
Abstract

This paper presents results from on-going investi-
gations into the performance of the Michigan-
style classifier system in a complex multi-agent
environment. Using a simplified model of a con-
tinuous double-auction market place the use of
ZCS as an adaptive economic trading agent is
examined. It is shown that a number of small
changes to the basic system greatly improves its
performance, resulting in improvements in the
overall efficiency of the market. It is also shown
that the role of the rule-discovery component of
the classifier system is particularly critical in such
a closely-coupled multi-agent environment.

1 INTRODUCTION

As evolutionary computing techniques are applied to
multi-agent environments, new issues arise along with new
view points on traditional areas of the use of such
approaches. In this paper the use of a Michigan-style clas-
sifier system [Holland & Reitman 1978], Wilson’s Zeroth-
level classifier system (ZCS)[Wilson 1994], in a complex
multi-agent environment, that of a simulated continuous
double-auction market, is investigated.

Continuous double-auction markets are a type of economic
trading forum in which traders make bids and offers for
goods, based on other traders’ bids and offers. In this paper
a simulated continuous double-auction is presented in
which traders are each represented by a ZCS and hence the
classifier systems must learn suitable strategies to buy and
sell goods effectively. In this paper it is shown that ZCS
agents are able to learn effective trading strategies over
time and that the role of the genetic algorithm (GA) [Hol-
land 1975] can be particularly significant in such systems.
This work has been inspired, in part, by the growing inter-
est in the use of evolutionary computing techniques in
general to study economics using computer simulations
[e.g. Chattoe 1994], for which classifier systems appear

particularly well suited [Holland & Miller 1991].

The paper is arranged as follows: the next section briefly
introduces the ZCS architecture used here. Section 3
reviews previous work using classifier systems in multi-
agent environments in general and section 4 reviews previ-
ous work on their use within computational economic
modeling. Section 5 describes the simulated continuous
double-auction market used for this work and section 6 pre-
sents results from its use with multiple ZCS traders.

2 ZCS

ZCS is a Michigan-style Classifier System without internal
memory, where the rule-base consists of a number (N) of
condition/action rules in which the condition is a string of
characters from the usual ternary alphabet {0,1,#} and the
action is represented by a binary string. Associated with
each rule is a strength scalar which acts as an indication of
the perceived utility of that rule within the system. This
strength of each rule is initialized to a predetermined value
termed S0.

Reinforcement in ZCS consists of redistributing strength
between subsequent "action sets", or the matched rules
from the previous time step which asserted the chosen out-
put or "action." A fixed fraction (β) of the strength of each
member of the action set ([A]) at each time-step is placed
in a "common bucket." A record is kept of the previous
action set [A]-1 and if this is not empty then the members
of this action set each receive an equal share of the contents
of the current bucket, once this has been reduced by a pre-
determined discount factor (γ). If a reward is received from
the environment then a fixed fraction(β) of this value is
distributed evenly amongst the members of [A]. Finally, a
tax (τ) is imposed on all matched rules that do not belong
to [A] on each time-step in order to encourage exploitation
of the stronger classifiers. Hence this is different from the
traditional "Bucket-brigade" algorithm [Holland et al.
1986] and is known [Wilson 1994] to be very similar to
Watkin’s Q-learning [1989] reinforcement algorithm.
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ZCS employs two discovery mechanisms, a panmictic GA
(altered later here) and a covering operator. On each time-
step there is a probabilityp of GA invocation. When called,
the GA uses roulette wheel selection to determine two par-
ent rules based on strength. In this paper, as in [Cliff &
Ross 1994], one offspring is produced via mutation (prob-
ability ν) and crossover (single point with probabilityχ).
The parents then donate a third of their strengths to their
offspring who replaces an existing member of the rule-
base. The deleted rule is chosen using roulette wheel selec-
tion based on the reciprocal of rule strength. If on some
time-step, no rules match or all matched rules have a com-
bined strength of less thanφ times the rule-base average,
then a covering operator is invoked exactly as in [Wilson
1994].

The default parameters presented for ZCS, and unless oth-
erwise stated for this paper, are:N = 400, S0=20,β = 0.2,γ
= 0.71, τ = 0.1,χ = 0.5,ν = 0.001,p = 0.25,φ = 0.5

Thus ZCS represents a "basic classifier system for rein-
forcement learning that retains much of Holland’s original
framework while simplifying it so as to increase under-
standability and performance” [Wilson 1994]. For this
reason the ZCS architecture has been chosen to examine
the basic behaviour of classifier systems in a complex
multi-agent environment, as opposed to the more sophisti-
cated systems of Holland et al. [1986] or Wilson’s XCS
[Wilson 1995] for example.

The reader is referred to [Wilson 1994] for full details of
ZCS.

3 CLASSIFIER SYSTEMS IN MULTI-
AGENT ENVIRONMENTS

A small number of investigators have examined the use of
classifier systems in multi-agent environments. Bull et al.
[e.g. 1993, 1995] describe the use of Pittsburgh-style
[Smith 1980] classifier systems for the control of simulated
robots, where each wheel/leg is represented by a separate
system. Carse et al. [e.g. 1995] have used fuzzy Pittsburgh-
style classifier systems for routing at each node of a tele-
communications network. Pittsburgh-style systems which
also use reinforcement learning have been coevolved by
Potter et al. [1995], where an agent is represented by a
number of classifier systems and a speciation-like process
is included to improve performance. Multiple Michigan-
style classifier systems have been used by Dorigo and
Schnepf [e.g. 1992] to control an autonomous robot and by
Seredynski et al. [1995] to examine the use of local reward
sharing in a simple iterated game.

4 CLASSIFIER SYSTEMS AS ADAPTIVE
ECONOMIC AGENTS

Apart from the work described in the previous section, the
only other known body of work examining the use of Mich-
igan-style classifier systems in multi-agent environments
exists in the field of computational economics. After
[Arthur 1990] and [Holland & Miller 1991] a number of
researchers have used classifier systems to represent trad-
ers in artificial markets. Marimon et al. [1990] use
classifier agents exchanging and consuming goods to
examine the emergence of equilibria in a well-known trian-
gular market. Palmer et al. [1994] describe the use of
classifier systems to simulate agents creating portfolios, by
predicting the value of a stock. Dwormann [e.g. 1994] has
investigated coalition formation in a three-player game/
market and Morengo and Tordjman [1996] used a classi-
fier-based system to model belief formation in a market
place. In this paper the use of ZCS in an artificial continu-
ous double-auction (CDA) market is presented.

5 A SIMULATED CONTINUOUS
DOUBLE-AUCTION MARKET

A continuous double-auction market consists of a number
of buyers and sellers with reservation prices (known only
to the agents themselves). A reservation price is the price
below/above which a trader will not sell/buy. At any time
during a trading session (day) buyers can make bids and
sellers can make offers, with trades occurring when an
agent’s bid/offer ("shout") is accepted by another agent.
Note that an agent’s profit margin is defined by the differ-
ence between its reservation price and its current shout
price. The London and New York stock exchanges use
CDAs, and hence there is much interest in their behaviour
[e.g. Friedman & Rust 1992]. The efficiency of such mar-
kets can be determined using Smith’s [Smith 1992]
convergence metric,α, defined asα = 100σ/Pe, where Pe is
the price at which the quantity demanded is equal to the
quantity supplied - the equilibrium price - andσ is the stan-
dard deviation of trade prices around Pe. Hence the lower
α, the more effective the traders and the more efficient the
market place.

In the simulations used here, trades occur automatically
when two current shout prices "overlap", e.g. when a given
seller’s shout is less than or equal to a given buyer’s shout.
On each trading day each agent has one unspecified com-
modity to buy (buyer) or sell (seller), with the same starting
shout price/profit margin as at the end of the previous day.
Agents are assigned their reservation prices by dividing the
price range of the market equally between the number of
agents. For example, in the experiments presented here
there are three sellers and three buyers, all with prices in the
range 75-325 units, giving an equilibrium price of 200 units



(Figure 1). A day’s trading finishes when the remaining
agents’ reservation prices are known to not overlap (since
no further trades are possible).

On any discrete time step, or round, within a trading day
agents are told whether the last shout price was higher or

lower than their current shout price, whether it was a bid or
an offer, and whether it was accepted and a trade occurred.

The agents also know whether they have already traded on
that day; inactive agents are able to "watch" the market.

This information is generated by a central "pit" in the mar-
ket, which is also responsible for spotting and handling
trades between agents; a central process exists within the
simulated market with which all agents interact (agents do
not interact directly).

In these experiments a varying number of agents are repre-
sented by ZCS, with the aim of learning trading rules
within the CDA. On each round, an agent receives the
inputs described above, coded as a binary string and returns
an action to raise, lower or maintain its current shout price
(Figure 2). Profit margins (µ) on reservation prices (λ) are
initially assigned at random, though shout prices (ρ)
remain within market limits, and thereafter are adjusted in
steps defined by:µ(t+1) = (ρ(t)+Γ(t))/ λ - 1, whereΓ is a
damping factor (Widrow-Hoff delta rule with the last shout
price as the target - see [Cliff & Bruten 1998] for full
details). Agents are rewarded only when they trade
(1000µ).

Hence the number of ZCS outputs (shouts) needed before
reward is received varies and each agent is highly depen-
dent upon the others in the market; the CDA represents a
fairly complex multi-agent environment.

6 RESULTS

The performance in the simulated CDA of three ZCS seller
agents trading with three buyer agents which use the "ZIP"
strategy (Figure 3) has been investigated. Agents using the
ZIP trading strategy have been shown to quickly create an
optimally efficient CDA market [Cliff & Bruten 1998].

Figure 4(a) shows results from a typical run (from 50), over
5000 days in which the ZCS had the same parameters as
those used in [Wilson 1994] (see section 2). Figure 4(b)
shows the results from a typical run in which a number of
slight changes were made to the basic ZCS system. Previ-
ously, it has been shown [Bull 1998] that reducing the
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Figure 1: Showing how the reservation price of each
agent is assigned from the possible price range of the
CDA market, i.e. the supply (sellers) and demand
(buyers) curves. There are three sellers, each with one
unit to sell, and three buyers, each wanting to buy one
unit, per day. The equilibrium price of the market is
indicated, that is, the most efficient market trading
price Pe is shown.

Condition                     Action

shout accepted

shout < own shout

offer (or bid)

  currently
   active

raise, lower or leave price
( 00       11         01, 10 )

Figure 2: The structure of the classifier system rules.

if (the last shout was accepted at priceq)
then
       1. if any buyer for whichρ > q should raise its
           profit margin
       2. if (the last shout was an offer)
       then

               1. any active buyer for whichρ < q should
        then
       1. if (the last shout was a bid)

              1. any active buyer for which ρ < q should
               lower its margin
 else

                lower its margin

Figure 3: The rules for a "Zero Intelligence Plus", ZIP,
(buyer) trader.



learning rate (β=0.1,τ = 0.05), reducing the rule-discovery
rate (p=0.1), using a simple niche GA (after [Booker
1985]) and increasing the action-selection pressure (by
squaring rule bids) improves ZCS’s performance in multi-
agent environments. Here the market is found to be more
efficient, i.e.α is lower and for longer periods, with sellers
using the slightly altered version of ZCS; only 11 of the 50
runs with the parameters in [Wilson 1994] showed any
kind of stasis, whereas 34 of the 50 runs with the modified
parameters gave significant periods of efficient trading.

This has been explained as causing a reduction in the
amount of exploration by each agent, creating a more stable
environment in which the agents adapt [Bull 1998] (based

on the seminal work of Kauffman and Johnsen [1991]).

It can also be seen in Figure 4(b) that, even with less explo-
ration by the ZCS agents, the typical progression over time
of the market with the altered ZCS traders contains periods
of stasis, followed by bursts of change; punctuated equilib-
ria are seen [Eldridge & Gould 1972]. It is also noted that,
even in these improved markets, near-optimal periods of
trading can be lost, as seen around day 4800.

Figure 5 shows a shorter run in which the punctuated char-
acteristic is very clear. After an initial period of price
adjustment, the market settles to trading near the optimum

price, around day 200. However, around day 680 the mar-
ket suffers from a period of inefficient trading, before
settling down again to a lowα around day 800. The rules
of all the ZCS sellers were saved every 10 days during this
run. Analysis shows that during the first few days sellers
have rules which raise/lower their profit margins when the
current shout price is higher/lower (akin to the ZIP strat-
egy). By day 200 the sellers have learnt to leave their prices
unaltered, under all conditions; the rule bases contain quite
general rules with actions which do not adjust profit mar-
gins. Indeed, to some extent, the conditions of rules are free
to "drift" in their space of possibilities so long as their
actions do not alter the shout price. This stability changes
around day 640: one seller has a new rule which means that
it lowers its price when an offer lower than its own current
shout price is made. Inspection shows that this rule has
been created by the GA through recombination and the
mutation of an action bit. Therefore, this rule causes the
seller to go back to altering its shout price, which causes the
other agents to alter their prices in response, resulting in a
period of fluctuation.

Figure 4(a): Typical performance of basic ZCS
in the artificial CDA described in the text.

ZCS in the artficial CDA market.
Figure 4(b): Typical performance of the altered

Figure 5: Progress of a run in which the cause of
price fluctuations is investigated.



Inspection of the same agent’s rules at day 800 reveals a
return (roughly) to the previous set of generalists which
leave the shout price unaltered. That is, because of the use
of strength/fitness inheritance, a different (mutated off-
spring) rule is chosen by the action selection mechanism. In
this case the rule leads to less payoff than its parents and so
its inherited strength is decreased by the reinforcement
component. Eventually the mutant’s strength drops suffi-
ciently low in comparison to that of its parents that they
again become selected as actions for the agent; the rein-
forcement learning process recovers from the detrimental
exploration of the GA.

Another period of price fluctuation can be seen to be occur-
ring at the end of the run, around day 2000. The periodic
patterns seen in the market are due to different agents trad-
ing with different individuals on each day. A number of
similar runs were examined with similar phenomena found.

Although this process causes the market to lose equilibria,
from Figure 4(b) it can also be seen as beneficial to the
market as a whole since theα of the new equilibrium is
often lower than that previously obtained, e.g. compare
days 1500, 2500 and 3500; GA generated rules can
improve trader behaviour.

The same experiments have been run in whichall traders
are represented by ZCS agents. Here experiments were left
to run for 30,000 trading days to allow for the extra learn-
ing involved. Figure 6 shows how the dynamics of these
systems are different from those above. It has been found
that, with the improved parameter settings, in a large num-
ber of runs (19/20) the market settles into an attractor in
which the averageα is high (around 50), with pronounced
peaks and dips; in twenty runs two markets found low α
equilibria for a significant period of time. The simulation in
Figure 6 shows two "snap shots" from a run in which a low
equilibrium was found. The market can be seen to enter the
common, less efficient state around day 250, but around
day 23,000 the market settles into a near optimal state for
around 2000 days, before returning to the less efficient
state.

Again, runs have been carried out in which agents’ rules
were periodically saved. It has been found that in these
runs, as with the previous ones, agents eventually contain
rules which do not alter their shout prices over all condi-
tions. The difference is that here some agents seem to gain
an initial advantage and effectively "dictate" to the rest of
the (small) market. It appears that some agents, e.g. the
sellers, quickly learn to alter their shout prices in order to
be involved in a trade, since that is the only way credit can
be received. However the other agents, e.g. the buyers, do
not learn to adjust their price but end up in a trade anyway.
Hence the sellers make very small profits and the buyers
very large profits, resulting in the whole market being well

away from an efficient equilibrium. This market configura-
tion then gets reinforced because even if the sellers try to
raise the price, the buyers have no incentive to lose reward;
initial stupidity can pay! Again, the dips inα are due to dif-
ferent combinations of agents trading (price distributions
are large here).

It is suggested that low equilibrium markets are hard to find
here because both sellers and buyers must almost simulta-

neously discover rules which will cause them to alter their
profit margins.

Note that in the previous markets, a move to adjust the cur-
rent trading price by a ZCS seller almost always causes the

Figure 6: Performance of CDA market with all

graph shows the common highα state and the
traders represented by ZCS agents. The first

second a temporary low state.



ZIP buyers to alter their shout prices; the ZIP strategy does
not consider agent profit.

7 CONCLUSIONS

This paper has presented results from on-going investiga-
tions into the performance of the Michigan-style classifier
system in a complex multi-agent environment. Using a
simplified model of a continuous double-auction market
place the use of ZCS as an adaptive economic trading agent
has been examined. It has been shown that a number of
small changes which reduce the amount of exploration in
ZCS greatly improves its performance in the system,
resulting in improvements in the overall efficiency of the
market.

It has also been shown that the role of the rule-discovery
component of the classifier system is particularly critical in
such a tightly coupled multi-agent environment. The use of
fitness/strength inheritance allows less useful offspring
rules to be selected as outputs, which has been shown to
disrupt equilibria within the market. Equilibria are restored
once the reinforcement learning component has altered
such rules’ strengths to that appropriate to their actions;
over time, trading is punctuated with bursts of inefficient
trading. It was also seen that offspring rules may improve
trading strategies and so any new equilibrium may be more
efficient than before, as expected. Note that this highlights
a significant difference in the behaviour of a multi-agent
system containing classifier systems to one containing
many other forms of evolutionary computing and machine
learning techniques. Typically, other techniques will even-
tually converge upon a single solution for each agent, in the
context of the other agents, creating a system equilibrium
from which it is unlikely agents will deviate; most other
techniques do not include a source of agent action utility
"noise" allowing them to move significantly from a given
optimum (see also [Lindgren 1991] for an Iterated Pris-
oner’s Dilemma [Axlerod 1987] model exhibiting similar
behaviour due to the inclusion of particular search
operators).

In the closely related extension of [Palmer et al. 1994], it
has been shown that an artificial stock market can exhibit
two types of useful behaviour, depending on the rate at
which the GA is used [Arthur et al. 1997]: when the GA
rate is low, the market behaves as predicted by theoretical
models with stable, near optimal trading; and with a higher
rate, the market behaves as real markets do, with periods of
fluctuations and instabilities. Arthur et al. used a version of
Holland’s original classifier system, preprogrammed with
useful rules (presumably because of the model’s complex-
ity), but using a deterministic "the best" action selection
policy, i.e. a policy with low exploration (see [Bull 1998]
for an examination of such a strategy’s performance in

classifier systems starting with random rules in a multi-
agent system). That is,rule discovery appears to be a very
significant aspect of tightly coupled systems in general.

Based on these findings the use of a triggered GA [Booker
1989] may provide significant benefits in such systems (see
also [Wilson 1995]).

The results from this simulated economic model are also
relevant to the field of market-based control [e.g. Miller &
Drexler 1988], in which free-market mechanisms are used
to control distributed computer systems. Such techniques
have been used with designed agents to assign network
bandwidth [e.g. Miller et al. 1996] and computer memory
[e.g. Harty & Cheriton 1996], to control air-conditioning
systems [Clearwater et al. 1996], etc. The results here sug-
gest that it may also be possible to use adaptive agents in
such systems; the above experiments containing much
larger numbers of agents are now being carried out.

Further enhancements to Michigan-style classifier systems
for use in this multi-agent environment are currently being
investigated, for example it has been suggested that the use
of memory in such non-Markov environments can be ben-
eficial (mentioned for ZCS in [Wilson 1994] and
implemented in [Cliff & Ross 1994], see also [Tomlinson
& Bull 1998] for another mechanism). This is now being
investigated, along with the use of other forms of classifier
system such as XCS [Wilson 1995].
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