
Designing Cellular Automata-based Scheduling Algorithms

Franciszek Seredy�nski� and Cezary Z. Janikow

Department of Mathematics and Computer Science
University of Missouri - St. Louis

St. Louis, MO 63121
email: sered@arch.umsl.edu, janikow@umsl.edu

Abstract

In this paper, we present a systematic ap-
proach to designing cellular automata - based
algorithms for multiprocessor scheduling. We
consider a simple case of two processors.
However, we do not restrict parallel pro-
grams. We show how to design local neigh-
borhoods and corresponding cellular auto-
mata (CA) for a given program graph. We
also show how to discover, by genetic al-
gorithm (GA), rules of CA { suitable for solv-
ing a given scheduling problem. We evalu-
ate the discovered rules in terms of applic-
ability to cope with di�erent instances of the
scheduling problem.

1 INTRODUCTION

Multiprocessor scheduling, even when limited to a two
processor system but any parallel program, is known
to be an NP-complete problem (El-Rewini et al. 1994).
While the prevailing majority of known scheduling al-
gorithms are sequential, a new promising direction in-
volves parallel scheduling algorithms (Ahmad & Kwok
1995).

Recent results (Andre et al. 1996; Das et al. 1996;
Capcarr�ere et al. 1998; Hordijk et al. 1998; Menge &
Tomassini 1997; Sipper 1997), showing that CA com-
bined with GA can be e�ectively used to evolve highly
parallel and distributed algorithms to solve complex
problems, encourage similar approaches to solving the
scheduling problems. In this paper, we review and ex-
tend the recently proposed technique for scheduling,
based on applying CA (Seredynski 1998).

�on leave from Institute of Computer Science, Polish
Academy of Sciences, Ordona 21, 01-237 Warsaw, Poland.

The remainder of the paper is organized as follows.
The next section introduces CA and the scheduling
problem, and then it outlines the idea of CA-based
scheduling algorithm. Section 3 provides design details
of the CA. Section 4 describes the two-phase architec-
ture the CA-based scheduler: the phase of discovering
local rules, and the normal operation phase. Section 5
presents empirical evaluation of the discovered rules.

2 CELLULAR AUTOMATA AND

MULTIPROCESSOR

SCHEDULING

2.1 SCHEDULING PROBLEM

The two processor system is represented by an undirec-
ted unweighted graph, called a system graph, consist-
ing of two nodes representing processors and a single
edge representing bidirectional channels between pro-
cessors. A parallel program is represented by a
weighted directed acyclic graph Gp =< Vp; Ep >,
called a precedence task graph, or a program graph.
Vp is the set of Np nodes of the graph, representing
elementary tasks. Figure 1 (upper) shows examples
of the program graph consisting of four tasks ordered
from 0 to 3, and the system graph representing a sys-
tem consisting of two processors P0 and P1.

The program graph has some number of parameters
or attributes. The number bk, associated with node
k, denotes the processing time needed to execute task
k on any (homogeneous) processor of the system. For
example, task 0 in Figure 1 (upper) has b0 = 1. Edges
of the task graph describe the communication patterns
between the tasks. Each edge (k,l) has weight akl, de-
scribing communication time needed to send interme-
diate results of computation from task k to task l in
a given multiprocessor architecture. All edges of the
program graph from Figure 1 (upper) have the same
communication time equal to 1.

We assume that, for each node k of the precedence task
graph, sets of predecessor s(k) , brothers(k) (i.e. nodes
having at least one common predecessor), and suc-
cessors(k) are de�ned. For example, task 0 has neither
predecessors nor brothers, but it has two successors -
tasks 1 and 2. In turn, task 1 has one predecessor
(task 0), one brother (task 2) and one successor (task
3). We also assume that, for each node k of the preced-
ence task graph, some parameters such as static and
dynamic level and co-level can be de�ned (El-Rewini
et al. 1994).

The purpose of scheduling is to distribute the tasks
among the processors in such a way that the preced-
ence constraints are preserved, and the response time
T (the total execution time) is minimized. The re-
sponse time for a given allocation of tasks in a mul-
tiprocessor topology depends on the scheduling policy
applied in a processor. We assume that the schedul-
ing policy is �xed for a given run and the same for all
processors.

We intend to use CA to solve the scheduling problem.
The following section outlines the basic de�nition and
the necessary notions concerning CA.

2.2 CELLULAR AUTOMATA

A one dimensional CA (Wolfram 1984) is a collection
of two-state cells, arranged in a lattice and locally in-
teracting in parallel, in discrete time steps t. For each
cell i, called the central cell, a neighborhood of radius
r is de�ned, consisting of ni = 2r + 1 cells (including
cell i).

It is assumed that state qt+1i of cell i, at the time
t + 1, depends only on states of its neighborhood at
time t. That is, qt+1i = fg(q

t
i ; q

t
i1; q

t
i2; :::; q

t
ni), where

fg , called a general rule, de�nes rules for updating cell
i. The length Lg of the general rule, which is the
number of neighborhood states for a binary uniform
CA, is Lg = 2ni, where ni is a number of cells of
the neighborhood. The number of such rules is 2Lg,
which has fast growth with Lg . For this reason, it
may be bene�cial to use other rules of shorter length.
One possible choice is to de�ne the transition function
based not on individual cells of the neighborhood but
on their average behavior. For example, let us de�ne
function ft based of the sum of cells: qt+1i = ft(qti�r +
:::+qti�1+qti+qti+1+ :::+qti+r). This will dramatically
reduce rule length (we will call this a totalistic rule).
Of course, one of the question we need to investigate
is whether this trade-o� is indeed bene�cial.

P1

P0

CA

final state

initial (random)
task allocation

initial state

CA

0

0

0 1 1

1

0 01 1

0 1 2 3

0 01 1

final task
allocation

0

1 2

3

4

1

2

2

1

11

00 1 1

0

2 3

time

Figure 1: An idea of CA-based scheduler: an example
of a program graph and a system graph (upper), a
concept of corresponding CA-based scheduler (lower)

2.3 CA-BASED SCHEDULER

We outline the concept of a CA-based scheduler in
the following way. An elementary automaton is as-
sociated with each task of the program graph. The
topology of the program graph de�nes the structure of
the CA. Therefore, the structure of the CA is not reg-
ular. However, each elementary automaton is binary {
since we consider two-processor architectures, we use
state 0 (1) of a cell to indicate that the corresponding
task is allocated to processor P0 (P1).

The CA-based scheduler is illustrated in Figure 1. Ini-
tially, the program tasks are randomly allocated to the
processors. For example, task allocation (0; 1; 1; 0) in-
dicates allocation of tasks 0 and 3 to processor P0, and
tasks 1 and 2 to processor P1. Also, an elementary
automaton is associated with each node of the pro-
gram graph. Next, the CA starts to evolve, accord-
ing to some prede�ned rule. Changing states of the
evolving CA corresponds to changing the allocation of
tasks in the system graph, what results in changing
the response time T. The �nal state of the CA cor-
responds to the �nal allocation of tasks in the system
(Figure 1 (lower-right)).

To design the architecture of a CA-based scheduler
some essential questions must be considered. For ex-
ample: how to de�ne a local neighborhood, and what
transition function to use. We would like to use a
generic de�nition of neighborhood, transparent to the
various kinds, sizes, and shapes of potential program
graphs. We use the following strategy: neighborhood

for an elementary automaton, associated with a task
of the program graph, is based only on the sets sets of
the task's predecessors, brothers and successors. Even
then, potential neighborhood may vary in size { we
will use additional means to deal with this problem.

An related question is that of potential irregularities
in program graphs. For example, some tasks have no
predecessors. For that, we extend the program graph
by adding dummy nodes and taking this into account
when coding neighborhoods.

The ideas presented above only outline architectural
details for the CA-based scheduler. The actual archi-
tecture will be more complex.

3 DEFINING LOCAL

NEIGHBORHOOD

3.1 SELECTED NEIGHBORHOOD

Selected neighborhood uses only two representatives of
each of the sets of predecessors, brothers, and suc-
cessors, in forming the neighborhood. The represent-
atives are selected on the basis of respectively max-
imal and minimal values of some attributes of tasks in
the given set. As we stated in Section 2, the follow-
ing attributes are assigned to task k of the program
graph: akl, bk, static level, dynamic level, and static
and dynamic co-levels. In a given run of the scheduling
algorithm, one attribute for each set of predecessors,
brothers and successor is selected. The attributes se-
lected for each set may be di�erent.

Selected neighborhood uses 7 cells (including cell k).
The part of the neighborhood corresponding to the
two associated representatives will be referred as a sub-
neighborhood of the cell k.

Because the structure of a program graph and corres-
ponding CA is irregular, the number of predecessors,
brothers or successors may be less than two or they
may have the same values of attributes, the following
solutions for special cases have been accepted:

� if predecessors (brothers or successors) do not ex-
ist for a given task, a sub-neighborhood corres-
ponding to such a situation is created by adding
a pair of dummy tasks and associating with them
a pair of cells; states of these cells (denoting pro-
cessors where the tasks are allocated) are un-
de�ned and the state of such a sub-neighborhood
takes a special value

� if only one predecessor (brother or successor) ex-
ists for a given task, the sub-neighborhood cor-

p0 p1

b0

1s0s

q
0

p

q
0

s

q
0

neigh
0

1

3

2

b1

q
0 q

0

b

a) b) c)

Figure 2: Selected neighborhood: creating a neighbor-
hood for the task 0 from Figure 1 (a), a state of the
cell 0 depends on states of sub-neighborhoods created
by predecessors, brothers and successors (b), a state
of a neighborhood of the cell 0 is evaluated (c)

responding to this situation is created by adding
a single dummy task/cell; the state of this cell
will be the same as the state of existing cell (i.e.,
it is assumed that a dummy task is allocated to
the same processor as the real task in the sub-
neighborhood)

� if the number of predecessors (brothers or suc-
cessors) is greater than two and all of them have
the same value of an attribute, then we select two
di�erent tasks with the smallest and largest order
number (as seen in Figure 1 (upper))

Figure 2 illustrates neighborhoods created for tasks of
the program graph from Figure 1. Task 0 does not
have predecessors, so two dummy task-predecessors p0
and p1 are created (Figure 2a). For the same reason,
two dummy task-brothers b0 and b1 are created. Real
tasks 1 and 2 are considered as task-successors s0 and
s1 of the task 0.

After constructing the neighborhood, it is necessary
to de�ne states of the sub-neighborhoods qpk, q

b
k, and

qsk (Figure 2b), and the state qneighk of the selected
neighborhood (Figure 2c). The central cell takes the
value 0 or 1. Values of each pair of cells are mapped
into one of �ve values describing the state of the pair
in the following way:

� state 0: values of both cells of the pair are the
same and equal to 0 (both tasks corresponding to
cells are in the processor P0)

� state 1: the �rst cell takes value 0, and the second
one takes value 1 (corresponding tasks are in P0
and P1 respectively)

� state 2: the �rst cell takes value 1, and the second
one takes value 0 (corresponding tasks are in P1
and P0 respectively)

� state 3: values of both cells of the pair are the
same and equal to 1 (both tasks corresponding to
cells are in the processor P1)

� state 4: values of cells are unde�ned (there are no
tasks corresponding to these cells).

Because the state qk of the central cell may take two
values (f0,1g), and states qp

k
, qbk, q

s
k of respective sub-

neighborhoods may take �ve values (f0,1,2,3,4g), the
total number of states of the neighborhood is 2 � 5 �
5 � 5 = 250. The length of a rule is 250 bits, and thus
there are 2250 possible transition functions.

A GA will be used to search the space for the best CA
rule.

3.1.1 FULL NEIGHBORHOOD WITH

TOTALISTIC RULES

To reduce the number of states of CA another de�ni-
tion of a neighborhood called a full neighborhood was
considered. It is assumed under this approach that
a neighborhood of a given cell k is constituted of
single cells, each representing the corresponding set
of predecessors, brothers and successors. If some sets
are empty then we add dummy tasks to the program
graph, and we also introduce a special state for the
corresponding cells. The state of a cell, representing a
given set, will be de�ned in a way similar to that how
totalistic rules are de�ned. The state of the central
cell will be de�ned as previously by an order number
of a processor where the task is allocated. Thus, the
neighborhood will consists of 4 cells.

Figure 3 shows how such a totalistic neighborhood is
created for tasks for the program graph from Figure 1.
A dummy task-predecessor is added to create the set
P0 of predecessors of task 0. In the same way, the set
B0 of its brothers is created. Tasks 1 and 2 create the
set S0 of its successors.

As previously, we will assume that some attributes for
tasks from corresponding sets of neighbors of a given
task were selected. Let Pk

P0 and P
k
P1 be the sets of pre-

decessors of a task k, allocated in processors P0 and
P1, respectively; Bk

P0 and Bk
P1 be the sets of brothers

allocated in P0 and P1, respectively; Sk
P0 and Sk

P1 be
the sets of successors allocated in P0 and P1, respect-
ively.

Let us calculate, for the sets Sk
P0 and Sk

P1, values of
some totalistic measure concerning the accepted at-

q
0

neigh

q
0
P

0
qS

q
0 q

0

B

B
0

P
0

S
0

0

1

3

2

a) b) c)

Figure 3: Full totalistic neighborhood: creating a
neighborhood for the task 0 from Figure 1 (a), a state
of the cell 0 depends on states of sub-neighborhoods
created by predecessors, brothers and successors (b),
a state of a neighborhood of the cell 0 is evaluated (c)

tribute. This totalistic measure can be
P

i2Pk
P0

di, andP
j2Pk

P1
dj, respectively, where d is the value of the se-

lected attribute. In a similar way, values for Bk
P0, B

k
P1,

Sk
P0 and Sk

P1 are also de�ned.

The state of a given sub-neighborhood cell (e.g., for
predecessors) is de�ned as follow:

� state 0: if
P

i2Pk
P0

di >
P

j2Pk
P1
dj

� state 1: if
P

i2Pk
P0

di <
P

j2Pk
P1
dj

� state 2: if
P

i2Pk
P0

di =
P

j2Pk
P1
dj

� state 3: a set of a given sub-neighborhood con-
tains only a dummy task.

States of remaining cells are de�ned in a similar way.
After de�ning states of sub-neighborhoods, the state
of the neighborhood of the central cell is de�ned
(Figure 3b, c). The total number of neighborhood
states, taking into account states of de�ned above sub-
neighborhoods, is 2 � 4 � 4 � 4 = 128. The rule length
is now 128 bits, and the total number of rules for the
problem is 2128.

4 CA-BASED SCHEDULER

4.1 ARCHITECTURE OF THE

SCHEDULER

Figure 4 presents the architecture of the CA-based
scheduler. The scheduler operates in two modes: the
learning mode (Figure 4, left) and the operating mode
(Figure 4, right).

In the learning mode, CA rules are discovered by the
GA. It is expected that the rules will be suitable to
solve the scheduling problem for any initial allocation
of tasks for a given instance of the problem. Tasks of
the program graph representing a given instance of the
problem are initially randomly allocated to processors
of the parallel system. The CA is built for the program
graph and a prede�ned type of a local neighborhood.

An initial population of GA containing rules is cre-
ated. For a given random allocation of the program
graph into the system graph, the CA is initialized
and equipped with the rule from the population of
rules. CA evolves its states during prede�ned num-
ber of steps, what results in changing the allocation of
tasks of the program graph.

The response time T for the �nal allocation is eval-
uated. For a given rule this evaluation procedure is
repeated prede�ned number of times for test problems
represented by di�erent initial allocations. This res-
ults in evaluation of some �tness value T � for the rule,
which is the sum of T values corresponding to the
individual runs, and modi�ed to convert a problem
of minimization (scheduling problem) to a problem of
maximization requested by GA.

After evaluation of the entire population, genetic op-
erators are involved. The evolutionary process contin-
ues a prede�ned number of generations, after which
the discovered rules are stored (Figure 4, right).

In the normal operation mode, the program graph used
in the learning mode is randomly allocated, CA is ini-
tiated and equipped with a rule taken from the set of
discovered rules. We expect that in this mode, for any
initial allocation of tasks of the given program graph,
CA will be able to �nd, in a �nite number of steps,
allocation of tasks providing the minimal value of T .

4.2 DISCOVERY CA RULES BY GA

The GA (Das et al. 1996, Goldberg 1989) used to dis-
cover CA rules for the CA-based scheduler is described
below.

GA to discover CA rules:

t=0
create an initial population P () of size n pop of rules
WHILE termination condition NOT TRUE

BEGIN

create a set of a size n test of test problems
IF hill-climbing condition TRUE
THEN hill-climbing

FOR i = 1 TO n pop
BEGIN

T �ij = 0

NORMAL
OPERATING
(scheduling)

(searching effective rules)
LEARNING

0 0 1 0 1

1 0 1 1 1

set of discovered rules

graph

system

algorithm
scheduling
CA - based

program

graph

1 1 0 0 0 1

0 1 1 0 1 0

0 1 0 1 1 1

population of rules

T*

T*

T

rulerule

random
initial

with genetic algorithm
Discovery rules

allocation

Figure 4: An architecture of CA-based scheduler

FOR j = 1 TO n test
T �ij=T

�
ij+ CA(rulei, testj , seq=par,

CA steps)
END

sort P () in decreasing order
move E of the best individuals from P (t) to P (t+1)
FOR k = 1 TO n pop-E
REPEAT

ruleparent1 =select()
ruleparent2 =select() 6= ruleparent1

(rulechild1 , rulechild2)= crossover(ruleparent1 ,
ruleparent2)

mutation(rulechild1 , rulechild2)
UNTIL Hamming (rulechild1 , rules)>=H
AND

Hamming (rulechild2 , rules)>=H
t = t+ 1

END

problem solution = the best rules from P ()

After creating an initial population P () of random
rules of the CA and a set of test problems, each rule
is tested by running the CA. The CA can run in
one of two modes: sequential (seq) and in parallel
(par). Each run of the CA lasts a prede�ned num-
ber CA� steps of time steps. After evaluation of the
�tness function T �i of each rule, the rules are sorted in
decreasing order. The best E rules are moved to the

45

50

55

60

65

70

75

80

0 10 20 30 40 50 60 70 80 90 100

re
sp

o
n

se
 t

im
e

 T

generation

learning CA rules(250) with GA: gauss18

final T
init T

Figure 5: Learning mode: rules for CA-based sched-
uler are discovered by GA

currently created population P (t+1). To the remain-
ing rules of the P (t) genetic operators of selection (se-
lect), crossover and mutation are applied. New rules
are accepted to the P (t+1) if their Hamming distance
to the rules from the P (t) is equal or greater than a
prede�ned number H. If the �tness function of rules
is not improved during a prede�ned number of genera-
tions then an operator of hill-climbing is applied. The
evolutionary process is continued a prede�ned number
of generations, and when is completed discovered rules
are stored.

In experiments reported in the paper it is assumed that
the CA works sequentially, i.e. at a given moment of
time only one cell updates its state. An order of up-
dating states by cells is de�ned by their order number
corresponding to tasks in the precedence task graph.
A single step of running the CA is completed in Np

(Np - a number of tasks of a program graph) moments
of time. A run of CA consists of the CA steps.

A program graph used in the experiment presented in
the paper represents the parallel Gaussian elimination
algorithm consisting of 18 tasks. We refer to this pro-
gram graph as gauss18 (Seredynski 1998).

The CA neighborhood was created using the idea of
the selected neighborhood. To calculate T for a given
�nal allocation of tasks a scheduling policy of the type:
a task with the highest value of a dynamic level-�rst,
was applied.

In the learning mode of the scheduling algorithm a
population of rules of a size 100 was used, and the
learning process was observed during 100 generations.
A proportional selection with elitist strategy was used.
A crossover with a probability pc = 0:95, a bit-
ip
mutations with pm = 0:001 were applied.

Figure 5 shows a response time T changing during the
evolutionary process. In the conducted experiments,
for each generations of GA the set of four test-problems

automat 53 57 61 65 69 73 77 81 T
 0

 5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

a)

automat 43 50 57 64 71 78 85 92 99 T
 0

 5

10

15

20

25

30

35

b)

automat 43 48 53 58 63 68 73 78 83 88 T
 0

 5

10

15

20

c)

Figure 6: Space-time diagrams of CA-based scheduler
with the best rule found for gauss18 in generation 5
(a), generation 50 (b), and generation 100 (c)

was created.

Figure 6a shows a run of the CA-based scheduler with
the best rule found in the 5-th generation. Left part
of the �gure presents a space-time diagram of the CA
consisting of 18 cells, and the right part shows graphic-
ally a value of T corresponding to the allocation found
in a given step. One can see that after the step 0,
cells of the CA are in some states corresponding to
allocation of tasks (white cell - a corresponding task
is allocated in P0, black cell - a task is allocated in

P1), and the value of T corresponding to this alloca-
tion is greater than 81. After few steps, the CA starts
to oscillate, repeating a sequence of six states with res-
ulting patterns of task allocation, and corresponding
changing values of T . In generation 46, the GA discov-
ers (see Figure 5) a rule providing an allocation with
an optimal value T = 44.

The found rule is, however, not absolutely the best.
The rule does not pass a test on a test problem cre-
ated in generation 62 (see, Figure 5). The GA quickly
modi�es this rule and it passes successfully all sub-
sequent tests. Figure 6c shows a space-time diagram
of such a rule existing in the generation 100.

4.3 NORMAL OPERATING

After run of the GA its population contains rules suit-
able for CA-based scheduling. Quality of these rules
we can �nd out in the operating mode. We generate
some number of test problems, and use them to test
each of found rules. Figure 7 shows results of the test
conducted with 100 random initial allocation of the
gauss18. For each found rule the average value of T
(avr T) found by CA in the test problem is shown.
One can see that 29 rules are able to �nd an optimal
scheduling for each representative of the test.

5 COMPETITION BETWEEN

RULES

A number of experiments with program graphs avail-
able in the literature and referred as gauss18, g18, g40,
outtree15, outtree63 and outtree127 has been conduc-
ted (Seredynski 1998). In all these experiments the GA
was able to discover rules of the CA to solve a given in-
stance of the scheduling problem. The question which
arises is whether discovered rules are suitable only to
solve one speci�c instance problem, or they can be
used also to solve the other instances. To �nd it out,
discovered rules were used in operating mode to solve
other instances problems.

Figures 8 and 9 show how the best rules discovered
for the gauss18 solve the scheduling problem for the
binary out-tree outtree15. Figure 8 shows that some
number of the best CA rules found for the gauss18 can
be e�ectively applied to solve the scheduling problem
for the outtree15. These rules are able to �nd the
optimal solution T = 9 (Figure 9) or in the average
solutions near to the optimal (Figure 8).

Figures 10 and 11 show how the best rules discovered
for the outtree15 solve the scheduling problem for the
gauss18. One can see (Figure 11) that these rules

42

44

46

48

50

52

54

56

58

60

0 20 40 60 80 100

a
ve

ra
g

e
 o

f
T

rules

rules(250,gauss18) > gauss18

100 tests

avr T

Figure 7: Normal operating: testing discovered rules

8

9

10

11

12

13

14

15

0 5 10 15 20 25
a

ve
ra

g
e

 o
f

T

rules

rules(gauss18) > outtree15

100 tests

avr T

Figure 8: Rules found for gauss18 applied to solve
outtree15 instance problem

have never been able to �nd the optimal solution which
is T = 44, and that their average performance (Fig-
ure 10) is worse that the performance of the rules dis-
covered for gauss18.

Analyzing experiments conducted with other rules we
come to a conclusion that some rules found for one
instance of the problem are more general and e�ective
than the other rules. The rules can be ordered accord-
ing their importance and this information can be used
to solve new instance problems.

8

9

10

11

12

13

14

15

0 5 10 15 20 25

m
in

 T

rules

rules(gauss18) > outtree15

100 tests100 tests

minimal found value of T

Figure 9: The best solutions of outtree15 found by
rules of gauss18

40

50

60

70

80

90

100

110

0 5 10 15 20 25

a
ve

ra
g

e
 o

f
T

rules

rules(outtree15) > gauss18

100 tests
avr T

Figure 10: Rules found for outtree15 applied to solve
gauss18 instance problem

40

50

60

70

80

90

100

110

0 5 10 15 20 25

m
in

 T

rules

rules(outtree15) > gauss

100 tests
minimal found value of T

Figure 11: The best solutions of gauss18 found by
rules of outtree15

6 CONCLUSIONS

We have presented in the paper a systematic approach
to designing the CA-based scheduling algorithms. We
have considered the questions of constructing local
neighborhoods for the CA on the base of program
graphs. We described the CA-based scheduler work-
ing either in the mode of discovering the CA rules by
the GA, or in the operating mode. The results of con-
ducted experiments are very promising. They show
that the GA is able to discover CA rules suitable to
solve the scheduling problem for a given instance of
the problem. The preliminary results also show that
discovered rules may be used to �nd optimal or sub-
optimal solutions of other, not known in advance in-
stances of the problem.

Acknowledgments

The work has been partially supported by the State
Committee for Scienti�c Research (KBN) under Grant
8 T11A 024 11.

References

I. Ahmad, Y. Kwok (1995). A parallel approach for
multiprocessor scheduling, In Proc. of Ninth Int. Par-
allel Processing Symposium, Santa Barbara, CA, The
IEEE Press

D. Andre, F. H. Bennet III and J. R. Koza (1996).
Discovery by Genetic Programming of a Cellular Auto-
mata Rule that is Better than any Known Rule for the
Majority Classi�cation Problem. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo (eds.), Genetic
Programming, Proceedings of the First Annual Con-
ference 1996, A Bradford Book, The MIT Press

R. Das, M. Mitchell, and J. P. Crutch�eld (1994).
A genetic algorithm discovers particle-based computa-
tion in cellular automata. In Davidor Y., Schwefel H.-
P., M�anner R. (eds.). Parallel Problem Solving from
Nature { PPSN III, 344-353. LNCS 866, Springer

H. El-Rewini, T. G. Lewis, and H. H. Ali (1994). Task
Scheduling in Parallel and Distributed Systems, PTR
Prentice Hall

M. Capcarr�ere, A. Tettamanzi, M. Tomassini and M.
Sipper (1998). Studying Parallel Evolutionary Al-
gorithms: The Cellular Programming Case, In A. E.
Eiben, T. Back, M. Schoenauer and H.-P . Schwefel
(eds.), Parallel Problem Solving from Nature - PPSN
V, 573-582. LNCS 1498, Springer

D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning . Addison-Wesley,
Reading, MA

W. Hordijk, J. P. Crutch�eld and M. Mitchell (1998).
Mechanisms of Emergent Computation in Cellular
Automata, In A. E. Eiben, T. Back, M. Schoenauer
and H.-P . Schwefel (eds.), Parallel Problem Solving
from Nature - PPSN V, 613-622. LNCS 1498, Springer

D. Mange & M. Tomassini (eds.) (1997). Bio-Inspired
Computing Machines. Towards Novel Computational
Architectures. Press Polytechnique et Universitaires
Romandes

F. Seredynski (1998). Discovery with Genetic Al-
gorithm Scheduling Strategies for Cellular Automata.
In A. E. Eiben, T. Back, M. Schoenauer and H.-P.
Schwefel (eds.), Parallel Problem Solving from Nature
- PPSN V, 643-652. LNCS 1498, Springer

M. Sipper (1997). Evolution of Parallel Cellular Ma-
chines. The Cellular Programming Approach, LNCS
1194, Springer

S. Wolfram (1984). Universality and Complexity in
Cellular Automata, Physica D 10, 1-35

