
Linkage Crossover For Genetic Algorithms

Ayed A. Salman Kishan Mehrotra

2-175 Center for Science and Technology
Department of Electrical Engineering and Computer Science

Syracuse University, Syracuse, NY 13244-4100
(ayed/kishan/mohan@top.cis.syr.edu)

315-443-2811/2322

Chilukuri K. Mohan

Abstract

A new \linkage crossover" operator based
on probabilistic methodology is proposed.
The genetic algorithm using this operator is
shown to be particularly successful for decep-
tive problems with linkages that are not eas-
ily captured by linear relationships. Further,
adaptive Hebbian mechanisms are shown to
be successful in learning the appropriate link-
age relationships when faced with new prob-
lems. Results demonstrate the e�cacy of this
approach, compared with traditional general
purpose crossover operators.

1 INTRODUCTION

Several researchers (e.g., [5, 8]) have proposed to in-
corporate problem-speci�c knowledge in genetic algo-
rithms; we show that this is accomplished successfully
by the use of linkage information in the crossover op-
erator itself. This overcomes the representation bias
implicit in the use of bit-string (and other linear) rep-
resentations with point crossover operators, while not
succumbing to the randomness of the \no-linkage" ap-
proach of uniform crossover. Problems with no in-
herent linear linkage structure then become amenable
to solution using this method. Furthermore, we show
that an adaptive algorithm succeeds in learning the
nature of the linkages in new problems.

Other researchers have approached the mismatch be-
tween the traditional GA and problem-speci�c link-
age information from di�erent viewpoints. The �rst
class of algorithms divides the optimization process
into two phases, one phase for linkage estimation and
the other for solution construction [4, 7]. The second
class tries to execute the learning and the construction
in parallel [6]. Finally, the third class uses a probabilis-

tic approach to estimate these dependencies (linkages)
[10, 9, 1].

A genetic algorithm will move rapidly towards op-
timal solutions of a given problem if it is allowed
to exploit known dependencies among genes (species-
speci�c linkages between traits). In this paper, we use
linkage to refer to the conditional probability of in-
heriting a gene from a parent, given that other genes
are also inherited from that parent. The stronger the
linkage between genes, the less should they be sepa-
rated by crossover. For e�ciency reasons, we use only
the �rst-order linkages between genes, representing the
conditional probability of inheriting genei from one
parent, given that genej is inherited from that parent,
for i 6= j.

In Section 2, we present a probabilistic methodology
that incorporates known problem structural dependen-
cies, \linkages", into the design of genetic algorithm
operators. Section 3 describes the linkage crossover
algorithm, derived from this methodology. Section
4 describes an adaptive linkage learning mechanism
for those problems where the linkage structure is not
known a priori. Results are given in Section 5. Section
6 concludes the paper.

2 PROBABILISTIC FRAMEWORK

This section describes our overall framework, estab-
lishing the relation between crossover and probabilistic
inference. In our notation, i pj denotes the event
in which the ith gene in the o�spring comes from the
jth parent when crossover occurs, � denotes a partial
inheritance assignment, and �(i) denotes the parent
p1 or p2 from which an o�spring inherits the ith gene.
We assume that there is no prior bias toward either
parent, p1 or p2, i.e., symmetry is assumed.

Without loss of generality we assume that parents
p1 and p2 generate only one o�spring. In examining

which genes are inherited from which parent, we re-
strict attention to those genes where the parents dif-
fer. Also, let fx1; x2; : : : ; xng denote a permutation of
f1; : : : ; ng, where n is the number of genes (compo-
nents) in a chromosome.

Classical crossover operators break linkages among
some genes, irrespective of potential dependence
among them, whereas it would be desirable to use
a crossover operator that honors special relationships
between sets of alleles. This dependence can be refor-
mulated in terms of problem-speci�c conditional prob-
abilities. Speci�cally, the crossover operator should
address the question that if the ith gene is inherited
from parent p1, what is the probability that the jth
gene is also inherited from parent p1? More gener-
ally, if x1; x2; : : : ; xi are the positions of genes inherited
from �(x1); �(x2); : : : ; �(xi), respectively, then what is
the probability that the xi+1th element of the o�spring
is inherited from p1? We view crossover as accomplish-
ing this probabilistic inference task, where the prob-
ability depends on the problem, and is \hard-coded"
into biological chromosomal structures via the mecha-
nisms of pleiotropy and polygeny.

Traditional genetic operators can be viewed as spe-
cial cases of this approach. For instance, in one-point
crossover (1PTX), the structure of linkages is linear,
similar to probabilistic inference with a chain struc-
ture. The only linkage between the (i+ 1)th gene and
the (i�1)th gene is through the ith gene. The linkage
probabilities associated with 1PTX may be described
in the following manner:

P (i p1 j (i + a) p1 & (i� b) p1) = 1;

where a > 0; b > 0, and

P (i p1 j (i + 1) p1 & (i� 1) p2) = 0:5:

One-point crossover is expected to work well when
the linkages in the problem are of a similar linear na-
ture, e.g., when the desirable \building blocks" consist
of alleles for physically proximate genes. In uniform
crossover (UX), no linkages are preserved:

P (i p1jj �(j)) = 0:5; 8j 6= i:

Whether 1PTX or uniform crossover works better on
a problem depends on whether the problem itself has
implicit linkages of the kind preserved by 1PTX.

3 LINKAGE CROSSOVER

A general class of crossover operators can be formu-
lated using the framework of linkage probabilities.

This class is referred to as General Linkage Crossover
(GLinX) and is described below. We use the following
additional notation:

� P (xi+1 : x1; : : : ; xi; �) denotes the conditional
probability that the xi+1th position in the child
chromosome comes from parent p1, given that the
xjth position comes from parent �(j); j = 1; � � � ; i,
i.e., P (xi+1 : x1; : : : ; xi;�) =

P
�
xi+1 p1jx1 �(x1)& : : :&xi �(xi)

�
:

� For the special case when x1; : : : ; xi are all
inherited from p1, the \linkage probability"
L(xi+1 : x1; : : : ; xi) denotes

P
�
xi+1 p1j x1 p1 & : : : & xi p1

�
:

Computation of o�spring components using

GLinX: Suppose p1 and p2 di�er from each other in
k locations. Let x1; : : : ; xk denote these locations.

� Alleles for the �rst two locations, x1 and x2, of the
o�spring are inherited from p1 and p2 respectively.

� Alleles for the remaining (k�2) locations are suc-
cessively assigned as follows: Suppose i other lo-
cations, x3; : : : ; xi+2, have been assigned alleles
from p1 or p2. Then. the (i + 3)th component
of the o�spring is inherited from parent p1 with
probability P (xi+3 : x1; : : : ; xi+2;�).

Example 1 Consider p1 = (0; 0; 1; 0; 0); p2 =
(0; 1; 0; 1; 1), di�ering in the last four positions (k =
4). The �rst position in the o�spring is assigned
0, common to both parents. Let (x1; x2; x3; x4) =
(2; 4; 3; 5). The second (x1th) position in the o�spring
is chosen from parent p1, and the fourth (x2th) po-
sition in the o�spring is chosen from p2. Next, the
third (x3th) position in the o�spring is chosen from p1
with probability P (x3 : x1; x2;�) = P (x3 p1jx1
p1&x2 p2). Suppose it is chosen from p1. Finally,
the �fth (x4th) position in the o�spring is chosen from
p1 with probability P (x4 : x1; x2; x3 : �) = P (x4
p1jx1 p1&x2 p2&x3 p1).

Only in the ideal case would probabilities P (xi+1
p1jx1 �(x1)& : : :&xi �(xi)) be available for
each i. There are far too many joint linkage proba-
bilities to be speci�ed, and these would be impossi-
ble to specify even for problems whose nature is rela-
tively well understood. In practice, these have to be

estimated or approximated based on limited informa-
tion, a task similar to that of probabilistic reasoning
with uncertainty in expert systems while making con-
ditional independence assumptions. For instance, the
expert systems literature addresses the estimation of
P (AjB & C), given only P (AjB) and P (AjC) along
with the priors. For speci�c problems, a dependency
structure may be available, enabling calculations of
such quantities. This is the approach we have taken.

A �rst step toward using linkage information would be
to develop a crossover operator that makes use of pair-
wise linkage, L(xi : xj) (de�ned as P (xi p1jxj
p1)). Pairwise linkages among genes are considered to
be \�rst order" linkages. Information about such link-
ages is most likely to be available as domain knowledge
for practical problems. For instance, in the graph-
partitioning problem, the connection weight between
nodes suggests a choice for the corresponding linkage
probability. Note that P (xi p1jxj p1) = L(xi :
xj) We assume that conditional symmetry prevails,
i.e.,

P (xi p1jxj p2) = P (xi p2jxj p1)

= 1� L(xi : xj):

We assume that the problem description speci-
�es L(xi : xj), for each xi; xj; no other infor-
mation is available. Other probabilities such as
P (xi+1 : x1; : : : ; xi; �) need to be estimated from
L(xi+1 : x1); : : : ; L(xi+1 : xi).

This is analogous to the expert system's task of com-
bining the conclusions obtained from multiple sources
of uncertain knowledge. For any two events A and B,
Bayes' rule gives

P (AjB) =
P (BjA)P (A)

P (BjA)P (A) + P (BjA)P (A)

=
P (BjA)

P (BjA) + o(A)P (BjA)
(1)

where o(A) = P (A)=P (A) represents the odds (of
the prior probabilities of occurrence) of A. Applying
Equation (1) to the problem of interest gives: P (xi+1 :
x1; : : : ; xi;�) = P (xi+1 p1j \

i
j=1 xj �(xj))

=
P (\i

j=1xj �(xj)j(xi+1 p1)

P (\i
j=1xj �(xj)j(xi+1 p1) + o(xi+1 p1)�

(2)

where � = P (\ij=1xj �(xj)j(xi+1 p2)).

It would be reasonable to replace the odds ratio
o(xi+1) = P (xi+1 p1)=P (xi+1 p2) by 1, because
P (xi+1 p1) = P (xi+1 p2) = 0:5; there is no a
priori preference that the allele in the i+ 1th position

of the o�spring should come from a speci�c parent. For
the rest of this paper, we assume that prior probabil-
ities are the same for inheriting any component from
either parent.

Conditional independence assumption. Using
this assumption, one writes

P (\iAijC) =
Y
i

P (AijC)

for arbitrary events (C;A1; A2; : : :). In the present
context it is assumed that

P (xj p1 & xk p1 j xi+1 p1)

= P (xj p1 j xi+1 p1)P (xk p1 j xi+1 p1);

and P (xj p1 & xk p1 j xi+1 p2)

= P (xj p1 j xi+1 p2)P (xk p1 j xi+1 p2):

Application of conditional independence assumption
to Equation (2) gives

P (xi+1 : x1; : : : ; xi;�) =

Qi

j=1 P (xj �(xj)jxi+1 p1)Qi

j=1P (xj �(xj)jxi+1 p1) + �

where � =
Qi

j=1P (xj �(xj)jxi+1 p2). This
expression can be further simpli�ed for ease of compu-
tation.

LinX crossover: Let parents p1 and p2 di�er in
genes fx1; : : :xjg. In an o�spring of p1 and p2, some
of the genes are inherited from parent p1, and others
from p2. In LinX, the xthi+1 gene of the o�spring is
choosen from p1 with probability

P (xi+1 : x1; : : : ; xi;�) =
h1

h1 + h2

where
Si;1 is the set of genes inherited from parent p1,
Si;2 the set of genes inherited from parent p2,

h1 =
Y

j2Si;1

P (xj �(xj)jxi+1 p1)

�
Y

j2Si;2

P (xj �(xj)jxi+1 p1)

=
Y

j2Si;1

L(xj : xi+1)
Y

j2Si;2

(1 � L(xj : xi+1))

and

h2 =
Y

j2Si;1

P (xj �(xj)jxi+1 p2)

�
Y

j2Si;2

P (xj �(xj)j(xi+1 p2)

=
Y

j2Si;1

(1� L(xj : xi+1))
Y

j2Si;2

L(xj : xi+1)

This approximation based on the independence as-
sumption suggests that a joint linkage probability such
as L(xi+1 : x1; x2; : : :xj) can be estimated based
on the pairwise linkage probabilities L(xi+1 : x1),
L(xi+1 : x2); : : : ; L(xi+1 : xj): The amount of space
taken up by these pairwise linkage probabilities is
O(number of genes per chromosome)2, which is rea-
sonable for most problems. For problems amenable to
a hierarchical decomposition, e�cient sparse matrix
representations can be used to reduce space require-
ments considerably. Problem-speci�c information can
also be easily stated in terms of pairwise linkage prob-
abilities, a local property that examines two compo-
nents.

4 LINKAGE ADAPTATION

Few problems are understood well enough that the pre-
cise linkage probabilities are known a priori. Indeed,
the main reason for \tinkering" with several opera-
tors is ignorance of the relationships between di�erent
genes. In such cases the hardest problem becomes that
of learning the linkage probabilities on the
y dur-
ing the application of the evolutionary algorithm to
the problem. The neural networks literature provides
one useful paradigm for such adaptation: Hebb's rule
states that the simultaneous (synchronous) excitation
of two neurons results in a strengthening of the con-
nections between them, while asynchronous activation
for two neurons will result in a weakening of the con-
nections. Linkage probabilities are analogous to \con-
nection strengths" (weights attached to edges between
nodes) in neural networks.

This idea is exploited in the `ALinX' algorithm, by
adapting linkage values during the execution of the
GA. In our previous work [11], the pairwise linkage
probabilities were adapted using the Average Popu-
lation Fitness (APF) method. APF uses the �tness
of the o�spring resulting from a crossover to judge
the e�cacy of the linkage probabilities used for that
crossover step. An improvement over that method is
the \Genes Perturbation Fitness Adaptation" (GPF)
described in Figure 1. The main idea is that we should
examine the possible consequences of inheriting a gene
from the other parent, rather than rely on the �tness
of unrelated individuals in the population and their
o�spring. The resulting improvement for one problem
is graphed in Figure 2. For the rest of the paper, all

results for AlinX are obtained using the GPF method
unless otherwise speci�ed.

ALinX2: GPF Adaptation Algorithm:
Initial step: Initialize each entry L[j; k] 2 [0; 1] (and
X[j; k] 2 [�1; 1]) randomly.
Reproduction step:

� Let Oi be the ith o�spring of this generation;

� For each pair of genes j; k such that Oi[j] =
p1[j] 6= p2[j] and Oi[k] = p1[k] 6= p2[k], where
p1 is the parent of Oi from which both genes are
inherited and p2 is the other parent, do:

Let f0 be the �tness of Oi;
Let f1 be the �tness of the individual
obtained from Oi by changing gene j to
be inherited from p2;
Let f2 be the �tness of the individual
obtained from Oi by changing gene k to
be inherited from p2;
The linkage matrix is then modi�ed as
follows:

4X[j; k] = � � (f0 � (f1 + f2)=2)

L[j; k] =
(X[j; k]�min`(X[j; `])

(max`(X[j; `])�min`(X[j; `])

Figure 1: GPF adaptation algorithm

5 RESULTS

In this section, we address the following questions with
respect to the performance of LinX crossover and AL-
inX algorithm:

� If there are de�nite known linkages between
genes, will LinX outperform other general pur-
pose crossover operators?

� Will ALinX be able to learn linkages between
genes and thus perform competitively when com-
pared to other crossover operators?

The canonical genetic algorithm used in our experi-
ments has the following characteristics:

� Chromosomes are randomly initialized.

� Roulette wheel selection methodology is used to
control the mating process.

10

11

12

13

14

15

16

0 200 400 600 800 1000 1200

F
itn

es
s

 Generations

GPF Adaptation
APF Adaptation

Figure 2: Comparison between new (GPF) and old
(APF) linkage adaptation algorithms for the 90-bit
hard bipolar problem; population size 100, averages
over 10 trials.

� The best 10% of the existing population is merged
with the best 90% of the generated population.

� A repair mechanism is forced upon infeasible so-
lutions among the population imposed by the
problem constraints (e.g., in graph bipartitioning
problems, there must be equally many alleles of
each kind).

� Mutation rate is 1=N , where N is the chromosome
size.

Experiments were carried out on several benchmark
problems, of which some were deceptive and some had
unknown linkage structure. In the results reported
below, we use the abbreviations in Table 1.

5.1 Order-3 Deceptive Problems

Goldberg, Korb, and Deb [4] de�ned problems ob-
tained by concatenating multiple instances of an order-
3 deceptive problem; �tness of an individual is the sum
of the �tnesses of the order-3 components. Results for
these problems are shown in Table 2. In the `Hard'
versions of these problems, the three bits of each order-
3 combination are scattered over the string; ALinX
was able to learn the problem linkage structure along
the run and outperform other operators. In the `Easy'
versions, the bits of each combination are adjacent;
performance of ALinX was then very similar to that
of 2PTX and 1PTX. In all cases, LinX outperformed
all crossover operators.

5.2 Bipolar Deceptive Problems

Goldberg, Deb and Horn [2] de�ned problems obtained
by concatenating multiple instances of a 6-bit `bipolar'
(with two global optima) deceptive problem. Once
again, these could be `easy' or `hard'. For such a

Best Best �tness, averaged over all trials
O.N. No. of trials in which global optimum is reached
A.I. Average number of iterations required
Var. Variance of best solutions over trials
Skew. Skewness of the best solutions over trials
Pop. Problem's population size
Exxx Easy version of the problem
Hxxx Hard version of the problem

Table 1: Abbreviations used in the paper

30-bit problem, for instance, there are 32 global op-
tima and 5 million local optima. As shown in Table
3, LinX outperforms all other crossover operators for
both Easy and Hard versions of the problems, and the
global solution is obtained in a very short time. For
easy as well as hard versions, ALinX manages to dis-
cover the approximate linkages between genes. This
makes it possible for ALinX to slowly advance towards
the optimal solution and get much better results than
1PTX, 2PTX, and UX. Each generation of LinX and
ALinX takes more time than those for the other three
crossover operators, occasionally by as much as a fac-
tor of 5 in some cases, due to the manipulation of the
linkage matrix and computation of probability values.
Although the time to evaluate the next population is
higher for the ALinX operator, the best �tness ob-
tained improves with each generation. On the other
hand, 1PTX, 2PTX, and UX rapidly converge to lo-
cal optima, and performance does not improve with
additional generations.

5.3 Graph Bipartitioning

Nodes in a graph must be partitioned into two bins,
maximizing the sum of edge costs between nodes be-
longing to the same bin. Here, the appropriate link-
age values are not known; indeed applying Linx with
linkage entries proportional to edge weights yielded re-
sults almost identical to those obtained with Uniform
Crossover. However, Table 4 shows that ALinX suc-
ceeds in learning the appropriate linkage matrix, and
outperforms other operators.

5.4 M�uhlenbein's Problem

M�uhlenbein [10] instantiates a GA challenging prob-
lem with a structure very similar to the order-3 and
the bipolar. The problem building block constitutes
of 5 bit subfunction which has one optimal and 4 local
optima. Concatenating these subfunctions yields an
exponential number of local optima. Both LinX and
AlinX demonstrate statistical superiority over other
operators as shown in Table 5.

Xover Best O.N. A.I. Var. Skew.
Bits=30 Pop.=50 Max.Gens.=1000 Eord3 t-test=0.4899
LinX 9.997 29 344 0.000 -4.942
UX 9.920 13 869 0.009 -1.513
1PTX 9.973 23 691 0.003 -1.684
2PTX 9.983 25 605 0.001 -1.700
AlinX 9.987 26 547 0.001 -2.050
Bits=30 Pop.=50 Max.Gens.=1000 Hord3 t-test=3.5

LinX 9.987 29 400 0.005 -4.942
UX 9.880 11 874 0.017 -1.107
1PTX 9.837 3 998 0.012 -1.031
2PTX 9.843 9 911 0.032 -1.747
AlinX 9.977 26 611 0.006 -3.917

Bits=60 Pop.=80 Max.Gens.=4000 Eord3

LinX 19.993 28 1912 0.001 -3.302
UX 19.603 0 4000 0.038 -0.238
1PTX 19.793 4 3929 0.026 -1.172
2PTX 19.950 19 3034 0.006 -1.493
AlinX 19.857 6 3726 0.011 -0.349
Bits=60 Pop.=80 Max.Gens.=4000 Hord3 t-test=6.209
LinX 19.990 27 1970 0.001 -2.534
UX 19.573 1 3992 0.039 0.203
1PTX 19.240 0 4000 0.062 0.167
2PTX 19.350 0 4000 0.045 0.124
AlinX 19.853 10 3636 0.022 -0.866

Table 2: Results for Order-3 problem; for 30 trials;
mutation rate= 1/(number of bits); t-test was done
between AlinX and the nearest competitive crossover,
�tness of the optimal solution equal to (number of
bits)/3.

5.5 Statistical Analysis

We performed statistical analysis of the �tness dis-
tributions resulting from applying GAs with various
crossover operators. The variance of the best solutions
found by LinX was either zero or very small, indicat-
ing that it got to either the optimal or a near-optimal
solution in every trial. LinX also required many fewer
iterations than the other operators.

For the `hard' versions of problems, ALinX was statis-
tically superior to the others as apparent from t-test
results comparing ALinX with its nearest competitor.
In other cases where no statistical superiority exist,
ALinX's results were more skewed than the others,
indicating that it pushes towards the optimal solution
more successfully than the others. Further, ALinX was
successful in learning the underlying linkage structure
of these problems.

We also examined the initial populations and the pop-

Xover Best O.N. A.I. Var. Skew.
Bits=60 Pop.=80 Max.Gens.=2000 Ebip t-test=0.9272
LinX 10.000 30 745 0.000 y

UX 9.580 1 1972 0.062 -0.550
1PTX 9.780 8 1833 0.029 -0.153
2PTX 9.900 18 1653 0.021 -1.535
AlinX 9.933 23 1515 0.017 -1.642
Bits=60 Pop.=80 Max.Gens.=2000 Hbip t-test=7.619
LinX 10.000 30 706 0.000 y

UX 9.587 4 1939 0.072 -0.218
1PTX 9.320 0 2000 0.062 -0.271
2PTX 9.540 2 1968 0.111 -0.708
AlinX 9.973 26 1439 0.005 -2.050

Bits=90 Pop.=200 Max.Gens.=10000 Ebip

LinX 15.000 30 3744 0.000 y

UX 13.920 0 10000 0.291 -0.483
1PTX 14.787 8 9564 0.036 -1.061
2PTX 14.947 24 6263 0.016 -2.794
AlinX 14.840 18 8121 0.065 -1.631
Bits=90 Pop.=200 Max.Gens.=10000 Hbip t-test=4.311
LinX 14.927 29 3741 0.161 -4.942
UX 13.860 0 10000 0.271 -0.557
1PTX 13.847 1 9940 0.258 -0.533
2PTX 14.167 1 9870 0.240 -1.091
AlinX 14.740 11 9063 0.290 -4.351

Table 3: Results for Bipolar problem; for 30 trials;
mutation rate= 1/(number of bits) ; t-test was done
between AlinX and the nearest competitive crossover,
optimal solution �tness equal to (number of bits)/6, y:
solutions obtained are all optimal.

Pop. # Min. Communication cost
Nodes size Gen. ALinX 2PTX UX

30 50 300 96.4 96.7 96.5
75 90 1000 630.8 630.7 635.3
75 90 2000 626.2 627.9 630.6
75 90 4000 624.6 625.9 627.8
80 100 4000 713.8 716.1 720.1

Table 4: Graph Partitioning Problem, average over 30
trials

ulations obtained at the end of the generations (the
terminal population). For M�uhlenbein's problem, this
analysis uncovered interesting behavior. Compared to
1PTX, 2PTX, and UX, ALinX was better at obtain-
ing best solutions (largest average of best solutions
and largest number of optimal found) and better at
shifting the whole population towards better areas of
search space (best population average, less variance,
and more skewed). At the terminal stage, ALinX dis-

Xover Best O.N. A.I. Var. Skew.
Bits=20 Pop.=30 Max.Gens.=500 t-test=0.797
LinX 15.783 18 263 0.081 -0.796
UX 15.567 13 331 0.202 -0.525
1PTX 15.383 7 414 0.219 -0.280
2PTX 15.450 8 374 0.213 -0.575
Alinx 15.650 13 361 0.123 -0.451
Bits=35 Pop.=60 Max.Gens.=4000 t-test=3.2
LinX 27.667 15 2582 0.144 -0.595
UX 27.300 8 2998 0.355 -0.761
1PTX 27.100 4 3597 0.283 -0.053
2PTX 27.100 2 3737 0.283 -0.885
AlinX 27.700 15 2720 0.114 -0.625
Bits=45 Pop.=70 Max.Gens.=5000 t-test=3.257
LinX 35.617 14 3602 0.167 -0.424
UX 35.067 4 4345 0.375 -0.244
1PTX 34.450 1 4836 1.661 -3.186
2PTX 34.950 1 4885 0.230 -0.036
AlinX 35.500 8 3976 0.155 -0.409

Table 5: Results for hard M�uhlenbein's problem; for
30 trials; mutation rate= 1/(number of bits) ; t-test
was done between AlinX and the nearest competitive
crossover, optimal solution �tness equal to 4�(number
of bits/5).

tribution was the most symmetrical (near-zero skew-
ness). LinX leads to the maximum number of opti-
mal solutions, followed by ALinX. The remaining three
have an approximately equal number of optimal so-
lutions, fewer than observed in ALinX. Interestingly,
both LinX and ALinX have fewer deceptive solutions
(local optima) than the other operators. These results
are shown in Figure 3.

5.6 Convergence

Using problem-speci�c knowledge may in some cases
lead to rapid convergence to local optima, to the detri-
ment of global search. However, we found that LinX
and ALinX were surprisingly robust in this respect, as
long as simple mutation (with mutation probability re-
ciprocal to chromosome length) was also used. Indeed,
performance of the algorithm did not vary when an
arti�cial method to overcome premature convergence
(random reinitialization) was introduced into the com-
puter program. LinX overcomes the danger of prema-
ture convergence usually associated with algorithms
using problem-speci�c knowledge, because it uses this
knowledge in a very loose way (only a global linkage
matrix is used to direct the decision of the crossover
probabilistically).

0

5

10

15

20

25

30

35

40

-2 0 2 4 6 8 10 12

N
um

be
r

of
 in

di
vi

du
al

s

 Fitness range (0 to optimal)

initial dis.

Initial.

0

5

10

15

20

-2 0 2 4 6 8 10 12

N
um

be
r

of
 in

di
vi

du
al

s

 Fitness range (0 to optimal)

final dis.

Final:LinX.

0

5

10

15

20

-2 0 2 4 6 8 10 12

N
um

be
r

of
 in

di
vi

du
al

s

 Fitness range (0 to optimal)

final dis.

Final:AlinX.

0

5

10

15

20

-2 0 2 4 6 8 10 12

N
um

be
r

of
 in

di
vi

du
al

s

 Fitness range (0 to optimal)

final dis.

Final:2PTX.

0

5

10

15

20

-2 0 2 4 6 8 10 12

N
um

be
r

of
 in

di
vi

du
al

s

 Fitness range (0 to optimal)

final dis.

Final:1PTX.

0

5

10

15

20

-2 0 2 4 6 8 10 12

N
um

be
r

of
 in

di
vi

du
al

s

 Fitness range (0 to optimal)

final dis.

Final:UX.

Figure 3: Number of individuals in the population ver-
sus the �tness range of those individuals;M�uhlenbein's
problem, 35 bits, Population size = 80, maximum
number of generations = 4000.

Convergence of the linkage adaptation process may
also be examined: will elements of the linkage matrix
stabilize, remaining almost constant in later iterations
of the GA? Figure 4 answers this question in the a�r-
mative, using the deviation measure

DL =
1

N

vuut
N�1X
i=0

N�1X
j=0

(NewL[i][j]� OldL[i][j])
2

to compare the linkage matrix entries before and after
each generation.

5.7 Interpretability

Does the adaptive algorithm result in a linkage matrix
whose elements are reasonable and easy to interpret?
Table 6 shows that ALinX is successful in adapting
an initially random matrix to obtain the desired link-
age values, for Hard30 problems; similar results were
obtained with Easy30 and the bipolar problems.

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 200 400 600 800 1000

Li
nk

ag
e

m
at

rix
 d

ev
ia

tio
n

 Generations

D.L.

Figure 4: DL (variation in linkage values) for ALinX
for an order3 problem with 60 bits and population size
70.

Pop. Max # Average Average
bits size Gens. strongly linked weakly linked

21 30 500 0.766 0.166
30 50 1000 0.819 0.146
60 80 4000 0.765 0.096

Table 6: Average linkage values for strongly linked
and weakly linked genes after adaptation using ALinX
for the hard order3 problem (initialized with random
values with mean 0.5).

6 CONCLUSION

The main contribution of this research is to relate the
�eld of probabilistic inference to the application of
crossover operators in genetic algorithms. Probabilis-
tic computations have a long history and can be used
with considerable advantage in GAs. The framework
presented in this paper allows explicit formulation of
problem-speci�c linkages and their subsequent use in
crossover. A new class of crossover operators is pre-
sented, implemented, and tested. These operators ex-
ploit problem-speci�c linkages among components in a
chromosome. The concept of adapting linkage between
genes is shown to be e�ective and successful, even for
problems with only partially known linkage structure.

For problems with unknown linkage structures, using
adaptive linkage crossover, we were able to identify
regions where dependencies should be strong. These
regions constitute the building blocks which should be
evolved together. Stopping ALinX at some point dur-
ing the GA run (considered as a parameter for ALinX)
and continuing with a local improvement operator may
be another fruitful approach, yet to be explored.

References

[1] Baluja, S. and Davies, S., \Using optimal
dependency-trees for combinatorial optimization:
learning the structure of the search space,"
Tech.Rep. CMU-CS-97-107, Carnegie Mellon Uni-
versity, Pittsburgh, 1997.

[2] Goldberg, D.E., Deb, K. and Horn, J., \Mas-
sive multimodality, deception, and genetic algo-
rithms," Parallel Problem Solving from Nature,
vol 2, Elsevier Science, pp. 37{46, 1992.

[3] Goldberg, D. E., Deb K., and Korb, B., \ Messy
genetic algorithms revisited: Studies in mixed size
and scale," Complex Systems, 4:415-444, 1990.

[4] Goldberg, D.E., Korb, B. and Deb, K., \Messy
genetic algorithms: Motivation, analysis, and �rst
results," Complex Systems, 3:493{530, 1988.

[5] Grefenstette, J. J., \Incorporating problem spe-
ci�c knowledge into genetic algorithms," Genetic
Algorithms and Simulated Annealing, L. Davis
(ed.), Morgan Kaufmann Pub., 1987.

[6] Harik, G. R. and Goldberg, D. E., \Learning link-
age," Foundation of Genetic Algorithms { IV,
Morgan Kaufmann, pp. 247{262, 1997.

[7] Kargupta, H., \The gene expression messy
genetic algorithm," Proceedings of IEEE In-
ter. Conference of Evolutionary Computing
(ICEC96), pp. 814-819, 1996.

[8] Maini, H. S., Mehrotra, K. G., Mohan, C. K.,
and Ranka, S., \Knowledge-based nonuniform
crossover," Complex Systems, 8:257-293, 1994.

[9] M�uhlenbein, H., Mahing, T., and Rocdriguez
A. O.,\Schemata, Distributions and graphical
models in evolutionary optimization," Submitted
for publication, http://set.gmd.de/AS/ga/publi-
neu.html, 1998.

[10] Pelikan, M. and M�uhlenbein, H., \Marginal dis-
tribution in evolutionary algorithms,"
at http://darwin.chtf.stuba.sk/martin/work.html
(internet-available report), 1998.

[11] Salman, A. A. , Mehrotra, K. G., and Mo-
han, C. K., \Adaptive linkage crossover," Pro-
ceedings ACM Symposium on Applied Computing
(SAC'98), 1998.

