds of
arti�cial life is that typically the arti�cial life worlds
�ll up and utilize all the available energy.

Despite the fact that most of the energy that strikes
the Earth goes unutilized, there is evidence that some
clades reach a diversity plateau (Jablonski and Bot-
tjer, 1990). Indeed, the phenomenon of punctuated
equilibria (Gould and Eldridge, 1977) implies that di-
versi�cation is constrained for long periods of time,
with occasional bursts of innovation when a species
colonizes some new adaptive space. Thus, a model
that mimicked the evolutionary dynamics of life should
have at least two time constants. A fast constant that
describes the expansion of \life" given the capacity
to make use of currently unutilized resources. Arti�-
cial life models often lack a slower time constant un-
der which innovations arise that open up new adaptive
space and so increase the current carrying capacity of
the model. In reality occasional innovations arise that
do not destroy the previously �lled niches, but rather
add to the complexity of the ecosystem. The fossil
record suggests that diversity

Tierra (Ray, 1992) comes close to this. It has one time
constant of expansion and another, slower one, of eco-
logical innovation. However, with the exception of the
�rst parasite, the innovations tend to drive the pre-
vious species extinct. Most of the innovations do not
open up previously unutilized resources. Thus, with
the exception of the �rst parasites, you get turnover
but no real expansion of diversity.

In deference to the fundamental limitations of energy

and space, we will only require that an evolution-
ary system demonstrate unbounded diversity up un-
til those limits are approached. This is a fundamental
shift in the approach laid down by Bedau et al. (1998).
We expect that in most systems there will be short
term transient dynamics while the initial conditions
adjust to the constraints of the model. This is followed
by a growth period. And �nally, that growth will ap-
proach an asymptote determined by the resource lim-
itations. Since we believe that life on earth is still
in the growth phase, we will be interested in models
that mimic the dynamics of biology during the growth
phase. Note that from this perspective, the problem
with Tierra is that the model hits its asymptote dur-
ing its transient phase and all we are left with are the
asymptotic behaviors of the model. And so we have
our �rst requirement:

Requirement 1 An open-ended evolutionary system
must demonstrate unbounded diversity during its
growth phase.4

2.1 URMODEL 1

Let us start with an extremely simple toy model to
help us illuminate the issues. Urmodel 1 is an attempt
to create a model that demonstrates unbounded diver-
sity. This can be realized by a simple di�usive process.
We might specify such a model as:

� A completely neutral (at) adaptive landscape.

� Mutation (1.0) which should diversify the organ-
isms.

� Stop before adaptive landscape �lls.

Consider each position in a two-dimensional array as
a viable niche. Then, as long as there is still empty
niche space, and some probability of an occupied niche
expanding into an empty neighbor, diversi�cation will
happen. Let each species have a 32 bit genotype (0 in-
dicates an empty position in the environment). These
are the components of the model. At reproduction
(speciation) the new component may ip one bit with
probability mutation rate. In this case the mutation
rate is 1. We start the model with a single species
in the central niche of a 256 by 256 grid. The niches

4One might also be interested in �nding models with
bounded diversity but unbounded cumulative activity in
their asymptotic phase. Perhaps the Earth will demon-
strate those dynamics once it reaches its asymptote. How-
ever, I will only focus on the growth phase of evolutionary
systems.



are updated sequentially. A non-empty niche repro-
duces into the empty niches amongst its four adjacent
neighbors. However, a component that has originated
in time step t may not reproduce until time step t+1.
We stop the model when half of the niches (32K) have
been �lled. This prevents edge e�ects.
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Figure 1: The diversity D of components in Urmodel
1 over time. The data is the average of 50 runs of the
model.

Diversity is indeed unbounded, as shown in Figure 1.
Yet, there is an important aw in this model. Urmodel
1 demonstrates evolution in the strict population ge-
neticist de�nition of the term. The gene frequencies
change. Yet, it fails to meet one of the basic crite-
ria of natural selection: the heritable variation in the
population has no e�ect on fertility. The distribution
of activities of Urmodel 1 and its neutral shadow are
identical. We may now introduce a requirement on our
models for open-ended evolution.

Requirement 2 An open-ended evolutionary system
must embody selection.

This e�ectively rules out purely neutral evolution. It is
only through the termination of the maladaptive and
adaptively neutral components that Anew can be used
to distinguish new adaptive activity by its longevity.
This is subsumed by Bedau et al.'s requirement:

Requirement 3 An open-ended evolutionary system
must exhibit continuing (\positive") new adaptive ac-
tivity.

All the following models have the same structure as
Urmodel 1 except where noted.

2.2 URMODEL 2

A simple unbounded diversity model with natural se-
lection:

� Mutation (0.1) diversi�es species on a 2D grid of
niches

� Neighboring species compete for both empty and
previously (but not newly) �lled niches.

� \Dissimilarity" provides a competitive advantage.

� Stop the model before the adaptive landscape �lls.

This time a species' genotype determines its spread,
in the context of its neighbors. The only question is
how we measure the most \dissimilar" from a group
of two or more. We can tally the hamming distance
between each species and its competitors. Then break
ties randomly. The winner, the species most di�erent
from its competitors, gets to reproduce into the central
position of the neighborhood. As in Urmodel 1, the
model is updated sequentially and a newborn organism
cannot be displaced by competition in the same time
step in which it is born, nor can it reproduce in that
time step. This time the mutation rate is 0.1. That is,
there is a 1 in 10 chance that a singe bit is ipped in
a new component at the time of reproduction.
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Figure 2: A log-log plot of the age of components ver-
sus their frequency in the population over the entire
run of Urmodel 2 and its neutral shadow. The point
at which they cross, a0 is the age threshold after which
the survival of a component is more likely due to its
adaptive value than to pure chance. We set a0 = 5.
This data is the average of 50 runs of both Urmodel 2
and the neutral shadows for each of those runs.

Selection for di�erences can be justi�ed by niche
overlap theory (Levins, 1968). The more that two
species' niches overlap (share common resources) the
more likely that one will drive the other to extinction
through competitive exclusion. Thus, being di�erent
from your competitors makes it easier to survive.

The distributions of activities between Urmodel 2 and
its neutral shadow are similar, though the fact that the
curves in Figure 2 cross just before a0 = 5 suggests that
some components in Urmodel 2 have adaptive value.
If we examine the evolutionary dynamics of Urmodel
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Figure 3: A plot of the diversity D, the mean cumu-
lative activity �Acum, and the new adaptive activity
Anew over time in Urmodel 2. This data is the aver-
age of 50 runs. Anew, de�ned with a0 = 5, seems to
be slowly descending over time, and so its long-term
dynamics are not positive.

2, shown in Figure 3, we discover that D and �Acum
are unbounded, but Anew is not positive. In the limit,
it appears that Anew will tend toward 0.

Perhaps selection for local dissimilarity is too weak to
produce a clear e�ect in the activity levels. Or perhaps
the metric Anew is not well suited to the detection of
this sort of adaptation. In either case, we still have
not satis�ed Requirement 3.

2.3 URMODEL 3

Let us consider a more traditional description of
evolution. Organisms evolve in heterogeneous envi-
ronments. When a mutation turns out to produce
an adaptive change, that mutation tends to spread
rapidly in the population in what is called a \selec-
tive sweep." Would such a model produce open-ended
evolution?

� We will model the evolution of parasite species
by matching the bit pattern of their genotypes
against the heterogeneous but static environment
of host genotypes. The parasite's �tness is de-
termined by the degree of match (number of bits
with the same value in the same positions) be-

tween the bit patterns. We may think of each bit
in the pattern representing the locus of some char-
acter of the parasite relevant to the exploitation
of its host.

� Mutation (0.1) occurs in the parasite bit patterns
at speciation (reproduction).

� A new parasite species may displace a neighboring
species if it would have an equal or higher �tness
than the neighbor.

� The probability of invading a new host species
that has never been parasitized (0.1) is lower than
the probability of invading a host that has been
infected before (1 if it is a superior competitor
relative to the resident parasite).

� Stop the model when half the adaptive landscape
�lls.

We have chosen to call the evolving species \parasites"
and their environments \hosts" in anticipation of Ur-
model 4. For now, note that Urmodel 3 has aban-
doned frequency based selection and dynamic �tness
functions. The host genotypes were set using Urmodel
1 with a mutation rate of 0.1. However the host geno-
types and thus the selective pressures on the parasites
remain constant. The model is seeded with a single
parasite species that fails to match its host in any of
its 32 bits.
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Figure 4: A log-log plot of the age of components ver-
sus their frequency in the population over the entire
run of Urmodel 3 and its neutral shadow. We conser-
vatively set a0 = 3. This data is the average of 50 runs
of both Urmodel 3 and the neutral shadows for each
of those runs.

Figure 5 shows that Urmodel 3 is our �rst example of
unbounded evolutionary activity. It shares the class
of evolutionary dynamics with biological life, except
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Figure 5: A plot of the diversity D, the mean cumu-
lative activity �Acum, and the new adaptive activity
Anew over time in Urmodel 3. This data is the av-
erage of 50 runs. Anew, de�ned with a0 = 3, is posi-
tive and might even be unbounded. Urmodel 3 shows
less new activity than its neutral shadow (the upper
curve). However the new activity of Urmodel 3 rises
over time while the neutral shadow's new activity de-
creases. There is no reason to think they would not
cross as the system continued to grow. Urmodel 3 is
the �rst known arti�cial evolutionary system demon-
strating unbounded evolutionary activity.

that it does life one better by exhibiting unbounded,
rather than bounded, mean cumulative activity. How-
ever, if we were to let death intrude on the model
in forms other than competition, we might well see
�Acum(t) reach a natural bound. The previous state-
ments should only be accepted with the caveat that
we must extrapolate the dynamics of the model past
the point where Anew surpasses the new activity in its
neutral shadow.

2.4 URMODEL 4

The most important aspect of an organism's environ-
ment are the other organisms with which it interacts.
Urmodel 3 lacks an ecology, however primitive. It is in-
formative to examine how the dynamics change when
we add coevolution to the model.

Call the organisms of Urmodel 3 \parasites" and the
environment they are exploiting \hosts." Then, if we

let the hosts evolve defenses against the parasites and
the parasites evolve responses to those defense, we
have a new form of non-static �tness function for both
the parasites and the hosts. Urmodel 4 is thus simi-
lar to Urmodel 2 with their dynamic �tness functions.
However, we have abandoned an abstract frequency
based selection in favor of a more traditional dynamic
�tness function: coevolution.

� We will model this coevolution by the matching of
two bit patterns. The host's �tness is determined
by the degree of mismatch and the parasite's �t-
ness is determined by the degree of match between
the bit patterns. We may think of each bit in the
pattern representing the locus of some character
of the species relevant to the coevolutionary in-
teraction.

� Mutation (0.1) occurs in both the host and para-
site bit patterns at speciation.

� A new species may displace a neighboring species
if it would have a higher �tness than the neighbor.

� Only hosts may expand into novel adaptive space
and their probability of doing so (0.1) is lower
than the probability of invading a niche that has
been �lled before (which depends only on compe-
tition).

� Stop the model before the adaptive landscape �lls.
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Figure 6: A log-log plot of the age of components ver-
sus their frequency in the population over the entire
run of Urmodel 4. We set a0 = 4 based on this data.
The data is the average of 50 runs of both Urmodel 4
and the neutral shadows for each of those runs.

The activity distributions of Urmodel 4 and its neu-
tral shadow do not show as strong a di�erence as in
Urmodel 3. Natural selection is generating upheaval



in the components, not stability. A mutation that is
initially adaptive will spread through the population
of hosts or parasites. But the very success of this mu-
tation spells its doom. Consequently, there is strong
pressure on the coevolving species to respond to that
mutation, and when it does, the initial mutation be-
comes maladaptive. We can now see that the action
of natural selection on the activity distribution of Ur-
model 2 (Figure 2) prevented a clear distinction be-
tween the model and its neutral shadow because selec-
tion was biased toward novel genotypes.
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Figure 7: A plot of the diversity D, the mean cumula-
tive activity �Acum, and new adaptive activity Anew
over time in Urmodel 4. This data is the average of 50
runs. The lower curve in the plot of Anew shows the
neutral shadow indicating that selection is maintain-
ing new adaptive components more than the neutral
shadow. The fact that �Acum is bounded shows that
there is a lot of turnover amongst the components in
this coevolutionary model.

Figure 7 shows the evolutionary dynamics of Urmodel
4. Now �Acum is bounded but less than its neutral
shadow due to the turnover of coevolution. Anew is
positive and greater than its neutral shadow, but it is
nonetheless bounded. Urmodel 4 is another example
of unbounded evolutionary activity.

3 DISCUSSION

The Urmodels illustrate two important lessons. First
of all, the activity metric chosen by Bedau et al. (1998)

will sometimes fail to capture adaptive activity if nat-
ural selection does not tend to preserve components
for long periods of time. Bedau et al. point out that
there are many reasonable de�nitions that might be
chosen for D, �Acum and Anew. If the biotic or abi-
otic environment of a species changes over time, then
some components that are adaptive may well prove
maladaptive in the future. Furthermore, if the selec-
tive pressure is particularly strong, then an adaptation
may sweep through a population like wild-�re, only to
be replaced shortly thereafter by the next improve-
ment. In this case, even a static �tness function might
result in a shorter than random life span for the com-
ponents of the model. We need a di�erent measure
of adaptive activity for dynamic �tness functions. For
example, we would predict that the rate of replication
of an adaptive component should be greater than rates
of growth of components in a neutral shadow. If we
let pi(t) be the number of instances of component i
at time t in a model, and p0 and k0 be thresholds set
by comparison to a neutral shadow, then we might
rede�ne

Anew(t) = #fi : pi(t) > p0 and ai(t) < k0g (6)

This metric should identify selective sweeps by picking
out the components that are expanding at a faster than
random rate. Components might be replaced quickly
through selective pressures in a uctuating environ-
ment but adaptive activity could be detected in the
rapid growth of each newly selected component.

To be fair, Urmodels 3 and 4 are probably not the �rst
arti�cial systems created that demonstrate unbounded
evolutionary activity. If we restrict our analysis to the
dynamics of the systems during their growth phase,
many arti�cial life models probably would share this
class with Urmodel 3. The only trick is defer the point
when the model hits its true asymptotic behavior for
long enough that the growth dynamics of the model
are themselves asymptotic in some sense. That is, the
early transient e�ects should die away and the growth
dynamics of the model should become stable over time.
These are the conditions for arti�cial dynamics that
may be best compared to the dynamics of real life.

The second lesson is that the metrics only get us so
far. While we have technically succeeded in creating
arti�cially evolving systems that share the class of un-
bounded evolutionary systems with biological life, no
one would be satis�ed with Urmodel 3 as an \open-
ended" evolutionary system. Thus, something must be
missing from our speci�cation of the problem. There
are at least two distasteful aspects of Urmodel 3. First,
the niches are imposed from the outside, they are not
endogenous to the diversity of the biota.



Requirement 4 An open-ended evolutionary system
must have an endogenous implementation of niches.

The capacity to survive and ourish should only be
a (potentially stochastic) function of the individual's
phenotype and its match to its environment. Urmod-
els 1, 2 3, and 4 (in the case of the hosts) do not ful�ll
this requirement because they allow any phenotype to
survive as long as they land in an open grid location.
We should note that requiring endogenous niches leads
us further astray from the �eld of evolutionary algo-
rithms and its application of evolution to engineering.

The second aw is the fact that the products of Ur-
model 3 would never surprise us. In section 1.1 we
said that we would set aside the issue of complexity.
Clearly, our wonder in the natural world has much
to do with its complexity. A puddle of inert, multi-
colored and diverse algae would not be nearly so in-
spirational as the rain forest. Some work has begun in
the measurement of complexity in biology (McShea,
1991; Yagil, 1995; Arthur, 1994). A signi�cant contri-
bution to the �eld would be an adaptation of such a
measure to an interesting evolutionary model. If we
did have an easily computable metric for complexity,
we would like to see unbounded growth in the maxi-
mum complexity of the organisms over time, as well as
unbounded diversity.

We have intentionally kept a distinction between the
still unde�ned term \open-ended evolution" and Be-
dau et al.'s \unbounded evolutionary activity." The
hope is that through re�nements of these metrics we
may eventually capture what we mean by \open-ended
evolution" and then use those metrics to develop mod-
els of open-ended evolution. The gauntlet has been
thrown.
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