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Abstract

Genetic algorithms (GAs) have traditionally
combined and confounded the effects of ga-
metic and somatic mutation. In an attempt
to disentangle these effects, a novel, modified
GA is proposed in which mutation occurs not
only following selection (i.e., in offspring)—
as is the tradition—but also at the parental
level, between evaluation and selection of
population members. Two experiments were
conducted that compared the relative per-
formances of several mutational-rate variants
of the proposed parental mutation GA with
corresponding “standard” GAs matched with
them in terms of overall probability of mu-
tation during an iteration of the algorithm.
Results indicate that inclusion of parental
mutation within a GA does not in general
adversely affect its performance. For both
types of GA, a novel, cyclic-rate mutation
variant outperformed the low and (very) high
constant-rate variants. Results of a third ex-
periment indicate that, for the most part,
it is irrelevant at which algorithmic locus
(parental vs. offspring) the cyclic-rate muta-
tion occurs or whether there is also mutation
at the other locus.

1 Introduction

The most typical and general form of (sequential) ge-
netic algorithm (GA), represented by Goldberg’s Sim-
ple GA (SGA) [4], comprises population initializa-
tion and evaluation phases, followed by iteration of
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selection, recombination (i.e., mating/crossover), mu-
tation, and evaluation phases. Traditionally, mutation
in GAs occurs following fitness-based selection [2, 7].
Population members at this stage of the algorithm rep-
resent offspring of the previous generation produced
either by mating/crossover of parental pairs or by
cloning of individual parents. The effects of this off-
spring mutation are immediately apparent (i.e., phe-
notypically expressed) in the fitnesses assigned during
the subsequent evaluation phase of the algorithm. In
biological genetics, however, the importance of muta-
tion relates primarily to changes within an organism’s
germ cells [9]. Such changes occur prior to reproduc-
tion and are “invisible” with respect to that individ-
ual’s phenotype (i.e., morphology and behavior in na-
ture, evaluation outcome value in GAs). Only in an
indirect manner, through the viability and fitness of
resultant offspring, is the original, parent organism’s
fitness impacted.

To perhaps better model natural processes [5], the
following novel, modified sequential GA, termed a
“parental mutation GA” (see Figure 1), is proposed
in which mutation occurs not only in offspring but
also at the parentallevel, between evaluation and selec-
tion. Selection, as usual, is based on phenotype/fitness
values determined and assigned during the preceding
evaluation phase, but now the underlying genotype of
an individual may have been altered through subse-
quent mutation. Thus, the effects of such mutation are
not phenotypically expressed in the parents. Rather,
they are “hidden” within the parental genotypes. Indi-
viduals preferred for selection on the basis of their orig-
inal phenotype/fitness values may now actually con-
tain genotypes corresponding to much lower (or pos-
sibly higher) phenotypes. Only in the succeeding gen-
eration are these altered genotypes expressed pheno-
typically, either directly through cloning of the parent
or indirectly via the product of mating/crossover of a

parental pair. Of course, these genotypes could yet



GA:
begin
initialization;
evaluation;
while not done
begin
parental mutation;
selection;
recombination;
(offspring)mutation;
evaluation;
end;
end.

Figure 1: Parental mutation genetic algorithm

be altered by means of standard, offspring mutation
prior to the individuals being evaluated and assigned
fitnesses for future selection.

Within this proposed GA scheme, traditional muta-
tion at the offspring level would represent (primarily)
somatic (i.e., body cell) mutations. (Because the al-
tered genotype is potentially passed on to the following
generation, there is an element of gametic mutation as
well.) Somatic mutations, such as may be induced by
radiation exposure and give rise to cancer, directly af-
fect an individual’s phenotype/fitness in terms of the
individual’s likelihood to survive and reproduce [9].
Parental mutation, on the other hand, would repre-
sent (purely) gametic (i.e., germ cell) mutations. As
noted, these mutations, such as those underlying the
appearance of a birth defect caused by some environ-
mental mutagen, affect not the phenotype/fitness of
the individual but rather that of its offspring [9]. In
that sense, GA mutation at the parental level could
perhaps also be viewed as modeling—in an admittedly
crude manner—the nature of recessive genetic diseases
[9], with parents serving as carriers of the “recessive,”
mutated genes.

The present study represents an initial investigation
of the effects of this “hidden,” parental mutation on
GA performance. The relationship between various
rates of mutation in a GA, particularly a novel, cyclic
pattern, and performance is also examined.

2 Experiment 1A. Comparisons with
Standard GA

Four GAs, each of which relies on the SGA basic design
and structures [4], were compared in this experiment

Table 1: Mutation Rates in Experiment 1A

| GA Parents | Offspring |
NPLO none .001
LPLO .001 .001
HPLO 1 .001
CPLO | .001, .1 .001

(see Table 1). Consistent with the “conventional wis-
dom” related in [8], all were implemented, in C++,
with a population size of 50, a one-point crossover
rate of .60, and an offspring mutation rate of .001.
The selection strategy was proportional selection (i.e.,
stochastic sampling with replacement) with an elitist
policy implementation under which, if called for, the
elite individual replaced a randomly chosen current
population member.

A “standard” GA, or No-Parental, Low-Offspring mu-
tation (NPLO), was included to serve as a baseline
comparison for GA performance. There were three
parental mutation GAs. Low-Parental, Low-Offspring
mutation (LPLO) incorporates parental mutation set
at a constant low rate (.001), and High-Parental, Low-
Offspring mutation (HPLO) at a constant (very) high
rate (.1). In Cyclic-Parental, Low-Offspring muta-
tion (CPLO), parental mutation is set at a low base
rate (.001). However, every tenth parental generation,
starting with the first, this mutation changes to a high
periodic rate (.1). LPLO and HPLO are intended as
rough models of the respective chronic parental mu-
tation rates in nature (with the overstated .1 rate in
HPLO perhaps corresponding to the effects of some
environmental risk factor, such as atmospheric ozone
depletion, taken to the extreme). The CPLO parental
mutation rate, on the other hand, is intended to reflect
conditions of acute “catastrophic” levels of mutation
such as may result from nuclear war(s). Of course,
the applicability of parental mutation, and of these
particular mutation rates, within the context of GA
behavior is independent of these suggested extensions
to natural counterparts.

The four GAs were compared in terms of their per-
formances in optimizing De Jong’s functions F1-F5.
A test on each function comprised 100 runs of the
GA with 100 generations per run. Outcome data for
each GA, reported as an average across the 100 runs,
were composed of the best phenotype for each gener-
ation/population and the population-average pheno-
type for each generation.

For each GA, the same set of 100 seeds for the pseudo-



random number generator was used for the 100 runs
on a function. Additionally, in the interest of exper-
imental control, a second, distinct generator (always
using the same seed value) was employed within the
LPLO, HPLO, and CPLO GAs solely to provide ran-
dom numbers for use in determinations of parental mu-
tation. Thus, not only the population initialization
for any particular run, but also all subsequent proba-
bilistic operations, with the exception of parental mu-
tation, were identical across all four GAs. Code for
the pseudorandom number generators was generalized
from that of the SGA generator [4].

In terms of the average ultimate-best phenotype (i.e.,
the best phenotype ever produced over the course of
the 100 generations) for each GA, CPLO ranked either
first or (a close) second for all five functions. NPLO,
representing the baseline condition for GA perfor-
mance, was outranked by all three parental mutation
GAs on functions F1, F2, and F5, and by all but HPLO
on F3 and F4. Although the three parental muta-
tion GAs, particularly the cyclic-rate variant (CPLO),
performed well relative to the NPLO standard GA, it
could be argued that NPLO does not in fact represent
the appropriate baseline condition. This possibility is
examined in Experiment 1B.

3 Experiment 1B. Matched-Low
Standard GA as Baseline Condition

The three parental mutation GAs tested in Experi-
ment 1A include parental mutation (at whichever rate)
in eddition to offspring mutation (at a .001 rate).
Hence, the overall probability of mutation during an
iteration of the GA is higher with any of them than
it is with the NPLO standard GA. If it is this overall
probability, rather than or along with the algorithmic
locus of mutational activity (i.e., at the parental vs.
offspring level), that is determinant of performance,
then the comparison between NPLO and the parental
mutation GAs in Experiment 1A does not constitute
a fair test of the relative efficacy of the four GAs.

To address this concern, a different standard GA was
devised for Experiment 1B to act as the baseline com-
parison of performance for the three parental mutation
GAs (see Table 2). This new GA, Matched-Low Off-
spring mutation (MLO), contains offspring mutation
set at a rate that matches the cumulative probabil-
ity of parental and offspring mutation in the constant
low-rate parental mutation GA (LPLO). Except for
the substitution of NPLO with MLO as the baseline
condition GA, Experiment 1B was identical in all re-
spects to Experiment 1A.

Table 2: Mutation Rates in Experiment 1B

| GA | Parents | Offspring |
MLO none .001998
LPLO .001 .001
HPLO 1 .001
CPLO | .001, .1 .001

The new baseline condition, MLO, was no longer
the clearly worst performing GA in terms of average
ultimate-best phenotype. Indeed, it was ranked last
for none of the five functions. MLO outranked all three
parental mutation GAs on F4, and was ranked second
on F3 and third on functions F1, F2, and F5. The
results of this experiment call into question the appar-
ent superiority in performance of parental mutation
GAs over standard GAs evidenced in Experiment 1A.
Experiment 2 continues this line of investigation.

4 Experiment 2. Differential Rates of
Mutation in Standard GA

When, in Experiment 1B, the overall probability of
mutation during an iteration of the algorithm was
equated between the constant low-rate parental mu-
tation GA (LPLO) and the standard GA being used
for baseline comparison (MLO in this case), the perfor-
mances of these two GAs were found to be comparable.
The constant high-rate parental mutation GA (HPLO)
still outperformed the other three GAs on functions
F2 and F5, and the cyclic-rate variant (CPLO) still
excelled on F1 and F3 (and did quite well on the other
functions also). The results of Experiment 1B regard-
ing the LPLO-MLO comparison, however, make it an
open question as to whether the superiority in per-
formance with parental mutation GAs evidenced with
LPLO, HPLO, and CPLO in Experiment 1A and with
HPLO and CPLO in Experiment 1B are attributable
to factors intrinsic to parental mutation GAs or to
some other, extrinsic factor (i.e., the overall probabil-
ity of mutation during an iteration of the GA).

Experiment 2 consequently was designed to assess the
relative performances of standard GAs under condi-
tions of constant low, constant high, or cyclic rates
of (offspring) mutation. As with the Matched-Low
Offspring mutation (MLO) GA utilized in Experiment
1B, each of the three standard GAs compared in this
experiment (see Table 3) contains offspring mutation
set at a rate that matches the cumulative probability
of parental and offspring mutation in a corresponding



Table 3: Mutation Rates in Experiment 2

| GA | Parents | Offspring
MLO none .001998
MHO none .1008
MCO none .001998, .1008

parental mutation GA. In addition to MLO (which
corresponds to LPLO), the experiment compares the
performances of a Matched-High Offspring mutation
(MHO) GA, corresponding to HPLO, and a Matched-
Cyclic Offspring mutation (MCO) GA, corresponding
to CPLO. Except for the substitution of “matched
standard” GAs for the corresponding parental muta-
tion GAs (and the elimination of any GA added as an
external baseline condition), Experiment 2 was identi-
cal in all respects to Experiments 1A-B.

In contrast to the case with Experiments 1A-B, out-
come data of this experiment underwent more than vi-
sual inspection. For each function, results with respect
to ultimate-best phenotype produced per run of a GA
were submitted to statistical analysis (with a mini-
mum two-tailed alpha level of .05 throughout). Be-
cause the form of the outcome distributions tended to
be widely divergent between GAs, the Friedman test,
a nonparametric analysis for two or more treatment
levels [1], was utilized as the overall test of statistical
significance for observed differences in performance on
a function. This test views the experimental treat-
ments as a within-subjects factor (i.e., as repeated
measures). In this case, the pseudorandom number
generator seeds represent individual subjects and the
various GAs the treatments applied to each subject.
That is, because the same set of 100 seeds was used in
conducting the 100 runs for every GA, each seed could
be considered as being one of 100 subjects adminis-
tered every level of treatment. As a nonparametric
measure, the unit of analysis for the test is the relative
rank of each treatment outcome for a subject, rather
than the actual numerical value of that outcome. If the
Friedman test that was carried out on the data for a
particular function indicated a significant effect of the
treatment factor on performance, which means that
results, for at least some of the treatment levels, dif-
fer significantly among themselves, pairwise multiple
comparisons of the mean ranks for all the treatments
(i.e., GAs) subsequently were performed to identify the
relevant comparisons. This was accomplished using a
test, analogous to Fisher’s Least Significant Difference,
based on the ¢ statistic [1].

Table 4 presents the mean rank (across 100 runs) of the
ultimate-best phenotype produced by each GA in Ex-
periment 2, and its relative ranking, for each function.
With regard to this data, the effect of GA mutational-
rate variant on performance was significant at the
p < .001 level in all five Friedman tests (x%(2, N =
100) = 20.615, 25.235, 75.125, 142.940, and 55.580 for
functions F1-F5, respectively). Consequently, for each
function, all possible pairwise comparisons (t(198)) be-
tween mean ranks for the three GAs were analyzed.
Results of these statistical analyses are indicated in
the table.

For purposes of comparison, Table 5 presents the mean
rank (across 100 runs) of the ultimate-best pheno-
type produced by each parental mutation GA tested in
Experiments 1A-B, and its relative ranking, for each
function. With regard to this data, the effect of GA
mutational-rate variant on performance was signifi-
cant at the p < .001 level in all five Friedman tests
(x2(2, N = 100) = 38.385, 39.260, 57.165, 148.460,
and 62.000 for functions F1-F5, respectively). Conse-
quently, for each function, all possible pairwise com-
parisons (t(198)) between mean ranks for the three
GAs were analyzed. Results of these statistical analy-
ses are indicated in the table.

The results of the statistical analyses reported above
(and the data presented in Tables 4 and 5) obviously
exhibit very similar patterns for the parental muta-
tion GAs tested in Experiments 1A-B and the corre-
sponding matched standard GAs tested in Experiment
2. In particular, the cyclic-rate mutation GA variants
(CPLO and MCO, respectively) overall outperformed
their two respective constant-rate variants in terms of
ultimate-best phenotypes produced. Thus, the three
different rates of mutation (constant low, constant
high, or cyclic) used in Experiments 1A-B and 2 seem
to have analogous effects on performance whether the
mutation is incorporated within a standard GA or a
parental mutation GA. However, even though the rela-
tive performances of the three mutational rate variants
are comparable across the two types of GA, there could
still be significant differences in the outcome values
for any particular variant between the parental muta-
tion and matched standard GAs. That is to say, the
parental mutation GAs might outperform their stan-
dard GA counterparts (or vice versa) yet still give rise
to a similar pattern of results across mutational rate
variants. The following tables, analyses, and associ-
ated discussion examine this possibility in detail.

Table 6 presents the mean rank (across 100 runs) of
the ultimate-best phenotype produced by each paired
parental mutation and matched standard GA, and its



Table 4: Mean Rank of Ultimate-Best Phenotypes (and Relative Rankings) for Matched Standard GAs in

Experiment 2 (*v**

p < .05 or p < .01 for all pairwise comparisons in column. **p < .01 for all pairwise

comparisons in column except as indicated by bracketing, | |, of a nonsignificant comparison.)

| GA | F1 | F2 F3 | F4 [ F5 |
k% k% k% [AVEE k%
MLO [ [2.09 (2)] | 2.38(3) | 1.98 (2) | 1.42 (1) | 2.58 (3)
MHO | [2.27 (3)] [ [1.68 (1)[ | 2.63 (3) [ 2.97 (3) | 1.55 (1)
MCO | 1.64 (1) [[1.93(2)[ [ 1.40 (1) [ 1.61 (2) | 1.87 (2)

Table 5: Mean Rank of Ultimate-Best Phenotypes (and Relative Rankings) for Parental Mutation GAs from
Experiments 1A-B (*v**p < .05 or p < .01 for all pairwise comparisons in column. **p < .01 for all pairwise

comparisons in column.)

| GA | F1 | F2 F3 | F4 [ F5 |
k% k% k% [AVEE k%
LPLO [ 1.94 (2) [ 2.47(3) | 1.95 (2) | 1.42 (1) [ 2.60 (3)
HPLO | 2.46 (3) | 1.94 (2) | 2.56 (3) [ 2.99 (3) | 1.50 (1)
CPLO | 1.60 (1) | 1.59 (1) [ 1.50 (1) | 1.59 (2) | 1.90 (2)

relative ranking within the pair, for each function.
With regard to this data, the effect of GA type (i.e.,
parental mutation or matched standard) was not sig-
nificant in any of the Friedman tests comparing LPLO
and MLO performances for functions F1-F5. However,
for every function except F3, the effect of GA type
was significant in the Friedman tests comparing HPLO
and MHO performances (x?(1, N = 100) = 8.41, 7.84,
and 9.00, p < .01, for F1, F2, and F4, respectively;
x%(1, N = 100) = 5.29, p < .05, for F5). Finally, only
for functions F2 and F5 (x%(1, N = 100) = 4.41 and
5.29, respectively) was the effect of GA type signifi-
cant (p < .05) in the Friedman tests comparing CPLO
and MCO performances.

The overall probability of mutation (.001998) differ-
entially partitioned within the parental mutation GA
LPLO and its matched standard GA MLO is very
small. Hence, the lack of significant differences in
performance between these two GAs on any of De
Jong’s functions is perhaps not particularly surpris-
ing in any case. The overall probability of mutation
(.1008) differentially partitioned within the parental
mutation GA HPLO and its matched standard GA
MHO, in contrast, is very high. It might well be ex-
pected that any intrinsic differences in efficacy between
the two types of GA under comparison would be re-
vealed under such extreme conditions. This expecta-
tion was borne out in that MHO significantly outper-

formed HPLO on all functions except F3. This finding
indicates that too much parental mutation adversely
affects performance relative to that same overall rate
applied solely at the offspring level.

The parental mutation GA-matched standard GA
comparison that is most interesting, based on the re-
sults of Experiments 1A-B and 2 comparing the rela-
tive performances of the various mutational rate vari-
ants, is that of the two respective cyclic-rate mutation
GAs. These GAs performed equivalently on functions
F1, F3, and F4. However, the parental mutation GA
(CPLO) significantly outperformed its matched stan-
dard GA (MCO) on function F2, whereas the opposite
outcome was true for F5. This mixed pattern of results
across functions is not easily interpreted, but will be
explored further in Experiment 3.

5 Experiment 3. Cyclic-Rate
Mutation Across Algorithmic Loci

The novel, cyclic pattern was found to be the over-
all best performing rate of mutation in the GAs com-
pared across Experiments 1A-B and 2. Experiment
3 was designed to examine the nature of this effect
in more depth. It assesses the relative performances
of four cyclic-rate mutation GAs (see Table 7), each
representing a variant based on the algorithmic lo-
cus (i.e., parental or offspring) at which the cyclic-



Table 6: Mean Rank of Ultimate-Best Phenotypes (and Relative Rankings) for Parental Mutation and Matched
Standard GAs Across Experiments 1A-B and 2 (*p < .05. **p < .01.)

| GA | F1 | F2 F3 | F4 | F5 |
LPLO [ 1.48 (1) [ 1.55(2) [ 1.52 (2) | 1.56 (2) [ 1.54 (2)
MLO | 1.52(2) | 1.45 (1) [ 1.48 (1) | 1.44 (1) | 1.46 (1)
HPLO | 1.64 (2) | 1.64 (2) | 1.53 (2) [ 1.65 (2) | 1.62 (2)
MHO [ 1.36 (1) | 1.36 (1) | 1.47 (1) | 1.35 (1) [ 1.38 (1)
CPLO | 1.49 (1) [ 1.39 (1) [ 1.55 (2) | 1.44 (1) | 1.62 (2)
MCO [ 1.51(2) | 1.61(2) | 1.45 (1) | 1.56 (2) [ 1.38 (1)

rate mutation occurs and whether there is, in ad-
dition to the aforementioned mutation, either con-
stant low-rate (.001) or no mutation at the other lo-
cus. As with the parental mutation and corresponding
matched standard GAs from the previous experiments,
all of the cyclic-rate mutation GAs compared in this
experiment were equated for their overall probability
of mutation during an iteration of the GA. In addi-
tion to the Matched-Cyclic Offspring mutation (MCO)
GA tested in Experiment 2 and the Cyclic-Parental,
Low-Offspring mutation (CPLO) GA tested in Experi-
ments 1A-B, two new cyclic-rate mutation GA variants
were devised: Low-Parental, Cyclic-Offspring muta-
tion (LPCO) and Matched-Cyclic Parental mutation
(MCP). MCO and LPCO are identical, each involving
cyclic-rate mutation at the offspring level, except that
the latter GA includes (constant low-rate) mutation at
the parental level as well. Similarly, MCP and CPLO
are identical, each involving cyclic-rate mutation at
the parental level, except that the latter GA includes
(constant low-rate) mutation at the offspring level as
well. From another perspective, MCO and MCP can
be viewed as similar in that both involve (cyclic-rate)
mutation at only a single algorithmic locus (offspring
and parental, respectively), whereas LPCO and CPLO
involve (cyclic-rate plus constant low-rate) mutation
at both algorithmic loci. It must be stressed that for
all four GAs the overall probability of mutation during
an iteration of the algorithm is the same, and is cyclic
in nature. Only the distribution of mutational oppor-
tunities across algorithmic loci differs between GAs.

Except for the substitution of cyclic-rate mutation
GAs for parental mutation or matched standard GAs,
Experiment 3 was identical in all respects to Exper-
iments 1A-B and 2. Statistical analyses were iden-
tical to those discussed above in reference to Exper-
iment 2 and consisted of initial Friedman tests, one

Table 7: Mutation Rates in Experiment 3

| GA | Parents | Offspring
MCO none .001998, .1008
LPCO .001 .001, .1
CPLO .001, .1 .001
MCP | 001998, .1008 none

per function, followed by multiple comparisons within
indicated functions.

Table 8 presents the mean rank (across 100 runs) of the
ultimate-best phenotype produced by each GA, and
its relative ranking, for each function. With regard to
this data, the effect of cyclic-rate mutation GA variant
on performance was significant in the Friedman tests
only for functions F2 (x?(3, N = 100) = 9.375, p < .05)
and F5 (x?(3, N = 100) = 23.457, p < .001). Conse-
quently, for each of these two functions, all possible
pairwise comparisons (t(297)) between mean ranks for
the four GAs were analyzed. Results of these statisti-
cal analyses are indicated in the table.

The results of the present experiment extend the find-
ings regarding the cyclic-rate parental mutation GA
vs. matched standard GA comparisons reported in
Experiment 2. In both sets of experiments, the cyclic-
rate mutation GA variants (CPLO and MCO across
Experiments 1A-B and 2; MCO, LPCO, CPLO, and
MCP in this experiment) performed equivalently on
functions F1, F3, and F4. The significant differences
in performance on F2 and F5 noted in Experiment 2,
furthermore, are here observed on a finer scale. Across
Experiments 1A-B and 2, CPLO outperformed MCO
on F2; in this experiment, CPLO outperformed all
of the other three variants, which were comparable



Table 8: Mean Rank of Ultimate-Best Phenotypes (and Relative Rankings) for Cyclic-Rate Mutation GAs in

Experiment 3 (*v**

p < .05 or p < .01 for all pairwise comparisons in column except as indicated by bracketing,

| |, of nonsignificant comparisons. **p < .01 for all pairwise comparisons in column except as indicated by

bracketing, | | or || ||, of a nonsignificant comparison).

| GA | F1 | F2 F3 | F4 | F5 |
[AVEE k%
MCO | 2.47 (2) | [2.56 (2)[ [ 2.50 (3) [ 2.57 (4) | [2.28 (2)]
LPCO [ 2.33 (1) [ [2.67 (4)] | 2.37 (1) | 2.48 (2) | [2.12 (1)]
CPLO | 2.49 (3) [ 2.16 (1) | 2.68 (4) | 2.39 (1) | [[2.75 (3)
MCP | 2.70 (4) [ [2.61 (3)] | 2.45 (2) | 2.56 (3) | [|2-86 (4)

in performance among themselves. Thus, this par-
ticular cyclic-rate mutation GA variant, representing
a cyclic-rate parental mutation/low constant-rate off-
spring mutation combination, seems to excel on this
particular function. Across Experiments 1A-B and
2, MCO outperformed CPLO on F5. In this exper-
iment, on F5 the two cyclic-rate mutation GA vari-
ants in which the cyclic rate applied to the offspring
level (MCO and LPCO) outperformed the two vari-
ants in which the cyclic rate applied to the parental
level (CPLO and MCP); the presence or absence of
low constant-rate mutation at the other algorithmic
locus had no significant effect on performance. Again,
this mixed pattern of results across functions is diffi-
cult to interpret, although in general, these four GAs
largely performed alike.

6 Conclusions and Future Research

The results of this study clearly indicate that inclusion
of “hidden,” parental mutation within a GA does not
in general adversely affect its performance. Initial per-
formance comparisons between various parental muta-
tion GAs and a standard GA in Experiment 1A gave
the impression that the parental mutation GAs ac-
tually outperformed the standard type (see also [6]).
Subsequent comparisons in Experiments 1B and 2 be-
tween parental mutation and standard GAs equated
for their overall probability of mutation during an it-
eration of the algorithm, however, did not support this
initial impression. Nonetheless, the parental mutation
GAs, if not superior, were not generally inferior to
these standard GAs in performance.

Three different core rates of mutation were utilized
in this study: constant low (.001), constant (very)
high (.1), and cyclic (.001, .1). Those GAs, whether
parental mutation or standard, that employed the
cyclic pattern of mutation rate introduced here (and

in [6]) overall outperformed their constant-rate peers.
A cyclic-rate mutation GA may operate in important
respects in a manner analogous to exponentially de-
creasing the (offspring) mutation rate over generations
(e.g., [3]). That is to say, the periods of low mutation
following each episode of high mutation may corre-
spond in their effects to cyclic decreases in rate, dur-
ing which intervals schema exploitation (i.e., detailed
search of the local problem area) is emphasized over
exploration (i.e., global search of the problem space).
In any case, the principal distinguishing characteristic
of a cyclic mutation rate, and the reason underlying its
observed performance advantages over constant rates
of mutation, would seem to be its periodic insertions
of new genetic material into the population gene pool,
thereby maintaining diversity.

The results of Experiment 3 assessing the relative per-
formances of various cyclic-rate mutation GAs indi-
cate that, for the most part, it is irrelevant at which
algorithmic locus (parental vs. offspring) the cyclic-
rate mutation occurs or whether there is also constant
low-rate mutation at the other locus. There was, how-
ever, a somewhat mixed pattern of results regarding
ultimate-best phenotypes for the four GAs evidenced
across the five evaluation functions, suggesting some
relationship between performance and the implemen-
tational factors differentiating these GAs.

In light of the present findings, several avenues for fur-
ther research, regarding both parental and cyclic-rate
mutation in GAs, suggest themselves:

o 1. The function-dependent results observed
with cyclic-rate mutation GAs varying among
themselves in terms of which algorithmic locus
(parental vs. offspring) the cyclic-rate mutation
occurs or whether there is also constant low-rate
mutation at the other locus should be explored in
more depth. For example, performance on evalu-



ation functions other than F1-F5 can be assessed.

e 2. Different values for the cyclic-rate mutation
base and periodic settings could be utilized.

e 3. In a similar vein, the periodicity of the
cyclic-rate mutation (every 10th generation in the
present study) can be manipulated.

e 4. A mutation rate other than constant low could
be applied at the algorithmic locus not subjected
to cyclic-rate mutation.

e 5. Performances of the assorted parental muta-
tion, matched standard, and cyclic-rate mutation
GAs could be assessed and compared under a
nonelitist selection policy (see [6]). There is some
suspicion that although elitism may improve lo-
cal search, it might do so at the expense of global
coverage of the problem space [2].

e 6. As noted earlier in this paper, mutation at the
offspring level in the parental mutation GAs as
here constructed necessarily (as in standard GAs)
reflects aspects of gametic mutation as well as so-
matic mutation. To remedy this, a GA could be
devised that operates upon a population of bichro-
mosomal individuals. One chromosome would
represent somatic cells—for use in offspring muta-
tion and in the evaluation and selection phases of
the algorithm. The other chromosome would rep-
resent gametic cells—for use in parental mutation
and in the recombination phase of the algorithm.
This form of parental mutation GA would con-
stitute a considerably greater departure from the
standard sequential GA than does the form pro-
posed and investigated in the present study. How-
ever, its more complete bifurcation of gametic and
somatic mutation holds the promise of potentially
interesting and rewarding results in terms of both
naturalistic evolutionary modeling and practical
GA applications.
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