Estimating the Significant Non-Linearities in the
Genome Problem-Coding

Dirk Thierens

Department of Computer Science, Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands
Dirk.Thierens@cs.uu.nl

Abstract

Substantial insight in the genome problem-
coding can be gained if we know the most
important Walsh coefficients - that is, the co-
efficients with large value. The practical use
of the Walsh transform however is severely
limited by the computational cost, even when
using the Fast Walsh Transform. Part of this
is caused by the fact that the transform com-
putes all Walsh coefficients, not just the most
significant. Here we discuss the use in a GA
context, of the recently developed KM algo-
rithm, which estimates the most significant
Walsh coefficients in a computational efficient
way.

1 INTRODUCTION

It is generally acknowledged that a key characteristic
of simple genetic algorithms is their repeatedly sam-
pling and recombining of substrings that show above
average fitness - as compared to the current population
- and that have a fairly high survival probability during
the exploration phase. These substrings - or building
blocks - are therefore not merely defined by the fit-
ness function, but also by the problem-coding and the
genetic explorative operators, such as crossover and
mutation. Effective GA processing then can be ex-
pected when these building blocks can be assembled to
ever increasingly better solutions until optimal or near-
optimal solutions are found. As a result the choice of
problem-coding method and genetic explorative oper-
ators - especially crossover - is very important, and
theoretical methods and algorithms to investigate this
issue are indispensable in the genetic algorithmist’s
toolkit.

One useful method concerning the problem-coding is

the use of Fourier techniques - in this case the Walsh
transform. The use of the Walsh decomposition in ge-
netic algorithm research has been initiated by Bethke
who applied Walsh functions to efficiently calculate the
schema average fitness values (Bethke, 1981). Gold-
berg extended this technique using Walsh polyno-
mials such that the analysis became an intuitively
clear method to visualise the non-linear interactions in
a particular function-coding combination (Goldberg,
1989a and 1989b). The Walsh transform is particu-
larly insightful because the magnitude of the Walsh
coefficients is a direct measure of the fitness contribu-
tion given by the non-linear interaction of the genes
corresponding with the Walsh index set. Although of
great theoretical value the practical use of the Walsh
transform is limited due to its computational complex-
ity, this despite the existence of the Fast Walsh Trans-
form.

One observation however indicates a possible way to
improve the practical applicability of the Walsh trans-
form: since we are basically interested in those groups
of genes that have a strong non-linear interaction, we
only need to look at those Walsh coefficients that have
a high value as compared to the rest. So our objec-
tive can be redefined as to design a computationally
efficient algorithm that gives us only the large mag-
nitude Walsh coefficients. Actually, it turns out that
such an algorithm already exists in the Computational
Learning community where it is usually called the KM-
algorithm (Kushilevitz and Mansour, 1993).

Here in this paper, we would like to discuss the po-
tential use of this algorithm for the genetic algorithm
practitioner. In the next section we first summarise the
Walsh transform, and subsequently review the KM-
algorithm. Section 3 shows how KM might be used to
get an insight in the genome problem-coding structure.
As an example we look at some results on GA-hard
problems. Finally in section 4 we discuss some further
possible usage.



2 BACKGROUND

2.1 WALSH TRANSFORM

The Walsh transform - or the multidimensional dis-
crete Fourier transform - can be used to expand each
function f : {0,1}" — R as a linear combination of
the basis functions ¢, (z):

Z (Do (.7;)

ze{0,1}n

flz) =

where the real valued Walsh coefficients are

wy = E[f(l’)gbz(l')],

and the basis functions ¢, : {0,1}" — {-1,+1}

6:(@) = (~D .

The Walsh basis functions ¢, (z) are parity functions
over those subset of bits in z indicated by z. If the
number of bits is even then ¢.(z) = +1 else ¢.(z) =
—1.

The Walsh coefficients are particularly interesting for
genetic algorithm research because of the elegant way
they correspond to the notion of building blocks, and
because of their ease of use to calculate schema av-
erage fitnesses. The average schema fitness can be
computed as the partial signed sum of those Walsh
coefficients whose corresponding partition contain the
schema, and the sign of a particular coefficient is pos-
itive (negative) when the number of 1’s covering the
positions is even (odd). For instance the average fit-
ness of the schema x % %11 is:

f (3 % %11) = wooo00 — Woo001 — Woo010 + Wooo11

whereas the competing schemata in the partition
x x % f f have average fitnesses:

f(x % x00) = wooo00 + Woooo1 + Wooo10 + Wooo11

f (% %01) = wopooo — Woooo1 + Woo010 — Wooo11
f (% % %10) = wopooo + Woooo1 — Wo0010 — Woo011

The connection with building blocks becomes clear if
we also calculate the schema average fitness of the
lower order schemata:

f(* k % % *) = Wo0000

J(x %% % 1) = woopoo — Woooo1

f(x %% 1%) = wooooo — Wooo10

The particular Walsh coefficient wggg11 can thus be in-
terpreted as the magnitude of the fitness contribution
due to the non-linear interaction of the bits. At the
other hand when a particular Walsh coefficient of de-
gree k is zero this means that there is no contribution
due to the non-linear interaction of the k-bits within
the corresponding partition. From a GA standpoint
this implies that groups of bits corresponding with
significant Walsh coefficients should be processed as
a whole by the recombination operator - this is, they
should have a high survival probability when applying
Crossover.

In the next section we discuss an algorithm that
searches for exactly those significant Walsh coeffi-
cients.

2.2 KM ALGORITHM

The KM-algorithm computes the large Walsh coef-
ficients by sampling and recursively extending par-
titions that might contain large Walsh coefficients.
The algorithm receives as input the function f and
a threshold parameter #. It outputs a set of indices
whose corresponding Walsh coefficients are large - this
is, at least 6.

The algorithm when called with a partition o com-
putes a boolean test and if this is true KM will recur-
sively invoke the extended partitions a0 and al. The
boolean test computes whether or not a large Walsh
coefficient can possibly be a member of one or both
extended partitions. It conceptually does this by com-
puting the sum of squares of the Walsh coefficients in
each partition. If this sum is smaller than > then
certainly no single Walsh coefficient can exceed our
threshold €, and there is no need to extend this parti-
tion. Formally KM looks as follows where it is initially
called with o the empty string:

SUBROUTINE Search(a)
IF E[f2] > 6> THEN
IF |a| =n THEN return o
ELSE Search(a0); Search(al)

Through the recursive extensions the Walsh coeffi-
cients are partitioned in a binary tree as shown in fig-
ure 1. Each node represents the sum of the squares
of 2%(k : | — 0) Walsh coefficients with the root node
summing all coefficients (k = I) and the leaf nodes
representing a single coefficient (k = 0). Starting from
the root node the KM-algorithm extends a node in



000 + 001 + 010 + 011 + 100 + 101 + 110 + 111

100 + 101 + 110+ 111

000 + 001 + 010 + 011

‘ooo‘ ‘001‘ ‘010‘ ‘011‘ ‘100‘ ‘101‘ ‘110‘ ‘111‘

Figure 1: Binary tree partitioning of the Walsh coeffi-
cients.

the tree if the sum of the squares of the correspond-
ing Walsh coefficients is larger than the square of the
threshold 6 until a leaf node is reached. Leaf nodes will
only be visited whenever they have a significant value -
this is, a value larger than the threshold 6 (or actually
when they or their immediate neighboring leaf node
are a significant Walsh coefficient since the recursion
expands each node into two child nodes during a single
call).

Of course the time to calculate the sum of squares of
the Walsh coefficients in a given partition, could be
exponential. KM efficiently sidesteps this problem by
estimating the sum of squares in the following way. De-
fine the function f,(z) : {0,1}* — R and a € {0,1}*

fa(z) = Z

pe{o,1}n—k

waﬁ¢ﬁ($),
or

fa(@) = Eycgoyx [f(yz)da(y)]
with 1 <k <n and z € {0,1}"F.
Now it can be shown that

Z wos =

Bef{o,1}n~*

E[fa(x)]

= E.E[f(yx)da(y)]

with 2 € {0,1}"% and y € {0, 1}*.
This gives us a way to estimate the sum of squares of
the Walsh coefficients within a certain partition:

1. choose m; random x; € {0,1}"*

2. choose my random y; € {0,1}*

3. query f on y;z;

4. compute estimate of E[f2] by:

m2

m% Z(mi > Fyizi)a(y)))?

i=1 2 j=1

More details regarding the KM-algorithm and some
implementations issues can be found in (Mansour,
1994; Mansour & Sahar, 1995)

3 KM AND GA
PROBLEM-CODING

The KM-algorithm assumes that the function whose
Walsh coefficients it searches is boolean valued. From
Parseval’s identity we know that the sum of the
squares of all Walsh coefficients is equal to the average
of the squares of all fitness values, so for boolean out-
puts +1 and —1 the squared Walsh coefficients sum to
1. This property is useful in determining the threshold
above which a coefficient is called significant. In prin-
ciple we could also use the KM-algorithm for functions
that map to real values, and estimate the average of
the squared fitness values by sampling.

Here we have chosen to work with boolean valued
functions so the Walsh coefficients we obtain are not
those of the actual fitness function. Instead we de-
fine a boolean valued function by assigning the value
+1 to the 50% most fit strings of a randomly gener-
ated population, and —1 to the other half. The most
significant Walsh coefficients of this boolean function
actually identify the groups of non-linear interacting
bits that have an influence on whether or not a string
has a fitness value above or below the median value
in the population. Applying KM in this way identifies
the important building blocks.

One advantage of estimating the coefficients of the
boolean population-top-half concept is that the Walsh
coefficient corresponding with the all zeroes index has
a very low magnitude. Remember that this coefficient
actually computes the average fitness and since we are
basically comparing against the median value this co-
efficient is quite low. In most functions this coefficient
is by far the most significant one as compared to the
ones who detect the nonlinear interaction, which is un-
desirable for sampling purposes.

To illustrate our use of KM we have applied the algo-
rithm to two GA-hard functions. Both are composed
by concatenating 10 deceptive trap functions of length
4 and fitness signal 0.25. In the first function (Fyy;)
all trap functions have an equal fitness contribution,
whereas in the second one (Fj;,,) the fitness values of
trap functions are linearly scaled.

Call o(z) the number of one-bits then the function
value of our trap function is given by

t(z) = 0.75 — (0.25.0(x)),



while if all bits are equal to one (o(z) = k) the function
value reaches its maximal value

t(x) =1.

Calling the ith trap function in our test functions ¢;(x)
then we have

Funi(z) = Z ti(x)

and

10

We have chosen as threshold # = 0.1 so KM returns
all Walsh coefficients with a squared value at least
(0.1)2/2 = 0.0050 (note that KM takes half of % in
the estimation procedure as a safeguard against sam-
pling errors).

Table 1 shows the significant Walsh coefficients and
their corresponding indices for the uniformly scaled
concatenated trap functions Fy,;. Clearly the algo-
rithm identifies all the deceptive trap functions.

Table 2 shows the significant Walsh coefficients and
their corresponding indices for the linearly scaled con-
catenated trap functions. Now the five most highly
scaled trap functions are identified, while the lower
significant trap functions are below the threshold.

4 DISCUSSION

The Walsh transform computes all bitwise nonlinear
interactions that exist in a certain fitness function
given some binary problem-coding. Since there can
be exponentially many sources of nonlinearity com-
puting all Walsh coefficients exactly is in general in-
tractable. The KM-algorithm estimates the most sig-
nificant Walsh coefficients in a computational efficient
way for functions that can well be approximated by
a t-sparse function - this is, a function with at most ¢
non-zero Walsh coefficients. Although one might think
at first that this is a severe limitation, it is clear from
the previous section that such functions are in no way
by definition trivial to solve by a simple genetic al-
gorithm. Deceptive trap functions cannot be solved
efficiently by a simple GA unless one knows the link-
age information - this is, the groups of bits that cause
the nonlinear fitness interactions. When the bits with
high Walsh coefficients are placed close together on the
genome, a simple GA could easily solve the deceptive
trap functions to global optimality.

Table 1: Significant Walsh Coefficients: F,;

w? Walsh index set
0.0150 00000000.........cvvvveennnn 00000000
0.0066 ... 00000011
0.0082 ... 00000101
0.0060 ... 00000110
0.0067 . 00000111
0.0063 e 00001001
0.0077 i e 00001010
0.0074 ... 00001011
0.0074 ... 00001100
0.0068 ... 00001101
0.0076 i e 00001110
0.0068 . 00001111
0.0055 00110000 .....ccvoneeeeiei
0.0062 01010000 .....cvvneeeiiei .
0.0072 01100000 .« . .uuuiieie e
0.0069 01110000 ... e,
0.0073 10010000 .. vuiieieie e
0.0081 10100000 .. ...c.veneeeeiei
0.0070 10110000 .. ...
0.0068 11000000 .. ....coveeeiinee .
0.0067 11010000 ...\
0.0075 11100000 ... .uuiieieiiee i
0.0076 11110000 ... e,

However one should not conclude from this that once
we know the significant Walsh coefficients of func-
tions with a modest amount of non-zero Walsh coeffi-
cients then this should lead to an efficient GA to op-
timise the problem. Indeed recent work of Rana and
her coworkers (Rana, Heckendorn, & Withley, 1998)
showed that Boolean Satisfiability problems evaluated
as MAXSAT functions have a highly restricted set of
nonzero Walsh coefficients and those coefficients can
be computed in linear time with respect to the num-
ber of clauses. Since MAXSAT is NP-Complete the
GA cannot be expected to find the global optimum
efficiently and reliably even when given all the infor-
mation about the nonlinear fitness interactions in the
problem-coding (unless of course, P = N P which is ex-
tremely unlikely). Nevertheless, knowing the structure
of nonlinearities of a problem should allow to design
more competent GAs.

The approach could also be beneficial to investigate
certain genome problem-coding issues. For instance
there is some debate in the GA community whether
binary integer coding or Gray coding is better for op-
timizing some functions. In general Gray coding seems



Table 2: Significant Walsh Coefficients: Fj;,

w? Walsh index set
0.0055 00000000.........cvvvuvvenn.. 00000000
0.0075 00000000 ...... 0011 ......... 00000000
0.0075 00000000 ...... 0101 ......... 00000000
0.0080 00000000 ...... 0110 ......... 00000000
0.0051 00000000 ...... 0111 ......... 00000000
0.0075 00000000 ...... 1001 ......... 00000000
0.0072 00000000 ...... 1010 ......... 00000000
0.0069 00000000 ...... 1100 ......... 00000000
0.0067 00000000 ...... 1101 ......... 00000000
0.0068 00000000 ...... 1110 ......... 00000000
0.0068 00000000 ...... 1111 ......... 00000000
0.0081 00010000 ... evuriiiiiiia e
0.011 00100000 . ..o
0.016 00110000 .. ...
0.0088 01000000 .. evuriiiiiiie e
0.015 01010000 ... evuriiiiiiieie e
0.014 01100000 .. .evuriiiiiiie e
0.016 01110000 .. ...
0.0088 10000000 .. ....vouieiae e
0.017 10010000 ... ..o
0.015 10100000 . ....ovei e
0.015 10110000 .. ..o
0.015 11000000 . ....ooei e
0.013 11010000 ... ..o
0.015 11100000 ... .o
0.013 11110000 .. ..o e

to be less prone to hamming cliffs, but going from
binary integer coding to Gray coding does introduce
other non-linearities. Using the approach outlined here
it can be investigated where the most significant non-
linearities are situated. We have tested this on some
functions and results show that the most significant
Walsh coefficients can be found in substantially dif-
ferent partition orders for both codings. Whether the
binary integer coding or the Gray coding have fewer
significant higher order non-linearities depends on the
fitness function.

Although the KM-algorithm runs in polynomial time,
the number of samples it takes is quite large. As a
theoretical tool this is not so much of a problem, since
there we would only be interested in the results ob-
tained - given a non-exponential time of computation.
It is tempting though to ask whether estimating sig-
nificant Walsh coefficients by sampling could not be
used more directly to guide a genetic algorithm at run
time. For this to become feasible the number of sam-

ples needed should be reduced. In its standard im-
plementation KM is rather wasteful on the samples
it takes. For instance when estimating the value of
E[f2(z)] a large number of samples are evaluated and
thereafter discarded. If the obtained value is larger
than the threshold #2 KM will recurse and compute
an estimate of E[f2,(z)] and E[f2,(z)]. All the dis-
carded samples however could well be used again in
the calculation of the new estimates. This simple pro-
cedure would actually reduce the amount of samples
needed by half.

A second possible source of more efficient sampling
could be found in the sequence at which the partitions
are sampled. KM simply goes from left to right on the
string, but it could be beneficial to adapt this sequence
of expanding according to the salience of the partitions
and corresponding schemata.

It remains to be investigated though if these and other
changes could turn a sample based Walsh coefficient
estimator into an algorithm efficient enough to guide
GAs at run time.

In related work Kargupta and Sarkar also present
a polynomial time algorithm to compute the Walsh
coefficients under certain conditions (Kargupta and
Sarkar, 1999). Their restricting conditions are that
all Walsh coefficients above a certain order k are as-
sumed to be zero. After computing all the order k
Walsh coefficients - requiring 2* (2) function evalua-
tions - the remaining coefficients of order less than k
can be computed without further function evaluations.
An even more efficient algorithm is proposed which is
applicable when in addition to the above conditions all
the Walsh coefficients are also non-negative.

5 CONCLUSION

We have discussed the KM-algorithm in the context
of genetic algorithms. KM allows one to estimate the
most significant Walsh coefficients in a computational
efficient way for a large class of functions. Knowing
these coefficients gives valuable information about the
sources of nonlinear fitness interactions in the problem-
coding. This insight can be used for instance for eval-
uating a problem-coding, or for designing genetic re-
combination operators.

The Walsh transform has continued to be an impor-
tant theoretical tool ever since Bethke’s dissertation
(Bethke, 1981). Over the past years the Walsh trans-
form has also witnessed a steadily increasing interest
from the Computational Learning community, which
has led among others to the interesting KM-algorithm.



It has been the purpose of this paper to draw the atten-
tion of the GA community to this work. Theoretical
tools that might supply the genetic algorithm practi-
tioner with valuable insight are hard to come by, and
KM or similar analysis algorithms certainly seem to
have a lot of potential for helping to achieve this ef-
fort.

References

Bethke, A. D. (1981). Genetic algorithms as func-
tion optimizers. (Doctoral dissertation University

of Michigan). Dissertation Abstracts International
41(9), 3503B.

Goldberg, D. E. (1992). Construction of higher-
order deceptive functions from low-order Walsh coef-
ficients. Annals of Mathematics and Artificial Intelli-
gence, Vol.5, p.35-48.

Goldberg, D. E. (1989a). Genetic algorithms and
Walsh functions: Part I, a gentle introduction. Com-
plex Systems, 3, p.129-152.

Goldberg, D. E. (1989b). Genetic algorithms and
Walsh functions: Part II, deception and its analysis.
Complex Systems, 3, p.153-171.

Kargupta, H., and Sarkar, K. (1999). Function Induc-
tion, Gene Expression, and Evolutionary Representa-
tion Construction. (this volume).

Kushilevitz, E. , and Mansour, Y. (1993). Learning
Decision Trees using the Fourier Spectrum. SIAM
Journal on Computing, 3 22(6):1331-1348.

Mansour, Y. (1994). Learning Boolean Functions via
the Fourier Transform. Advances in Neural Compu-
tation. eds. Roychodhury, Siu, and Orlithy. Kluwer
Academic Publishers.

Mansour, Y., and Sahar, S. (1995) Implementation Is-
sues in the Fourier Transform Algorithm. Proceedings
of the Neural Information Processing Systems 8, p.260-
266.

Rana, S, and Whitley, D. (1998). Genetic Algorithm
Behavior in the MAXSAT Domain. Parallel Problem
Solving from Nature - PPSN V, Lecture Notes in Com-
puter Science, Vol.1498, p.785-794.

Rana, S, Heckendorn, R. B., and Whitley, D. (1998).
A Tractable Walsh Analysis of SAT and its Implica-
tions for Genetic Algorithms. Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-
98), p.392-397.



