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Abstract

When giving different approximate solutions
that are near the optimal solution for a com-
binatorial optimization problem, these solu-
tions may share several important or com-
mon parts. This empirical conjecture is of-
ten employed in developing good algorithms
for solving combinatorial optimization prob-
lems. In this paper, we propose a new iter-
ated local search (ILS) approach incorporat-
ing this conjecture for the symmetric travel-
ing salesman problem. To escape from local
optimum found by a local search procedure to
another, standard ILS algorithms generally
have an useful technique called the double-
bridge move. However, in our approach we
deal with two approximate solutions, which
contain many edges which are not shared
parts of these solutions. These edges are clev-
erly reconnected to create a newly escaped
solution. From our experimental results, it
was observed that our ILS algorithms could
find better solution qualities with fewer iter-
ations than standard ILS algorithms for well-
known benchmarks of the TSPLIB. In partic-
ular, we showed that one algorithm combined
with the Lin-Kernighan heuristic was a very
high-performance approach.

1 INTRODUCTION

Many combinatorial optimization problems belong to
the class NP-hard. It is generally believed that these
problems can not be solved to optimality within poly-
nomially bounded computation times. In such a situa-
tion, it is important to have approximation algorithms
that can find optimal or near-optimal solutions within
reasonable times. Almost all of the algorithms have
been proposed based on analogies with processes in
nature, biological evolution, etc. Recently, such algo-
rithms have been developed for the traveling salesman

problem (TSP), one of the most known combinatorial
optimization problems.

The objective of the TSP is to find, given a set
{e1, ¢, ..., ¢, } of cities and for each pair {¢;, ¢; } of dis-
tinct cities a distance d(e;, ¢;) [10], a permutation =
(Hamiltonian cycle) of the cities that minimizes the
following quantity;

n—1

Z d(Cﬂ-(i), Cﬂ—(H_l)) + d(cﬂ-(n)a cﬂ'(l))'

i=1

In this paper, we concentrate on the symmetric TSP,
where the distances satisfy the condition d(e;,¢;) =
d(cj,¢;) for 1 <4, j < n. The number of the Hamil-
tonian cycles, i.e. the size of feasible solutions, is

(n— 1)1/2.

For the TSP, many approximation algorithms have
been proposed such as the simulated annealing, tabu
search, genetic algorithms, ant colony, and neural net-
works. Most of these algorithms with various param-
eters to search are combined with a local search pro-
cedure to find good solutions. To have a chance of
finding good solutions we can start the local search
procedure many times with different starting solutions,
e.g., random solutions. A more reasonable idea is not
to restart with a completely new starting solution but
only to perturb the current local optimal solution. In
general this approach is called the iterated local search
(ILS). The ILS algorithm for the TSP includes a typ-
ical local search algorithm such as the 2-Opt, 3-Opt,
or Lin-Kernighan (LK) [14] heuristics used as a main
engine of search. To escape from the current local op-
timal solution, a double-bridge 4-change move is very
often used as an “escape technique”, i.e., a technique
to escape from local optimum found by a local search
algorithm. This technique removes only four edges
from a solution and replaces them in order to obtain a
non-sequential move. The ILS based on the LK heuris-
tic has been recognized as the most effective approach
to the TSP since the beginning of 1990s [9, 10, 15].

In this paper, we propose new ILS algorithms that
escape from a current local optimal solution using a



technique of genetic transformation based on a genetic
analogy. The genetic transformation (GT) acts as an
intermediary which creates new appropriate solutions
in order to apply repeatedly a local search procedure.
The GT works so that partially succeeded edges shared
on only two solutions of the TSP are not broken, and
many other edges are reconnected to create the new
solution which transforms the current best (elite) so-
lution of the local optimum. Therefore, the GT tech-
nique may be interpreted as a crossover that is a con-
natural technique in the genetic algorithm. From this
point of view, we call the ILS a Genetic Iterated Lo-
cal Search (GILS) algorithm. We test performances
of each GILS combined with the typical local search
heuristics for several benchmarks for which the opti-
mal tour length is known. From our experimental re-
sults, we observed that the GILS algorithms could find
better solutions with fewer iterations than standard
ILS algorithms, and the GILS combined with the LK
heuristic obtained high-quality solutions within rea-
sonable computation times.

The paper is organized as follows: Sect. 2 describes
standard ILS and reviews impressive other approaches
to the TSP. In Sect. 3 we describe our GILS using
the genetic transformation and give a fundamental GT
form. In Sect. 4 performances of our approach are
tested and compared with standard and impressive ap-
proaches, and Sect. 5 contains concluding remarks.

2 REVIEW

Several researchers have proposed high-performance
heuristic approaches to the TSP. These approaches are
based on improving the current single solution (or mul-
tiple solutions) by a greedy search and other concepts
for the neighborhood of the solution. Here, we re-
view well-known approaches that can find optimal or
very good approximate solutions, e.g., iterated local
searches and genetic algorithms.

2.1 STANDARD ITERATED LOCAL
SEARCH ALGORITHMS

Basically the iterated local search algorithms yield
good approximate solutions based on dealing with a
single solution rather than many solutions which are
mostly used in genetic algorithms.

Martin, Otto, and Felten proposed iterating methods
called the “Large-Step Markov Chain” algorithm for
the TSP [15]. To escape from local optima found
by the local search algorithm, they used a technique
that removes four edges from a solution and replaces
them in order to obtain a non-sequential move [14]
(this technique was called a “double-bridge”, see [15]
for more detail). To escape from local optima found
by typical local search algorithms, which perform
only sequential moves, the double-bridge technique

is the most natural choice. Johnson investigated an
iterating method based on the LK using the tech-
nique of the double-bridge move [9]. His iterated lo-
cal search (so-called “Tterated Lin-Kernighan”) algo-
rithm produced successful results with very fast com-
putation times [10]. Moreover, Hong, Kahng, and
Moon proposed an improved version of the Large-Step
Markov Chain, and investigated the relationship be-
tween strength of the perturbation (random k-change
moves over the range of values k > 4) and the Large-
Step Markov Chain’s performance [8]. Almost all of
these powerful iterating methods substantially employ
the double-bridge or k-change move (where £ is fixed)
techniques for the current single solution. Further-
more, Codenotti, Manzini, Margara, and Resta re-
ported the performance of techniques (double-bridge
and other moves) to escape from the local optima
found by local search procedures of the TSP [4]. They
indicated that modified techniques to escape from the
local optima produced better solutions for iterating lo-
cal search approach.

A basic concept of these ILS algorithms is to perform
a concentrative search around good solutions, because
very good solutions are located around other good so-
lutions [3]. Generally, the local search algorithms find
local optimal solutions, i.e., the local search is run un-
til no possibility for decreasing the tour length can be
found, and the cost of the solution is generally good.
In order to transform other search points, we must es-
cape from the local optima by using an appropriate
technique.

A simple illustration of the double-bridge is shown in
Fig. 1. A left side of the figure is a state of solution
before performing the double-bridge. Alphabets, a, b,
..., h, are city names. Only four edges (a,b), (c,d),
(e,f), (g,h) on the solution are changed to other edges
(a,f), (b,e), (¢,h), (d,g), as shown in a right side. The
double-bridge move is randomly performed, and it is
only the 4-change move that cannot be obtained by a
sequential move such as two or three opt. The general
flow of the ILS algorithm is described as follows:

Standard Iterated Local Search

1 Generate an initial solution S (locally opti-
mized by a local search algorithm).
2 Do the following for a given number of itera-
tions.
2.1 Perform a double-bridge move on S, ob-
taining S’.
2.2 Run a local search on S’ obtaining S”.
2.3 If Cost(S") < Cost(S), then set S = 5".
3 Return S.

In Step 2.1, the double-bridge move is applied to the
current best solution S. In Step 2.2, the solution S
is found by a local search starting from S’ obtained
in Step 2.1. In Step 2.3, Cost() denotes an evaluation
function for the length of a TSP solution, i.e. the
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Figure 1: An example of the double-bridge 4-change move.

tour length is obtained by the quantity explained in
the Introduction. This process is repeated until the
terminating condition in Step 2 is satisfied.

2.2 GENETIC ALGORITHMS

On the other hand, the genetic algorithm is based on
principles of natural selection and genetics, and several
researchers proposed efficient genetic algorithms for
solving the optimization problem. In particular, be-
cause the crossover is the most important and connat-
ural operator among several genetic operators, many
crossovers that efficiently produce good solutions were
developed. Generally, the crossover operator works as
follows. By using a pair of solutions (parents) among
those selected in a previous generation, new solutions
are created using a mechanism that inherits the char-
acters from the parents.

Nagata and Kobayashi proposed a high-power
crossover operator called edge assembly crossover
(EAX) [19]. The GA using EAX without any TSP
local search procedures could obtain optimal solutions
with high probability even for over 2000-city instances.
Freisleben and Merz developed a high-performance ge-
netic algorithm combined with the LK heuristic and
reported impressive results for the TSP [6, 16]. Their
algorithm exploits the observation that the solution
space of the TSP has a “big-valley” structure [3]. To
search hopeful space, distance preserving crossover,
and the double-bridge mutation are employed. A sim-
ilar search concept using both the useful crossover op-
erator (modified mazimal preservative crossover [18])
and the double-bridge mutation, the evolutionary al-
gorithm with a linear distributed population structure,
Asparagos96, was developed by Gorges-Schleuter [7].
This algorithm also found high-quality solutions.

3 GENETIC ITERATED LOCAL
SEARCH

In the GILS algorithm, the genetic transformation
(GT) technique acts as an intermediary which creates
an appropriate solution transformed the current best
(elite) solution in order to apply repeatedly a local
search procedure, i.e., in order to move from local op-
tima found by the local search to other search points.
The GT technique for the TSP is motivated by the re-
cent observation of Hong et al [8]. They suggested
that the double-bridge move which reconnects only
four edges was not optimum, and the best k-change
move depended on both the local search procedure and

the type of instance. Our GT works by reconnecting
many edges which are significantly broken using useful
informations from two solutions.

3.1 FRAMEWORK

To implement the GILS, we need multiple solutions
because the GT substantially needs at least two solu-
tions. In our GILS for the escape technique, we deal
with the best previously found solution and a current
solution found by the local search algorithm in each 1t-
eration. These solutions will be suitable because they
should share many good edges or subtours according
to the observation argued by Miihlenbein [18]. A sim-
ple framework of the GILS is outlined as follows:

Genetic Iterated Local Search

1 Generate two different solutions S and 7' (lo-
cally optimized by a local search algorithm).
2 Do the following for a given number of itera-
tions.
2.1 Perform GT(S,T), obtaining T".
2.2 Run a local search on T”, obtaining T"'.
2.3 If Cost(T") < Cost(T), then set T =
T, and set S = T".

bl

3 Return 7.

In Step 1, the first approximate solutions, S and T,
are obtained by a local search starting from random
solutions!. In Step 2.1, we perform the function GT(a
current solution S, the best solution T') to create a new
solution 77, and in Step 2.2 the local search procedure
finds a local optimal solution. In Step 2.3, 7" found in
Step 2.2 must be copied to the solution S for using our
escape technique GT in the next iteration. Therefore,
a state of the new solution returned from the GT is
different in every iterations, and is locally optimized
by the local search. This process is repeated until the
terminal condition in Step 2 is satisfied.

3.2 GENETIC TRANSFORMATION
ESCAPE TECHNIQUE

We first describe a fundamental form of the GT tech-
nique. We define two solutions, a good solution S,
and another solution S;. Sp 1s a local optimal solu-
tion, and a cost of Sy is better than that of S,. The
form consists of following conjectures:

e Two solutions, S, and S, contain “common in-
formations” each other.

Tt is also possible to use better solutions created by
tour construction heuristics instead of random solutions.



e The common informations between S, and S; are
similar to sub-informations of an unknown opti-
mum state.

e It needs that new solutions, which consist of the
common informations and other parts between
the solutions (S, and Sp), are created by basing on
“peculiar concepts” for solving a particular opti-
mization problem. But new different solutions are
required.

To design the GT for various optimization problems, it
is necessary to fitly determine “common informations”
between the solutions and “peculiar concepts” for the
problem, with an intention to move to hopeful regions
of the solution space. It depends on a problem and a
coding of the solution for the problem.

For the TSP, the GT 1is realized as follows. Each of
two solutions (a good solution S, and another (bet-
ter) solution Sy) on n-city TSP is the set of cities 1,
2,..., n. Sy 1s always a local optimum, and the cost of
Sy is always better than Cost(S,), i.e., we can define
that Sy is the best previously found solution during
our approach process. Assuming that S may share
similar information with the exact optimal solution,
we can assume that S, may also share similar infor-
mation. Therefore, both S; and S, may be similar
except for several edges. If edges between S and S,
differ by only k edges, almost all other edges (n — k),
called shared edges, should be worth preserving for a
transformation, because the shared edges may contain
dominant characters that will consist of subsets of the
optimal solution. In other words, to intensively explore
hopeful regions of the solution space, only unshared %
edges should be changed to other appropriate edges by
an useful operation based on an important concept for
solving the TSP. For more detail, the number of shared
edges between Sj and the exact optimal solution may
be intuitively larger than the case of S,. Whenever
transforming from the best local optimum S; by our
GT, the shared edges should not be broken, and only
k edges should be reconnected to create a new solu-
tion that is not a local optimum in order to search by
a tour improvement local search heuristic.

In addition, it is important to define the shared edges
of (n — k). We define these as complete subtours [11].
The complete subtour consists of the several shared
edges, and a set of cities includes the same cities in
the exact same order rather than a different order. In
genetic algorithms, the complete subtours have been
used as the inherited characters to create offspring in
the crossover operators, e.g., crossovers using complete
subtours were proposed by Freisleben et al. [6] and [11].
Therefore, the shared edges of (n — k) consist of multi-
ple complete subtours. One of the complete subtours
contains a set of adjacent edges, which consist of a sub-
set of the shared edges on two solutions. In the TSP
graph, we can implicitly interpret as if each complete
subtour had only two nodes on the graph, i.e., broadly

speaking, we can ignore the inner part of the adjacent
edges in each complete subtour when performing the
GT technique. A function GT is described below.

Function GT(S,T)

1 Perform a random 4-change move on S, ob-
taining S’.

2 Enumerate all complete subtours on two so-
lutions, S* and 7.

3 Choose a starting city ¢ randomly from the
city on either side of each subtour or other
cities not contained in these subtours.

4 Do the following until a new different solution

T’ is created.

4.1 Make a candidate-list except for used
cities and subtours.

4.2 Find the nearest candidate city j to .

4.3 Connect city j to 7, and set ¢ = j. (if city
j 18 from either side of a subtour, connect
the subtour to ¢, and set ¢ = the city on
the other side of the subtour.)

5 Return 7.

In our GT, we use the best solution 7" and a good so-
lution S as described above. Only a single solution
is returned from the GT function. In Step 1 of the
function, a new solution S’ is obtained by performing
a random 4-change move on S. The reason for Step 1
is described later. In Step 2, we perform an O(n) time
enumeration algorithm [11] to enumerate all common
subtours on two solutions. If any subtours do not exist
on two solutions, there is no substantial gain to per-
form a crossover which uses the subtours for creating a
new solution [11]. The same point was also described
simply in [6]. Therefore, we also take into account this
point because the GT uses the same type subtours. To
certainly count several complete subtours and help for
creating the new solution, we perform the random 4-
change move, which removes four edges on the current
solution S and reconnects four other edges randomly
selected, before enumerating the subtours in Step 2.
Although we use the random 4-change, it is possible
to perform a random k-change move also (k > 4, but
it should not be very large). In other words, it can
be interpreted as a special case such as the mutation
operation to the solution used in the GT. Good sub-
tours of S may be slightly broken by this mutation.
However, this operation contributes to a progress of
our approach and a break-through of exploratory lim-
itations that are likely when solutions obtained by the
search are located extremely near the optimum state.

Step 3 of the GT function randomly chooses a city
from first or last cities on each of the subtours or other
cities, which are not enumerated as subtours. In Step
4.1, a candidate-list contains the information of the
candidate cities except for previously used cities and
invalid cities, which have a very long distance. Step
4.2 finds the nearest candidate city on the list by the



useful operation such as the nearest neighbor heuris-
tic, and then the candidate city is connected to be
a valid solution while performing Step 4. Therefore,
all the unshared edges are not always reconnected to
other new edges from edges previously appeared on
the solutions. However, several new edges, which are
not appeared on the solutions, are often linked by the
nearest neighbor operation. This advantage must be
important as observed in [19] of Nagata et al.

By using this GT technique, the new escaped solution
does not go too far from the best solution, and the
distance of a new solution can be mostly between dis-
tances of the solutions used in the GT. That is, the
G'T is biased so as to obtain the new solution slightly
away from the best solution rather than an improved
solution in most cases. In our observations, the shared
edges (or complete subtours) ranging from roughly 90
to 99% are transmitted to the new solution, and the
number of enumerated complete subtours depends on
the size of instances and the state of two solutions.
By increasing the size of instance, the number of sub-
tours also increases substantially, and the number of
unshared edges also increases. Therefore, when ap-
plying to very large instances, the GT technique and
local search procedures may spend more computation
times according to the number of the unshared edges
than the case of the double-bridge technique, which
uses only four edges. A similar point was described in
Sect. 6.3 of [10]. Tt is important to consider a trade-
off on that point, i.e., between obtained qualities and
computation times by each ILS.

From these, this GT is interpreted as an adaptive k-
change move technique (the number of k in the stan-
dard technique is always fixed as described in Sect. 2)
because the number of k is changeable according to
the states between the best solution and another one
via the random 4-change move for good current solu-
tions in each iteration. The GT such as the adaptive
k-change move is incorporated into our approach, and
the GILS is achieved.

3.3 TSP LOCAL SEARCH ALGORITHMS

We can combine with any TSP local search heuris-
tics for the GILS approach. In this paper, we employ
the 2-Opt, 3-Opt, and Lin-Kernighan (variable »-Opt)
heuristic algorithms as main search engines. In partic-
ular, the LK algorithm has been known to be the best
improvement heuristic for the TSP.

These TSP local search heuristics improve the cur-
rent tour by changing the appropriate shorter edges
from longer ones until no possibility for decreasing
the tour length can be found in the neighborhood
N, le., set of all possible “neighbor” tours. Given
a tour r = {(cla Cz), (CQa 63), XS (cn—la Cn), (cnacl)}a
where (¢;,¢;41) denotes the edge connecting the ith
point ¢; and the (¢ + 1)th point ¢;41 in the tour, the

r-Opt (r > 2) neighborhood is defined by Ny_,p:(2)
= {#'|z' is a tour obtained from z by removing r
edges and adding the same number of other appropri-
ate edges}. See [10] and [14] for implementation details
of the heuristics. In the naive implementations, the r-
Opt algorithms generally take O(n") time, i.e., the size
of the neighborhood grows polynomially with . How-
ever, 1t 1s possible to reduce dramatically the enor-
mous amount of computation time of these algorithms
by using appropriate data structures and useful pro-
gramming techniques. To implement fast algorithms,
we use the neighbor-list implementation of size 40 for
the each node that are initialized by nearest neighbor
queries on the K-d tree, and incorporate the don’t look
bits technique into our local search algorithms [12], see
[1, 2, 5, 10, 16] for details on these techniques.

4 EXPERIMENTAL RESULTS

In the experiment, we demonstrate performances of
three GILS algorithms (2-Opt GILS, 3-Opt GILS,
and LK GILS) for well-known TSP instances in the
TSPLIB95 [21], so that closeness to optimality can
be judged. Since the algorithms presented in this pa-
per attempt only to find near-optimal solutions, it is
important to evaluate the relation between the aver-
age quality of the solution and the computation time
required by the algorithms. All computations of the
algorithms written in C are performed on a Fujitsu S-
4/5 workstation (microSPARCII 110MHz). We carry
out ten runs for each instance. All initial solutions are
generated randomly, and improved by each local search
before performing each iterating search process.

4.1 2-OPT AND 3-OPT VERSIONS

Table 1 summarizes the best (best tour length) and
average (average tour length) qualities obtained by
standard 2-Opt ILS and 3-Opt ILS using the double-
bridge move for the well-known 532-city instance [20],
att532 (the optimal tour length is 27686). In the ta-
ble, time(s) denotes the average computation times
in seconds for each iteration shown, and the results
performed by the algorithms are after n/10, n/10%3,
n, and 2n iterations, where n denotes a number of
cities. These iteration numbers are derived from those
of Johnson and McGeoch [10]. The results of 2-Opt
and 3-Opt versions of our GILS approach for att532
are shown in Table 2.

From these tables, we observed that the GILS algo-
rithms obtained better solutions than standard ILS
algorithms. Similar observations of the 2-Opt version
were reported in [13]. The ability of optimization of
the GILS algorithms was performed faster than stan-
dard algorithms when measuring fixed same iterations.
For example, the average quality of 3-Opt GILS at n
iterations was clearly better than 3-Opt ILS at 2n iter-



Table 1: Best and average percentage excess over the optimal tour length for 2-Opt ILS and 3-Opt ILS after

n/10, n/10°® n, and 2n iterations. (n = 532)

att532 7-Opt ILS 3-Opt IS
iterations || best average time(s) || best average time(s)
/10 1.302 (28877) | 6.074 (29367.7) 2 [ 1.719 (25162) | 2.788 (28458.0) 1
n/10%° || 2.853 (28476) | 4.651 (28973.6) 7 || 0.921 (27941) | 1.915 (28216.2) 1
n 2.384 (28346) | 3.276 (28593.0) 19 || 0.686 (27876) | 1.357 (28061.7) 33
2n 1.853 (28199) | 2.239 (28305.8) 37 || 0.560 (27841) | 1.094 (27988.9) 64

Table 2: Best and average percentage excess over the optimal tour length for 2-Opt GILS and 3-Opt GILS after

n/10, n/10°% n, and 2n iterations. (n = 532)

att532 7-Opt GILS 3-Opt GILS
iterations || best average time(s) || best average time(s)
/10 1.882 (28207) | 3.534 (25664.3) 3 || 1.481 (28096) | 2.082 (28262.6) 5
n/10%° || 1.665 (28147) | 2.532 (28387.1) 10 || 0.842 (27919) | 1.231 (28026.9) 15
n 1.055 (27978) | 1.901 (28212.4) 28 | 0.368 (27788) | 0.781 (27902.1) 41
2n 0.708 (27882) | 1.534 (28110.7) 53 | 0.238 (27752) | 0.665 (27870.1) 80

ations. The average computation time of 3-Opt GILS
at n iterations was faster than 3-Opt ILS at 2n itera-
tions, although the time of 2n iterations of the GILS
was slightly slower than the time of the ILS in the
same iteration. In addition, we tested each of four
algorithms for 10n iterations. The 2-Opt and 3-Opt
ILSs obtained average qualities 1.57% and 0.55%, re-
spectively. The GILSs found 0.98% and 0.36%, re-
spectively. From these tests, we confirmed that each
algorithm intrinsically could improve solution quali-
ties, and our GILS approach could obtain even better
ones with longer iterations. Even though 2-Opt and
3-Opt GILS algorithms demonstrated good prospects
in comparison to the standard algorithms, they may
not be sufficient to achieve much better solutions.

4.2 LK VERSION

Results for the LK GILS on the TSPLIB instances of
101 — 3795 cities are shown in Table 3 (a result of
other instance d2103 tested 1s described in the end of
this section). In this table, Opt/10runs denotes the
number of optimal tours obtained by the LK GILS
for ten runs. Optimal tours were always observed up
to 2392-city instance, however the LK GILS obtained
very high-quality solutions even for the largest 3795-
city instance in this experiment.

In the early study of the Tterated Lin-Kernighan (ILK)
algorithm using the double-bridge move, Johnson re-
ported that the ILK found optimal tours of 318, 532,
2392-city instances, etc [9]. Here, we compare our
results with those of the ILK recently presented in
Table 16 of [10]?. Our LK GILS clearly found bet-

2Table 16 of [10] is the result that intentionally sacri-
ficed accuracy for ILK search. However, the ILK algorithm
must be able to find good (or several optimal) solutions
with larger iterations and computation times.

ter solutions with fewer iterations than the results
of the ILK for several instances shown in [10]. This
behavior is similar to previous results of 2- and 3-
Opt versions. For example, the ILK for the instance
of 532-city showed average qualities, 1.20%, 1.08%,
and 1.03%, with corresponding numbers of iterations,
n/10,n/10%% and n, respectively. The average quality
(of att532), here shown in Table 3, was 0.223% at only
n/10 (i.e., 53) iterations within 13(sec) although the
total computation time of the LK GILS was slightly
slower than the ILK for att532 (roughly a factor of 4)
when comparing at the final n iteration (Johnson et
al. used 150 MHz MIPS processor).

Merz and Freisleben reported impressive results of the
genetic algorithm that is similar to one combined both
the TLK and our approach [16]. Their algorithm ob-
tained the average tour length 27698.4 for att532
within 290(sec) on 233 MHz DEC Alphastation. For
the 783-city instance (optimal length is 8806), the
algorithm obtained a better average length (8806.2)
within 424(sec) than our result in Table 3. When giv-
ing 4n iterations (3132 iterations) for rat783, the LK
GILS obtained an average tour length of 8806.2 for ten
runs within an average computation time of 400(sec)
in our additional test (optimal tours were found 9
times in 10 runs). Using another high-power GA, Na-
gata and Kobayashi reported a 0.034% average quality
for att532 within 781(sec), 0.000% for rat783 within
3013(sec), and 0.006% for pr2392 within 33285(sec) on
200 MHz Pentium processor [19]. Our result of pr2392
was the same value with the high-power GA. Again we
performed the additional test for att532. In the case
of 4n iterations (2128 iterations), the LK GILS ob-
tained an average tour length 27694.1 (0.029%) for ten
runs within an average computation time of 440(sec)
(optimal tours were found 5 times in 10 runs). There-
fore, our approach will find even better solutions by
increasing the iteration number within the limits of



Table 3: Best and average percentage excess over the optimal tour length for LK GILS after n/10, n/10%% and

n 1terations.

eil101 n = 101 Opt/10runs: 10 rat783 n = 783 Opt/10runs: 3
iterations | best average time(s) iterations | best average time(s)
/10 0.000 (629) | 0.302 (630.9) <1 “u/10 0.045 (8810) | 0.153 (8819.5) 13
n/10°° 0.000 (629) 0.000 (629.0) <1 n/10°° 0.023 (8808) 0.073 (8812.4) 37
n 0.000 (629) | 0.000 (629.0) 2 n 0.000 (8806) | 0.022 (8807.9) 103
kroA200 n = 200 Opt/10runs: 10 pcb1173 n = 1173 Opt/10runs: 1
iterations | best average time(s) iterations | best average time(s)
/10 0.000 (29368) | 0.164 (29416.2) 1 “n/10 0.047 (56919) | 0.204 (57008.1) 13
n/10°° 0.000 (29368) | 0.000 (29368.0) 4 n/10°° 0.002 (56893) | 0.074 (56934.0) 118
n 0.000 (29368) | 0.000 (29368.0) 10 n 0.000 (56892) 0.014 (56900.1) 319
1in318 n = 318 Opt/10runs: 8 rl1323 n = 1323 Opt/10runs: 1
iterations | best average time(s) iterations | best average time(s)
/10 0.128 (42083) | 0.410 (42201.4) 6 “n/10 0.020 (270254) | 0.195 (270725.5) 113
n/10°° 0.000 (42029) | 0.162 (42096.9) 17 n/10°° 0.010 (270226) | 0.095 (270456.0) 355
n 0.000 (42029) | 0.057 (42053.0) 47 n 0.000 (270199) | 0.039 (270303.2) 1022
pcb442 n = 442 Opt/10runs: 9 pr2392 n = 2392 Opt/10runs: 3
iterations | best average time(s) iterations | best average time(s)
/10 0.014 (50785) | 0.065 (50811.0) 8§ n/10 0.011 (378074) | 0.051 (378226.0) 177
n/10°%3° 0.000 (50778) | 0.016 (50785.9) 23 n/10%° 0.000 (378033) | 0.016 (378093.9) 551
n 0.000 (50778) | 0.003 (50779.7) 65 n 0.000 (378032) | 0.006 (378054.1) | 1635
att532 n = 532 Opt/10runs: 2 £13795 n = 3795 Opt/10runs: 0
iterations | best average time(s) iterations | best average time(s)
/10 0.072 (27706) | 0.223 (27747.6) 13 /10 0.120 (28809) | 0.341 (28870.1) 2658
n/10°° 0.025 (27693) | 0.092 (27711.6) 40  n/10°° 0.028 (28780) | 0.189 (28826.4) 8933
n 0.000 (27686) | 0.056 (27701.5) 13 = 0.021 (28778) | 0.091 (28798.2) | 26958

the time than the results shown in Table 3.

Recently, a very high-performance algorithm called
the “Thermal Cycling” was developed by Mobius,
Neklioudov, Diaz-Sanchez, Hoffmann, Fachat, and
Schreiber [17]. This algorithm has roughly the same
performance in comparison to ours for 442, 532, and
783-city instances. In particular, results of instances
of £f1 type tested in [17] were extremely impressive.
For example, the instance of £13795, which is patho-
logically clustered, have been considered that it is
very hard to optimize for neighbor search approaches.
Therefore, we relatively need large computation times
as presented in [10, 16]. From our result for £13795
on Table 3, we observed better approximate solu-
tions (0.091%) on the average than results of Gorges-
Schleuter (0.167%) [7] and Merz et al. (0.335%) [16],
although our result was not as good as the result of
Mobius et al [17].

Finally, we tested the LK GILS for the 42103 instance,
which has not been solved exactly yet [21]. The known
lower and upper bounds for the optimum of the in-
stance are [80330,80450]. The best tour length found
by our LK GILS was 80450, which corresponded with
the upper bound. In this case, we used 40 nearest
cities for the neighbor-list implementation. The aver-
age computation time for ten runs was 3700(sec), and
the average tour length of 80480.4 was found within
2103 iterations.

Our approach is a half-breed of the iterated local
search and the genetic algorithm without a compli-
cated setting of several parameters. In particular, one
or two solutions rather than many solutions are used
to find high-quality solutions. The genetic transforma-
tion technique combined both the crossover and muta-
tion operators is performed to intensively explore the
hopeful regions of the search space where better solu-
tions may be found by the local search so that a diver-
sity of the elite solution is obtained. From our results
which very good average quality solutions were found
from early iterations, we confirmed that the GILS was
one of the high-performance approaches to the TSP.

5 CONCLUSION

In recent years, many high-performance heuristics such
as the iterated local search and genetic algorithms have
been examined for the traveling salesman problem. By
combining these algorithms, the performance in ob-
taining good approximate solutions can be increased.
From this point of view, we have presented a new ap-
proximation approach “Genetic Iterated Local Search”
based on the iterated local search.

From our experimental results, it would seem that an
escape technique, which changes only four edges such
as a standard one, is not always suitable. The num-
ber of edges reconnected by the genetic transformation



technique in our GILS algorithms depends on states
between the best previously found solution and an-
other good solution. In this case, the number of edges
is larger than the four edges usually changed by the
double-bridge move, and the new solutions produced
by our adaptive k-change move technique can be lo-
cated onto promising regions of the search space where
better solutions are likely to be found by the local
search procedure. Consequently, the effectiveness of
the GILS has been demonstrated.

There are several areas for future research, such as in-
vestigating the effects of a parallel implementation of
the GILS, analyzing a detailed relation between the
region of the search space and local search, and eval-
uating the performance of our approach for very large
TSP instances.
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