A Diversity Study in Genetic Algorithms for Job Shop Scheduling
Problems

Carlos A. Brizuela
Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 6068585 Japan
cbrizuel@si.dj.kit.ac.jp
+81-75-724-7467

Abstract

This paper deals with the study of popula-
tion diversity in Genetic Algorithms for Job
Shop Scheduling Problems. A definition of
population diversity at the phenotype level
and a way to compute it are given. Two di-
versity oriented selection procedures for GA
are proposed. Their performances in terms
of diversity and solution quality are tested
against a standard Genetic Algorithm. Rela-
tions between population diversity and algo-
rithm accuracy are shown through numerical
experiments.

1 Introduction

When using Genetic Algorithms (GA) to face dynamic
scheduling problems or even in the case of static multi-
objective optimization problems, it is necessary to
have at each iteration a high diverse population. How
high this diversity should be or whether it should be
slowly or rapidly varying value, is not known. In fact,
up to date very little has been said about system pop-
ulation diversity and its influence on algorithms per-
formance.

System adaptability is one of the most important per-
formance criterion when dealing with real world prob-
lems. In these real world problems, we usually track
the behavior of population through the fitness func-
tion. When the problem representation is simple in
the sense that the genotype-phenotype is an one-to-
one like map, we can easily look for properties of the
population through the genotype. However, when the
representation does not have this feature we need per-
haps to use extra information besides that provided by
the fitness function to know more about the popula-
tion behavior.

It is our belief that population diversity plays an im-
portant role in the adaptation mechanism of Genetic
Algorithms. This belief is based on the fact that for

Nobuo Sannomiya
Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 6068585 Japan
sanmiya@si.dj.kit.ac.jp
+81-75-724-7447

a certain class of ecological system, simulation results
of behavior suggest that adaptability to environmen-
tal variations strongly depends on system diversity as
well as on other characteristics of the population (San-
nomiya and Tian, 1998).

In the case of scheduling problems, so far as we know,
nothing has been done in trying to answer the ques-
tion of adaptability regarding the population diversity.
This work is a first step of an attempt in trying to an-
swer this question. Following in this direction, the
first step is to have a clear definition of system diver-
sity and a mechanism to control it. This work is aimed
to achieve these goals.

One of the most challenging problem in real world opti-
mization is the Job Shop Scheduling Problem (JSSP).
In this work we deal with a very special case of this
problem, the one that lasted more than twenty years
to be solved (Muth and Thompson, 1963).

A very important problem when dealing with GA for
JSSP is the time consuming tuning process for large
size problems. Perhaps, the information provided by
the diversity measure can help us to automate this tun-
ing process and to choose the most appropriate popu-
lation size.

The paper is organized as follows. Section 2 gives a
brief explanation of the problem we consider and the
way we want to face it. In section 3 a definition of
population diversity as well as a way to compute it
are given. Section 4 gives two proposed methods for
keeping high diversity values. Section 5 explains the
experimental results and finally section 6 states the
conclusions.

2 Background

2.1 Problem Formulation

The Job Shop Scheduling Problem (JSSP) is among
the toughest real world combinatorial optimization
problems. It was shown to belong to the NP-hard

class (Taillard, 1994).

Basically this problem consists of a set J of jobs and
a set M of machines. Each job j (1< j < n = |J|)
has m = |M]| operations (Oj1,0j2, ..., Ojm) that must
be scheduled in a pre-defined machine sequence im-
posed by technological requirements. Each operation
is processed on each machine only once. No opera-
tion may free its machine until it is finished. There is
also a specified processing time #(j,k) for each opera-
tion O, (job jin machine k). The problem is to find a
sequence of jobs for each machine satisfying the tech-
nological restrictions and such that the finishing time
of the last operation (completion time) on the latest
job be minimized (Makespan minimization).

Many procedures have been proposed to solve this
problem. Branch and Bounds methods provides the
optimal solution for this problem but its computa-
tion becomes prohibitive for large size instances. Local
Search approaches like those analyzed in (Aarts et al.,
1994) and (Vaessens et al., 1996) can get good quality
solutions without ensuring optimality.

2.2 Genetic Algorithms Approach

There have been a number of studies on applying GA
to JSSP (see (Davis, 1985), (Yamada and Nakano,
1995), (Kobayashi et al., 1995), (Shi et al., 1996), (Ya-
mada and Nakano, 1996), (Shi et al., 1997), (Yamada
and Nakano, 1997), (Gen and Cheng, 1997)). Their
methodologies differ mainly in the problem represen-
tation approach or in the way they perform the ge-
netic operations. Among the most successful ones we
can cite (Yamada and Nakano, 1995) and (Yamada
and Nakano, 1996). For these cases, the encoding uses
knowledge of the problem in order to build neighbor-
hoods to be used in genetic operations.

In this work we deal with a job-based like represen-
tation as used in (Shi et al., 1997). The idea is to
have a matrix A := [a;5; ¢ = 1,...,n, j = 1,...,m]
whose elements are job numbers to be scheduled in
the a(1,1),a(1,2),...,a(1,m),a(2,1),...,a(n,m) order,
following the technological restriction. The main char-
acteristic of this representation is that the matrix
columns are forced to be permutations of job num-
bers. This fact makes it easy and computationally
cheap to perform genetic operations without worrying
about feasibility of the generated schedule. The disad-
vantage is that there could be cases where the optimal
solution can not be expressed by this representation.
Despite this disadvantage we still use this representa-
tion for two reasons; first we use the same encoding in
both; our proposed methods and in the standard GA.
Secondly, we care about diversity and not too much
about the optimality of solution.

The standard GA is composed of the basic evolution
operators like selection, crossover and mutation (see
(Davis, 1985), (Gen and Cheng, 1997) and (Yamada

and Nacano, 1997)). Now, let us describe the standard
GA we will use in this paper.

Algorithm 1. Standard GA.

Step 1. Set k& = 0. Generate an Initial Pop-
ulation Pop[k] of G individuals.

Step 2. Using RWS select two individuals
from Popl[k] for genetic operations.

Step 3. Do Crossover (with probability Pc)
and mutation (with probability Pm).

Step 4. If the total number of selected indi-
viduals is smaller than G, then go to Step 2;
otherwise go to Step 5.

Step 5. Set £k = k + 1. Construct the new
generation Pop[#] of G individuals.

Step 6. If the stop criterion expires then
stop, otherwise go to Step 2.

Here, G is the population size. As it was described
previously a matrix description is used as a represen-
tation method in this algorithm. Roulette Wheel Se-
lection (RWS) is used as selection procedure and one
point crossover with embedded mutation (Shi et al.,
1997) for the other genetic operations. Elitism is used
in this algorithm as well as in our proposed methods.
We believe that almost all conventional Genetic Algo-
rithms for the JSSP will have similar behavior as the
one just described, at least, in terms of population di-
versity and solution quality. Here, the main idea is to
use this algorithm as a reference to compare with our
proposed methods.

3 Computation of Population
Diversity

One of the most difficult points to understand when
dealing with GA applied to JSSP is the genotype-
phenotype mapping. Due to the complex constraints
usually involved in problems like the JSSP, the repre-
sentation methods are complex and do not allow direct
view of what is happening at the phenotype level. For
instance, in job-based representation a high diversity
measure for the genotype (code space) will not neces-
sarily imply a high diversity measure of the phenotype
(schedules). Problems like these motivate us to define
diversity at the phenotype level.

In this section we give an explicit way to compute the
population diversity of the phenotype, in the case of
JSSP. We see the necessity of doing so due to the abuse
in use of the word! Hdiversity ! | without giving a clear
definition of it. First we define the difference between
two given schedules a and b.

Definition 1. The difference dif{a,b) between two
given schedules a and b, for a JSSP of n-jobs and m-
machines, is given by the sum over all machines of the
number of differently sequenced jobs on each machine,

dif(a,b) = Zzaab(ivj)a (1)

where 0,4(7,7) =
0 if job j in machine i of schedule a (i.e., (j,i,a)) is
immediately followed by the same job that follows
(4,i,b).
1 otherwise.

Here, we consider that (in all machines) the last job
is followed by the same fictitious job. Thus, if the
maximum number of jobs for a given machine is n then
the maximum number of differently sequenced jobs for
that machine will be n.

For example, let us suppose we have 3-jobs 3-machines
job shop schedules defined as:

M1: 123

M2: 321

M3: 312

for schedule @ and,
M1:123

M2: 231

M3: 231

for schedule b.

Here, M1 represents machine 1 and M1:1 2 3 indicates
the job number sequence in machine 1, i.e., job 1 is
scheduled first, followed by job 2 and this must be
followed by job 3.

We can see that M1 in a and b, has the same job
sequence, thus there is not difference between a and
b in M1. For M2 we see that the two first jobs are
sequenced differently, while the last jobs are followed
by the same fictitious job. In this case the difference
for M2 is 2. In M3 all the jobs are sequenced dif-
ferently, resulting in a difference of 3. Therefore, we
have a total difference between schedules a and b of
dif(a,b)=5.

The disjunctive graph distance may also be used to
measure the difference between two given schedules.
Since there are many combinatorial problems that can
be represented as disjunctive graph problems, this dis-
tance can be well exploited.

Definition 2. The population diversity of G indi-
viduals for a JSSP with n jobs and m machines and
difference dif(a,b) between schedules a and b is given
by

G—-1G—1

m SO diftii+ k). (2)

i=1 k=1

Div =

Notice that this definition is independent of both the
population size and the problem size. This is because
we take into account the total number of schedule dif-
ference computations (G(G-1)/2), and the maximum
number of different job sequences for any given in-
stance (mn).

With this definition we have a quantitative view of
what is happening at the phenotype level, avoiding
any wrong judgment at the genotype level. For ex-
ample, if we try to estimate the diversity through any
other means, let us say objective value variance, there
could be cases where this variance and the real popula-
tion diversity are poorly correlated, leading to a wrong
judgment of what is happening at the population level.

We can see that in this setup of diversity there is a
maximum population size Gmazx for which a maximum
diversity value is achieved. For instance, if we have two
completely different schedules then Div = 1. In the
same way for 3,4,...,Gmax completely different sched-
ules we will have Div = 1. If the number of schedules
is greater than Gmax we will have Div < 1.

Now, it could be interesting to see whether there is any
relation among population size (G), diversity (Div),
and Gmaz. To study this we need to compute (mn) Div
for the same problem instance, and different G’s. This
analysis may help us to find the appropriate value of
G to use.

4 Diversity Oriented Selection

We know that population diversity (for a given G) is
affected by selection, crossover and mutation. To what
degree each of these operations affects the diversity
measure is still an open problem. A study on how mu-
tation and recombination operations are related (for
simple cases), was presented in (Spears, 1998). More
general results are far still from being known.

There have been a number of propositions for crossover
and mutation operations which are expected to gener-
ate a highly diverse population. However, such propo-
sitions for selection strategies have received less con-
sideration.

Even though we can modify diversity by varying the
mutation rate we choose the selection procedure as
a high level diversity generator while still keeping the
mutation rate as a low level diversity generator. In this
way we will have higher degree of freedom for varying
the population diversity.

The idea of the proposition originates in a simulation
result of fish behavior affected by a narrow trap (San-
nomiya and Tian, 1998). According to the simulation

result, a fish school enters a trap and can get out of the
trap if a certain condition holds. Since the space of the
trap is narrow, the school tries to escape from the trap
as soon as possible. Then it is considered that small
escaping time leads to highly adaptive behavior of the
fish school. Tt is also concluded in (Tian et al., 1999)
that the adaptability of the fish behavior arises from
a certain range of system diversity. Thus we lay down
that the escaping time in fish behavior corresponds to
the objective function (Makespan) for JSSP. On the
basis of this analogy selection algorithms and the con-
cept of neighborhood are proposed with reference to
the fish behavior simulation.

It is still difficult, at this stage, to make a one-to-one
analogy between the fish school behavior and the Ge-
netic Algorithms. But, the idea of diversity could be
exploited to analyze whether or not the hypothesis of
strong relation between diversity and adaptability (in
fish behavior) also holds for Genetic Algorithms. We
have to pay special attention to the concepts of adapt-
ability if we want to establish a complete analogy be-
tween these two systems. This is because the concepts
of adaptability for the systems may not be so easily
related.

The first step to study the diversity will be to gener-
ate methods that produce a high diverse population
at small mutation rates. Our two proposed selection
algorithms to achieve this goal are as follows.

4.1 Method A

As we have just explained, we can affect population
diversity by modifying any of the three genetic opera-
tions. For our case we choose the selection operation
as the means to increase the diversity measure. In
our proposed method we basically choose N individ-
uals from the initial population of G (N<G). Around
each of these sampled individuals we construct a neigh-
borhood of size M (including one copy of the sampled
individual). From each neighborhood of size M we
choose M individuals, using the RWS method to do
this. Of the MN generated individuals we choose at
random G individuals. Finally we use the standard
RWS to choose two individuals for genetic operations
and continue as in the standard GA (from Step 3 of
Algorithm 1). We describe all this in the following
way.

Algorithm 2. Diversity Oriented Selection I (DOS I)

Step 1. Set i = 1.

Step 2. Select at random one individual I[{]
from Popl#].

Step 3. Construct a neighborhood of M ele-
ments around I[d; {I[4], J1[d], ..., JM-1[7]}.
Step 4. Apply RWS to each neighborhood
{I[4], J1[4], ...,JM-1[7]} to get M individuals.

Step 5. If ¢ <N then set « = i + 1 and go to
Step 2; otherwise go to Step 6.

Step 6. From the new MN individuals select
randomly G of them.

Step 7. From these G individuals select two
by RWS for genetic operations.

Step 8. Continue as in the standard GA.

It is noted that Step 2 of Algorithm 1 corresponds to
M=1 and N=G for Algorithm 2.

4.2 Method B

In order to increase diversity we intentionally modify
Step 7 in the previous algorithm so that instead of
using RWS selection to choose two individuals for re-
combination we use a random selection procedure. We
describe this in the following algorithm.

Algorithm 3. Diversity Oriented Selection IT (DOS
1)

Step 1. Set i = 1.

Step 2. Select at random one individual I[i]
from Popl#].

Step 3. Construct a neighborhood of M ele-
ments around I[7]; {I[7], J1[4], ..., JM-1[{}.
Step 4. Apply RWS to each neighborhood
{I[4], J1[4], ...,JM-1[3]} to get M individuals.
Step 5. If i <N then set i =i+ 1 and go to
Step 2; otherwise go to Step 6.

Step 6. From the new MN individuals select
randomly G of them.

Step 7. From these G individuals select two
randomly for genetic operations.

Step 8. Continue as in the standard GA.

It is noted that for both methods N individuals I[d;
i = 1,2,...,N are selected randomly at each generation
k. Thus, the neighborhood obtained by the proposed
methods is just like a bubble generating on the sur-
face of a hot spring. In this sense the model for these
methods may be called Bubble Model, in contrast with
Island Model or Stepping-Stone Model which are pro-
posed for parallel genetic algorithms.

Next we describe how to construct the neighborhood
in Step 3 of Algorithms 2 and 3.

4.3 Neighborhood Generation

There are many ways of constructing a neighborhood
for the JSSP, see (Gen and Cheng, 1997) and (Yamada
and Nakano, 1997). From the results in (Yamada and
Nakano, 1996) we can see that a neighborhood that
exploits the structure of the problem (i.e., a neighbor-
hood constructed at the phenotype level) gets better
results, in terms of solution quality. However, in our

case the neighborhood is constructed at the genotype
level, keeping in mind that what we are behind is an in-
crease in population diversity. In the algorithm below
we call I[i] to each of the N selected individuals. Jk[4]
represents the kth-individual in the neighborhood of
I[7]. We consider each individual to have an associate
matrix A which defines it. That is to say, J[k].a(l,r) is
the (I,r)-entry of the matrix A corresponding to indi-
vidual J£[4] in the neighborhood of individual I[z]. The
same goes for the matrix corresponding to I[d].

Algorithm 4. Neighborhood Generation.

Step 1. Set i = 1.

Step 2. For p=1 to M do Jp[)]=I[].

Step 3. Set k=1.

Step 4. Set Jk[1].a[1,m]=I[d].a[(k+1),m], Set
JE[d].a[(k+1),m]=I[q].a[1,m].

Step 5. If k<M-1 then set k=k+1 and go to
Step 4; otherwise go to Step 6.

Step 6. If i<N then set i=i+1 and go to
Step 2; otherwise go to Step 7.

Step 7. End.

5 Experimental Results

After having described these three selection methods
let us take a look of the diversity behavior for each
case. Figure 1 shows the behavior of diversity against
generations for the famous FT10X10 benchmark JSSP
(Muth and Thompson, 1963). The diversity measure
given by (2) is computed every 10 generations. Ten
trials for each algorithm were performed and the di-
versity average value is displayed for each case. The
population size G was 201. The sampling size and
neighborhood size for methods A and B were N = 40
and M = 5, respectively. Crossover probability Pc
and mutation probability Pm were fixed (for all ex-
periments) to 0.9 and 0.05, respectively.

We can appreciate in Figure 1 that as we expect the
diversity for the starting generations is high and it
decreases as generations increase. This behavior is be-
cause we start with a randomly generated population.
In the process of evolution (for the standard GA) top
ranked individuals are copied to next generations with
high probability. This fact makes each generation less
and less diverse, until the minimum steady value di-
versity is reached. This minimum value depends on
the mutation rate.

In method A (see Figure 1) the diversity is higher than
in the standard GA because the N individuals are se-
lected randomly from the original population G, i. e.,
all the individuals have the same probability to par-
ticipate in the neighborhood generation and, in this
way there is high probability of generating different
neighborhoods that contribute to the increase in diver-
sity. However, in the standard GA no neighborhood is

R ’/Slandard GA

Method B

Diversity

o6r Method A

Generations

0 200 400 600 800 1000

Figure 1. Diversity for FT10X10 problem.
size=201, N=40, M=5.

Pop.

generated, then only the fittest individuals have high
probability to survive.

In method B (see Figure 1), a high steady diversity
value can be seen. This is mainly because in the selec-
tion procedure, different individuals surviving the first
RWS (Step 4, Algorithm 3), have the same probability
to pass to the next generations.

Figure 2 shows the behavior of the objective value
(Makespan) against generations. It is observed from
the figure that, comparing to the standard GA, the
quality of solution for both methods, is decreased in
about the same order as the diversity is increased. In
this case we can see a trade-off between diversity and
accuracy among the methods; the more diverse the less
accurate.

Figure 3 shows the relations between diversity and mu-
tation rate for fixed neighborhood and sample sizes.
We can appreciate that our design goal is achieved,
i.e., the two proposed methods generate higher diver-
sity values for Pm up to 0.2 approximately for method
B and up to 0.1 approximately for method A. The mu-
tation rate for this experiment is varied from 0.0 to 1.0.
Diversity values are measured over the last generations
and the average value over 10 trials is displayed.

In order to study the effect of neighborhood size on
diversity and accuracy we carried out the following ex-
periments. The neighborhood size (M) in Algorithm
2 and 3 is varied from 3 to 10 keeping the sampling
size N to constant values (40, 60 and 80). The diver-
sity measure is computed for generations 970, 980 and
990. The average value for these generations over 10
trials is shown in Figure 4 for method A and in Fig-
ure 5 for method B, respectively. The average value
for the Makespan over the same number of trials is
shown in Figure 6 for method A and in Figure 7 for
method B, respectively. Finally, the same experiments
are repeated but in this case with a population size of
301 individuals. Figures 8 and 9 for diversity and Fig-
ures 10 and 11 for Makespan, show the corresponding
results.

1080

1060

1040 ',
. Method B

1020

Makespan

1000

-.. . Standard GA Method A

Generations

100 200 300 400 500 600 700 800 900 1000

Figure 2. Makespan for FT10X10 problem. Pop.
size=201, N=40, M=5.

0.9
08 _
MethodB__ - "~
07 \/' TN
Ry Method A
0.6 r’ :
z
S os
2
z |
0.4
Standard GA
03
02
0.1
Mutation Rate (Pm)
uO 02 04 06 08 1
Figure 3. Diversity variation with Pm. Pop.
size=201, N=40, M=5.
0.65|
N=40 x N=60+ N=80°
os \
z .
z .
g .
o

°
+

0.5

Neighborhood Size(M)

3 4 5 6 7 8 9 10

Figure 4. Variation of diversity with neighborhood
size for Method A. Pop. size=201.

From these simulation results we can see that the
neighborhood size affects population diversity when
we use a fittest selection procedure (method A). This
means that selection level diversity control can be
achieved. However, the measure is not much influ-
enced when dealing with a low selective procedure
(method B). If we take a close look at Figures 4 and
8 we can see that the diversity has an increasing ten-
dency as M (the neighborhood size) increases. This is
because the main contribution to the population diver-
sity is due to neighborhood diversity, thus the bigger
M the higher the diversity. In the case of method B
(Figures 5 and 9) the main contribution to diversity

N=40x N=60+ N=80°

Diversity
+

Neighborhood Size(M)

3 4 5 6 7 8 9 10

Figure 5. Variation of diversity with neighborhood
size for Method B. Pop. size=201.

1000 N=40* N=60+ N=80°

8
3

Makespan

f
&

920

Neighborhood Size(M)

900
3 a 5 6 7 8 9 10

Figure 6. Variation of makespan with neighborhood
size for Method A. Pop. size=201.

1020
N=40x N=60+ N=80°

1000 ¥

Makespan
g

8
g

940

Neighborhood Size(M)
3 4 5 6 7 8 9 10

Figure 7. Variation of makespan with neighborhood
size for Method B. Pop. size=201.

is done by the random selection process for individu-
als to participate in recombination and mutation. Due
to this fact the neighborhood size slightly affects the
population diversity.

The increase in population size contributes to the in-
crease in population diversity for both methods. The
reason for this is simple; the bigger our universe is, the
higher the probability to have a diverse population.

Now, it can be also appreciated that for method B the
increasing in sampling size N increases the diversity
(Figures 5 and 9). For method A such behavior does
not appear (Figures 4 and 8).

N=60x N=80+ N=100°

Diversity
+

xo

o Neighborhood Size(M)|

3 4 5 6 7 8 9 10

Figure 8. Variation of diversity with neighborhood
size for Method A. Pop. size=301.

0.80

N=60* N=80+N=100°

Diversity

Neighborhood Size(M)|

3 4 5 6 7 8 9 10

Figure 9. Variation of diversity with neighborhood
size for Method B. Pop. size=301.

1000
N=60* N=80+ N=100°

980 o ¥

x0

*»o
+x0
o

Makespan

Neighborhood Size(M)
3 4 5 6 7 8 9 10

900

Figure 10. Variation of makespan with neighborhood
size for Method A. Pop. size=301.

In the case of Makespan behavior (for different M) we
did not have a clear pattern as in the diversity case for
any of the methods.

6 Conclusions

A clear definition of population diversity and a way
to compute it have been given. We use this measure
to analyze two proposed DOS algorithms, called Bub-
ble Model. These algorithms can keep a high diversity
values at each generation when comparing to the stan-
dard GA method. There is a clear trade-off between
accuracy and diversity among the three methods.

1020 N=60* N=80+ N=100°

1000

Makespan
8
g
+
+
+

940

Neighborhood Size(M)

3 a 5 6 7 8 9 10

Figure 11. Variation of makespan with neighborhood
size for Method B. Pop. size=301.

In Method A a good accuracy and selection level diver-
sity control is achieved. The selection level diversity
control is paid with higher computational cost, when
comparing with the standard GA.

For method B (a low selective procedure) the neigh-
borhood size slightly affects the diversity measure. It
means that small value of M is enough to keep a high
diversity measure (i.e., cheap computational cost).

In any case, there was not a clear relation between
accuracy and neighborhood size as there was between
accuracy and diversity among different methods.

The diversity measure will play a crucial role in the
study of relations between population diversity and al-
gorithm adaptability. We see a potential applicability
of both the diversity measure and the proposed meth-
ods in areas such as re-scheduling or multi-objective
optimization. Future research is planned to verify this
hypothesis and to apply this idea to real world prob-
lems. More computational experiments are needed in
order to compare our proposed Bubble Model with pre-
viously proposed models.

It is important to say that concepts related to adapt-
ability should be clearly established before attempting
to do any further comparison or study. Future work is
aimed to establish such definitions.

Acknowledgements

This work is partly supported by the Research for the
Future Program JSPS-RFTF97100102 of the Japan
Society for the Promotion of Science.

References

E. H. L. Aarts, J. K. Lenstra, N. L. J. Ulder (1994). A
Computational Study of Local Search Algorithms for
Job Shop Scheduling. ORSA Journal on Computing
6(2):118-125.

D. Applegate and W. Cook (1991). A Computational
Study of the Job Shop Scheduling Problem. ORSA
Journal on Computing 3(2):149-156.

L. Davis (1985). Job Shop Scheduling with Genetic
Algorithms. Proceedings of the International Confer-
ence on Genetic Algorithms and Their Applications
136-140. Pittsburgh, PA.

M. Gen and R. Cheng (1997). Genetic Algorithms and
Engineering Design. John Wiley & Sons, NY, USA.

S. Kobayashi, I. Ono, and M. Yamamura (1995). An
Efficient Genetic Algorithm for Job Shop Scheduling
Problems. Proceedings of 6th International Conference
of Genetic Algorithms, 506-511.

J. F. Muth and G. L. Thompson (1963). Industrial
Scheduling. Prentince-Hall, Englewood Cliffs, N. J.

N. Sannomiya and Y. J. Tian (1998). The Effect of
System Diversity on Group Decision and Behavior: An
Idea Based on the simulation result of Fish Behavior
Model. Proc. of The Second Japan-Australia Joint
Workshop on Intelligent and Evolutionary Systems, 1-
9. Kyoto.

G. Shi, H. Tima and N. Sannomiya (1996). A New
Encoding Scheme for Solving Job Shop Problems by
Genetic Algorithm. Proceedings of 35th IEEE Confer-
ence on Decision and Control 4:4395-4400. Kobe.

G. Shi, H. Iima and N. Sannomiya (1997). Compari-
son of Two Genetic Algorithms in Solving Tough Job
Shop Scheduling Problems. Trans. IEE of Japan 117-
C(7):856-864.

W. M. Spears (1998). The Role of Mutation and Re-
combination in Evolutionary Algorithms. Ph.D. Dis-
sertation. George Mason University.

E. D. Taillard (1994). Parallel Taboo Search Tech-
niques for the Job Shop Scheduling Problem. ORSA
Journal on Computing 6(2):108-117.

Y. Tian, N. Sannomiya and H. Nakamine 1999. A Sim-
ulation Study on Adaptability to Enviromental Vari-
ations Based on Ecological Systems. Proceedings of
American Control Conference, ACC 99. San Diego,
(to appear).

R. J. M. Vaessens, E. H. L Aarts and J. K. Lenstra
(1996). Job Shop Scheduling by Local Search. IN-
FORMS Journal on Computing 8(3):302-317.

T. Yamada and R. Nakano (1995). A Genetic
Algorithm with Multi-Step Crossover for Job-Shop
Scheduling Problems. First IEE/IEEE International
Conference on Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications (GALESIA 95),
146-151. Shieffield, UK.

T. Yamada and R. Nakano (1996). A Fusion of
Crossover and Local Search. IEEE International Con-
ference on Industrial Technology (ICIT ’96), 426-430.
Shaghai.

T. Yamada and R. Nakano (1997). Genetic Algorithms
in Engineering Systems. IEE Control Engineering Se-

ries 55, 136-140. A. M. S. Zalzala and P. J. Fleming,
Editors.

