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Abstract
The purpose of this paper is to provide a new

approach for investigating the competitive
interactions in the large. Another purpose of this
paper is to study emergent strategic behaviors and
to analyze the effects of bounded rationality and the
mimicry strategy in the competitive situations. We
show how the society gropes for its way towards
equilibrium in an imperfect world where agents are
sensible but not perfectly rational. They have limited
information, and there is no common knowledge
among them. This paper is also about social learning
and shows how the society as a whole learns even
when the individuals composing it do not.
Specifically, it is about the evolution of social norms.
We especially examine how conventions evolve in a
society that begins in an amorphous state where there
is no established custom, and individuals rely on
hearsay to determine what to do. With simulations,
we provide specific conditions as to which
conventions are most likely to emerge.

1  INTRODUCTION
A convention is a pattern of behavior that is customary,

expected, and self-enforcing. Everyone conforms, everyone
expects others to conform, and everyone wants to conform
given that everyone else conforms. Familiar examples
include driving on the right when others drive on the right,
going to lunch at noon if others go at noon, and so forth.
For each role in such asymmetric interactions there is a
customary and expected behavior, and everyone prefers to
follow the behavior expected of him provided that others
follow the behavior expected of them. Under these
circumstances we say that people follow a convention.

A convention is an equilibrium that everyone expects,
but how do mutual expectations become established when
there is more than one equilibrium? One explanation is
that some equilibria are a priori more reasonable than others.
A deductive theory of this type has been proposed by
Harsanyi and Selten [3]. A second explanation, proposed
by Schelling [7], is that agents focus their attention on one
equilibrium because it is more prominent or conspicuous
than the others. A third explanation is also possible such
that, over time, expectations converge on one equilibrium

through positive feedback effects. Eventually, one
equilibrium becomes entrenched as the conventional one,
not because it is inherently prominent or focal, but because
the dynamics of the process happen to select it.

Consider, for instance, an N-person game that is played
repeatedly, but by different agents. In each period, N players
are drawn at random from a large finite population. Each
player chooses an optimal strategy based on a sample of
information about what others players have done in the
past. The sampling defines a stochastic process that, for a
large class of games that includes coordination games and
common interest games, converges almost surely to a pure
strategy Nash equilibrium. Such an equilibrium can be
interpreted as the conventional way of playing the game.
If, in addition, the players sometimes experiment or make
mistakes, then society occasionally switches from one
convention to another. As the likelihood of mistakes goes
to zero, only some conventions (equilibria) have positive
probability in the limit. These are known as stochastically
stable equilibria. They are essentially the same as the risk
dominant equilibria [3]. This concept was first defined for
general evolutionary processes by Foster and Smith [9].
Subsequently it was applied to a discrete model of
equilibrium selection in a pioneering paper by Kandori
and his collogues [4]. They consider an evolutionary learning
process defined on symmetric 2 x 2 games. In each period
every player plays every other. Successful strategies are
adopted with higher probability than unsuccessful ones.
This evolutionary explanation for the origin of conventions
has been suggested in a variety of papers [2][9][10], but
the precise dynamics of the process by which expectations
and behaviors evolve has not been clearly spelled out.

The purpose of this paper is to explain the problem of
bounded rationality and evolution. We formalize these ideas
in a model with a finite population of agents in which
agents are repeatedly matched within a period to play a
stage game. We only impose a weak monotonicity condition
reflecting the inertia and myopia hypotheses on the
dynamics, which describe the intertemporal changes in the
number of agents playing each strategy. The hypotheses
we employ here reflect limited ability (on the agent's part)
to receive, decide, and act upon information they get in the
course of interactions. Our specification of dynamics draws
heavily on the biological literature. In that literature, agents



are viewed as being genetically coded with a strategy and
selection pressure favors animals, which are fitter (i.e.,
whose strategy yields a higher reproductive fitness or payoff
against the population).

There are also growing literatures on the bounded
rationality and the evolutional approach, the hypotheses
employed in these researches reflect limited ability of each
player or agent to receive, decide, and act upon information
they get in the course of interactions. Specification of
dynamics draws heavily on the biological literature, and
agents are viewed as being genetically coded with a strategy
and selection pressure favors animals, which are fitter (i.e.,
whose strategy yields a higher reproductive fitness or payoff
against the population). Our model can be interpreted in
like manner, however, we intend to combine the evolutional
approach and the concept of bounded rationality. We
consider the situation where a group of agents is repeatedly
matched to play a game. Each agent only interacts with his
neighbors, and when agents react, they react myopically
(the myopia hypothesis). The following three hypotheses
form the basis of our analysis [5][6].

(1) Each agent only interacts with his neighbors.

(2) When agents react, they react myopically (the myopia
hypothesis).

The second hypotheses are based on the assumption
that agents are completely naive and do not perform
optimization calculations. Rather, agents sometimes observe
the current performance of other agents, and simply mimic
the most successful strategy. Note that in the first
interpretation, agents are able to calculate best replies and
learn the strategy distribution of play in society. In the
second interpretation, players are less sophisticated in that
they do not know how to calculate best replies and are
using other agent's successful strategies as guides for their
own choices.

2  STRATEGIC INTERACTION IN THE
      LARGE

Fig.1 shows the networks of mutual and strategic
interactions in the large. In the figure, each node represents
an agent, and they interact with their neighbors. These
interactions can be observed everywhere in the network.
We describe each mutual interaction between any two
agents, which is represented by the link in the figure and it
can be modeled as the strategic decision problem of each
agent. That is, each agent has several strategies for the
interaction. The payoffs for all the possible combinations
of strategic decisions can be defined before interaction.
Those strategic interactions can be repeated infinitely and
none of the agents know the end of game. We classify the
types of the strategic interactions into several classes based
on those payoff structures, and they are given the special
name in the game theory.

We observe the phenomena such as how each agent's

action combines with the actions of others to produce the
whole behavior and some unanticipated results. However,
there are many parameters to be considered such as payoff
function, noise, population structure, localization, the
shadow of the future, the number of agents and so on.
Among these parameters, we examine two parameters:
payoff function and localization. The payoff function is
generally fixed in the game but there exist many criteria of
payoff function in real world, especially in economic and
social systems. We especially examine the defect of payoff
function and the localization. These factors are reported to
affect emergence of cooperation. This paper also uses the
mimicry learning strategy, which has advantage of reflection
of dynamic environment.

Fig 1: Competitive and local interactions in the large

Fig 2: Localized interaction

3  LOCAL INTERACTION WITH MIMICRY
Each agent interacts with the agents on all eight adjacent

squares and imitates the strategy of any better performing
one. To make this process amenable to analysis, it must be
formalized. For illustrative purposes, consider a simple
structure of territories in which the entire territory is divided
up so that each agent has eight neighbors as shown in Fig
2. In each generation, each agent attains a success score
measured by its average performance with its eight
neighbors. Then if an agent has one or more neighbors
who are more successful, the agent converts to the strategy
of the most successful of them. Or picks randomly among
the best in case of a tie among the most successful neighbors.

Nations, businesses, tribes, and birds are examples of
agents which often operate mainly within certain territories
[1]. Territories can be thought of in two completely different
ways. One way is in terms of geography and physical
space. They interact much more with their neighbors than



with those who are far away. Hence their success depends
in large part on how well they do in their interactions with
their neighbors. But neighbors can serve another function
as well. A neighbor can provide a role model. If the neighbor
is doing well, the behavior of the neighbor can be imitated.
In this way successful strategies can spread throughout a
population, from neighbor to neighbor. Colonization
provides another mechanism in addition to imitation by
which successful strategies can spread from place to place.
Colonization would occur if the location of a less successful
strategy were taken over by an offspring of a more successful
neighbor. But whether strategies spread by imitation or
colonization, the idea is the same: neighbors interact and
the most successful strategy spreads to bordering locations.
The individuals remain fixed in their locations, but their
strategies can spread.

Territorial social structures have many interesting
properties. One of them is that it is at least as easy for a
strategy to protect itself from a takeover by a new strategy
in a territorial structure as it is in a non-territorial structure.
To see how this works, the definition of stability must be
extended to include territorial systems. A strategy can invade
another if it can get a higher score than the population
average in that environment. In other words, a single
individual using a new strategy can invade a population of
natives if the newcomer does better with a native than a
native does with another native. If no strategy can invade
the population of natives, then the native strategy is said to
be collectively stable.

To extend these concepts to territorial systems, suppose
that a single individual using a defective strategy is
introduced into one of the neighborhoods of a population
where everyone else is using a cooperative strategy. One
can say that the defective strategy territorially invades the
cooperative strategy if every location in the territory will
eventually convert to the new strategy. Then one can say
that cooperative strategy is territorially stable if no strategy
can territorially invade it. In such a case, the dynamics of
the invasion process can sometimes be extremely intricate
and fascinating to look at.

4  SIMULATION RESULTS (1):
     COORDINATION GAMES

In this simulation, we consider the case in which each
local interaction is modeled as coordination games as shown
in Table 1 and Table 2. Number of agents are 2500 (N=2500).
With this game, we are especially interested in the effect
of changing the parameter b, micromotives for defect for
the collective behaviors in the whole society. We are mainly
concerned with that how S1 survive with the invasion of
the S2  as the changing the parameter b. Therefore, we start
with only one S2  in the society. We arranged agents for an
area of 50*50 (N=2500 agents) with no a gap and observed
how agents interact. Four corners and end of an area connect

it with an opposite side. All agents interact eight agents in
neighborhood.

4.1  COORDINATION GAMES (1)
We describe the mutual interaction by  coordination

game as shown in Table 1.

Table 1: Payoff matrix of the coordination game (1)

CASE 1: (b=0.624) 75% of randomly chosen agents
adopt  S1, and the rest (25%) adopt S2  at the beginning.

At the beginning, the rates of agents who adopt S1 are
75%, and that of agents who adopt S2  are 25%. Fig 3(a)
shows the rates of both strategies over generation. This
figure shows that the rates of S1 increases at the beginning
and then it gradually decreases and reaches to 0 finally.
This implies the whole society is occupied by the superior
strategy S2 . At the 15th generation, all agent in the society
adopt S2  wholly. Fig 3(b) represents the average payoff of
each agent at every generation. As the number of agent
who adopt S2  increases, the payoff of each agent increases
and finally the payoff becomes to be 1 at the 15th generation.
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Fig 3(a): The proportion of S1 and S2  over generation
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Fig 3(b): The average payoff of each agents



CASE 2: (b=0.626) 75% of randomly chosen agents
adopt S1, and the rest (25%) adopt S2  at the beginning.

Fig 4(a) shows the rates of both strategies over generation
and the majority of the society adopt S1. As shown in Fig
4(b), represents the average payoff, Fig 4(c) represents
distribution map of the strategies S1 and S2  in the society.
A white square represents the strategy S1 and black square
represents the strategy S2 . This implies, if the parameter b
increases slightly from b=0.624 to 0.626, then the society
is almost occupied by the inferior strategy S1.

0

500

1000

1500

2000

2500

1 5 9 13 17

Generation

 S1,  S2

Fig 4(a): The proportion of S1 and S2  over generation
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Fig 4(b): The average payoff of each agents
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Fig 4(c): The distribution of S1 and S2

In the coordination game in Table 1, if b<1, S2  is superior
to S1. To make the superior strategy becomes S2  invade
the society, neighboring agents should also adopts S2 . When
a small group composed of six who adopt S2  and if b<0.625,
this group can survive and also invades the whole society.
However, if b<0.625, this group can survive, but can't
invade.

4.2  COORDINATION GAMES (2)
We describe the mutual interaction by another

coordination game as shown in Table 2.

Table 2: Payoff matrix of the coordination game (2)

(1) b > 1

In this the strategy, S2  is always more superior to S1.
We also consider the case such that a only one agent adopts
S2  at the beginning. One agent who adopts S2  invades
neighbors who adopt S1, and then whole society becomes
to be occupied by S2 . As agent who adopt S2  exist more
and more, invasion speed becomes fast. Even though
neighbors adopt S1 or S2 , agent who adopt S2  get more
payoff than that of adopting S1.

(2) b = 1

When only one agent who adopts S2  exist, he does
only survive, can't invade the society. But if an agent who
adopts S2  exists even one in the neighborhood, the invasion
of one agent who adopts S2  is possible. As a result, whole
society becomes to be occupied by S2 . We represents this
mechanism in shown Fig 5. Two agents who adopt S2  in
center getting payoff 8b+1, these payoff is higher than
neighboring payoff 6 or 7. After all, when only one agent
who adopts S2  can't invade a society, but if two agents
who adopt S2  cooperate, they can invade the whole society.

Fig 5: The mechanism of invation in the coordination
games (2)
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Fig 6(a): The proportion of S1 and S2  over generation
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Fig 6(b): The average payoff of each agents

Fig 6(a) shows that only one small group composed of
two agents who adopt S2  invades the whole society very
fast. At 18th generation, the society becomes to be occupied
by S2  wholly. At first, almost agents adopt S1, so average
payoff is about 1. But as generation proceeds, agent who
adopts S2  increase gradually, finally, average payoff
changes to be 2 at 18th generation.

(3) b < 1

If an agent who adopt S2  exist only one and there isn't
only one agent who adopt S2  in his neighborhood in the
society, this agent change to S1 rapidly, and the society
becomes to be occupied by S1 rapidly. But if agents who
adopt S2  make a small group composed of some, they can
invade a whole society.

Concretely, if b>0.375 and agent who adopt S2  make a
group composed of six, this group invade the society wholly.
As a result, the society becomes to be occupied by S2 .

CASE 3: (b=0.376) 80% of randomly chosen agents
adopt S1, and the rest (20%) adopt S2  at the beginning.

At the beginning, the rates of agents who adopt S2  are
20%. As shown in S2 -curve at Fig 7(a), the rates of S2  are
20% at 1st generation, and decreasing suddenly at 3th
generation and then increasing after next all generation.
This phenomenon represents follows: in this society,
because of existing one at least that agent who adopt S2

makes a group composed of six, this group can survive
and invade this society. On the other hand, agent who
adopt S2  makes a group composed of less than six can't
survive and they changes to S1 rapidly.

As shown in Fig 7(b), average payoff is about 0.75 at
1st generation. But as generation proceeds, agent who adopt
S2  increasing gradually, finally average payoff becomes to
be 1.4 at 12th generation.

0

500

1000

1500

2000

2500

1 5 9 13 17

Generation

 S1,  S2

Fig 7(a): The proportion of S1 and S2  over generation
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Fig 7(b): The average payoff of each agents

CASE 4: (b=0.374) 80% of randomly chosen agents
adopt S1, and the rest (20%) adopt S2  at the beginning.

At the beginning, there are seven groups exist composed
of more than six that agent who adopt S2  in this society.
However, because of b<0.375, these group make colonies
and only can survive (as shown in Fig 8(c)). Fig 8(b)
represents average payoff. If this society becomes to be S2

wholly, average payoff change to value of 1.4, however
these groups who adopt S2  could only survive. Therefore,
average payoff change to value of 1.
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Fig 8(a): The proportion of S1 and S2  over generation
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Fig 8(b): The average payoff of each agents
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Fig 8(c): The distribution of S1 and S2

5  SIMULATION RESULTS (2):
     CHICKEN GAMES

In this simulation, we consider the case that each mutual
interaction is modeled as so called chicken game as shown
in Table 3. In chicken game, the most suitable strategy
that agents adopt is alternately adopt S1 and S2  strategies.
For instance, when two drivers meet at an intersection,
there is no rational basis for deciding who should yield
unless there is an established custom (or law) for dealing
with the matter. Moreover, there is not too much room for
learning here since one mistake can cut learning short.
Even in less precarious circumstances, people do not tend
to solve such problems by relying on their own limited
experience. They learn through others' mistakes, and come
to know from vicarious experience what the accepted pattern
of behavior is. After, we call this strategy a shift strategy.
Does a society change to adopt a shift strategy or not? We
think this situation that only one agent in the center S2 ,
and remaining agents S1 at the beginning.

Table 3: Payoff matrix of the chicken game

CASE 5: (b=0.7) Only one agent in the center S2 ,
and remaining agents S1 at the beginning.

As shown in Fig 9(a), the society accomplishes a dynamic
inflection even 30 generation. A point that should be
emphasized is that the majority of agents who adopt S1 in
the society changes to shift strategy. The society reached
an equilibrium state at 60th generation, then at this time,
the rates of agents who adopt shift strategy are 60%, the
rates of agents who persists S1 are 25%, and the rates of
agents who persists S2  are 15% in the society. Fig 9(b)
represents average payoff. At an equilibrium state, average
payoff vibrate around the value of 0.25. If all agent adopt
shift strategy, agents can get more payoff. So payoff average
should be 0.85(=(1+b)/2), but agents gets small payoff the
value of about 0.25. This is the reason why  agents who
persists S1 or S2  exist in the society and these interactions

of same strategies ((S1, S1) or (S2 , S2 )) gets payoff the
value of 0, so agents who adopt shift strategy only gets
payoffs in the society.
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Fig 9(a): The proportion of S1 and S2  over generation
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Fig 9(b): The average payoff of each agents

CASE 6: (b=1.0) Only one agent in the center S2 ,
and remaining agents S1 at the beginning.

At this case, even though, agent who adopts S1 or S2 , a
payoff that agent get is equal. As a result of this simulation,
the rates of agents who persist S1 or S2  are 40% in the
society (the rates of agents who persisted S1 are 20% and
the rates of agents who persisted for S2  are 20%). And the
rates of agents who adopt shift strategy are 60% in the
society. This implies that differences of a beginning state
of the rates of agents who adopt S1 or S2  don't give an
influence to equilibrium state, it is value of b to have an
influence on rather.
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Fig 10(a): The proportion of S1 and S2  over generation
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Fig 10(b): The average payoff of each agents

CASE 7: (b=1.2) Only one agent in the center S2 ,
and remaining agents S1 at the beginning.

As a generation proceeds, agents who adopt S2  increases
and agents who adopt S1 decreases more and more in the
society. The society reached an equilibrium state at 24th
generation, then at this time, the rates of agents who adopt
S1 are 5%, the rates of agents who adopt S2  are 85% and
the rates of agents who adopt shift strategy are only 10%.
In this society, we can say that a social dilemma occurred.
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Fig 11(a): The proportion of S1 and S2  over generation
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Fig 11(b): The average payoff of each agents

6  THE MECHANISM OF EVOLUTION OF
     SOCIAL NORMS

By changing the value of b in the chicken game in
Table 3, we investigate how a shift strategy emergent in
the whole society. Fig 12, Fig 13 and Fig14 represent how
a society evolve as a generation proceeds. Each square
represents the payoffs of each agent. With the color of

square white, it also represents the agent who adopt S1 and
that of gray represents agent who adopt S2 .

(1) 0 < b < 0.125

One agent who adopt S2  in center and the another agents
who adopt S1. Fig 12 shows the condition of an agent who
adopt S2  exist at t-th generation. In this case, an agent
who adopt S2  in center changes to S1 at next t+1-th
generation. That is, when a value of b is very small, even
though there are some agents who adopt S2  exist, they
change to S1 and then all agents change to S1 in the society.
This means that when the value of b is very small, the
society can't emerge a shift strategy.

@

Fig 12: The payoff of each agent at the t-th generation

(2) 0.125 < b < 0.4

In this case, center agent who adopt S2  can survive,
and neighbors changes to S2 . As a result, state of the
society at t-th generation shift to t+1-th generation as shown
in Fig 13. Then state of the society at t+1-th generation
shift to t+2-th generation as shown in Fig 13. This state at
t+2-th generation is same as that of t-th generation. The
society will repeat this phenomenon. As a result, neighboring
agents of a central agent adopt S1 and S2  alternately as a
generation proceeds. So this society emerged a shift strategy,
if it says. This means that when 0.125<b<0.4, if there are
some agents who adopt S2  exist, neighboring agents of
them change to shift strategy.

(3) 0.4 < b < 0.9

An inflection to the t+1-th generation in the same as
(2). Aspect of an inflection of the society as shown in Fig
14. In this case, center agent who adopt S2  gives an influence
neighbor agent, and center agent makes neighboring agents
change S2 . And then, at t+2-th generation, agents who
adopt S2  increases for five. These five of agents who adopt
S2  act in the same way of center agent who adopt S2  at
t-th generation. Thus, agents who adopt S2  spreads in the
society  wholly. Further more, neighboring agents in the
place of agent who adopt S2  takes a shift strategy. As a
result, almost agents will adopt shift strategy in this society.
This means that when 0.4<b<0.9, agents don't persist S1 or
S2  strategy and many agent will adopt shift strategy.



                            

                
Fig 13: The t-th generation                The t+1-th generation                  The t+2-th Generation

                           

              
Fig 14: The t-th generation                   The t+1-th generation                       The t+2-th Generation

7  CONCLUSION
We analyzed the competitive interactions in a finite

population of agents in which agents are repeatedly matched
within a period to play a stage game. We only imposed a
weak monotonicity condition reflecting the inertia and
myopia hypotheses on the dynamics, which describe the
intertemporal changes in the number of agents playing each
strategy. The hypotheses we employed here reflect limited
ability (on the agent's part) to receive, decide, and act
upon information they get in the course of interactions.
Our specification of dynamics draws heavily on the
biological literature. And we analyzed also about social
learning and shown how the society as a whole learns
even when the individuals composing it do not. Specifically,
it is about the evolution of social norms. We especially
examined how conventions evolve in a society that begins
in an amorphous state where there is no established custom,
and individuals rely on hearsay to determine what to do.
With simulations, we provided specific conditions as to
which conventions are most likely to emerge.
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