Comparing Reinforcement Learning Algorithms Applied to Crisp
and Fuzzy Learning Classifier Systems

Andrea Bonarini
Politecnico di Milano Al and Robotics Project
Dipartimento di Elettronica e Informazione - Politecnico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano - Italy
E-mail: bonarini@elet.polimi.it - URL:http://www.elet.polimi.it /people/bonarini

Abstract

We have implemented a tool to compare dif-
ferent modules of Reinforcement Learning al-
gorithms applied to Learning Classifier Sys-
tems (LCS). We focus on three main classes of
modules: credit assignment modules, explo-
ration policies, and evolulionary strategies.
For each class we have implemented many of
the proposals we can find in literature and
also some new algorithms that we have de-
signed. In this paper, we present the re-
sults of the application of our tool to both
fuzzy and crisp LCSs that learn behaviors for
simulated autonomous agents. Fuzzy LCSs
can be considered a successful approach to
cope with real-valued input and output in
a real environment. A lot of investigations
can be done with this tool in this experi-
mental setting. This paper is focused on
the comparison among different credit assign-
ment algorithms and on their performance in
learning both crisp and fuzzy models. Our
experiments show that the more complex
credit assignment algorithms (such as, for in-
stance, the TD(\) generally have better per-
formances than the more basic (such as Q-
learning or Bucket Brigade) also when ap-
plied to LCSs. Moreover, fuzzy LCSs seem
to require a larger computational effort, but
also show more robustness.

1 Introduction

We are involved in a large project aimed at found-
ing a methodology to design and select Reinforcement
Learning algorithms to face classes of problems. We
have implemented a tool supporting this activity with
special concern to crisp and fuzzy LCS. In section 2

we define the LCS structure we are considering in
this paper, particularly suitable to real-world, mo-
bile robot applications [Bonarini1996], [Bonarini1997],
[Bonarini and Basso1997], [Bonarinil998]. We also
point out the relevance of the fuzzy representation
to approach learning relationships among real-valued
variables. In section 3, we present some of the credit
assignment algorithms we have implemented. We also
discuss a general methodology to extend traditional re-
inforcement distribution formulae to learn fuzzy mod-
els. Section 4 is devoted to the presentation of some
of the results we obtained when comparing different
credit assignment algorithms applied both on crisp and
fuzzy models.

2 Fuzzy and crisp LCSs

In this paper we consider a simplified type of
LCSs [Bonarinil998]. FEach classifier is a rule with
antecedents and consequents. FEach antecedent cor-
responds to a value for a linguistic variable associated
to a real-valued variable. In crisp LCS we consider
that each value is one of the n symbols representing
intervals of values of the linguistic variable. In fuzzy
LCS each value is a symbol representing a fuzzy sub-
set [Klir et al.1997] of the set of the values the real-
valued variable can take. A don’t care symbol may
replace any of the mentioned symbols, meaning that
the value of the corresponding variable is not relevant,
that is any real value matches the antecedent. The
consequents are symbols corresponding to crisp values
for each of the consequent variable. A classifier of this
kind as a conceptual shape like this:

IF (FrontDistance IS Low)

AND (LeftDistance is High)

AND (RightDistance is Don_T_Care)
THEN (TurnDirection IS Left)

actually implemented in a more compact string such
as 7130:3”.

We call the set of real values, one for each variable,
in input to the robot a real-valued state. At each con-
trol step, one crisp classifier is selected among the ones
matching the current real-valued state, and its conse-
quents are sent to the actuators of the robot, making
it acting in the environment.

We call the set of fuzzy sets, one for each variable,
matching a real-valued state, a fuzzy state. When op-
erating with fuzzy LCSs, the current state matches dif-
ferent fuzzy states, i.e., different fuzzy classifiers. We
consider subpopulations of classifiers having the same
antecedent (eventually including don’t cares) and dif-
ferent consequents. At each control step, we select one
classifier for each matching subpopulation (i.e., one for
each fuzzy state), we combine the proposed outputs
with a fuzzy aggregation operator [Klir et al1997],
and we send the real value thus obtained to the ac-
tuators.

2.1 Why Fuzzy LCSs?

Since their introduction in the late sixties fuzzy sets
have been adopted to map real numbers to symbolic
labels. Elements of an universe of discourse belong to a
fuzzy set to a certain extent, according to the so-called
membership function that defines the fuzzy set. Let us
consider an universe of discourse X (say, an interval of
real numbers), and a fuzzy set, associated to the label
close, defined by a membership function fi,s.(-) that
ranges on elements of the universe of discourse and
maps them to the real interval [0,1]. We can say that
an element Z of the universe of discourse (in our case a
distance in mm) belongs to the fuzzy set close to the
extent ftosc(Z). For the fuzzy set close in figure 1,
Helose(690) = 0.7. Giving a semantic value to the label
associated to the fuzzy set, we can say that the value
Z = 690 can be classified as close with degree 0.7.

Fuzzy sets are often used to classify real values in cat-
egories, thus making it possible (or improving) sym-
bolic reasoning about the phenomena that underlie the
numbers. When we say that a number Z belongs to a
fuzzy set to a given extent, we add some information
to it that comes from the definition of the fuzzy set.
For instance, the value fi.jos.(Z) can be considered as
an alternative representation of Z, although it is re-
ally so only for some fuzzy set definitions yy(-). In
general, the relationship between a real value z and
its degree of membership to a fuzzy set I, pu;(7), is
not bijective. This potential problem can be solved by
defining partially overlapping fuzzy sets, and consid-
ering as representative of Z the set of all the values

®
Out| Close Medium Far
10 600 900 1350 1650 3240 sonar dist mm]
®
Out Close Medium Far
-10 750 1500 3240 sonar dist [mm]

Figure 1: The fuzzy membership functions (above) and
the intervals (below) to interpret the distance mea-
sured by a sonar sensor, used in the antecedents of, re-
spectively, fuzzy and crisp classifiers presented in Sec-
tion 4.

/’Ll('i')7 v 1

Fuzzy rules represent relationships among fuzzy sets.
Since the mapping between a number and its classi-
fication is crisp and well-defined, we can say that a
fuzzy rule is a compact representation of a relation-
ship between the real values that can be classified by
the fuzzy sets in its antecedents and consequents. A
set of fuzzy rules implement a mapping among real
values that combines the mappings implemented by
each rule. So, a fuzzy LCS is a way to consider dif-
ferent local models (fuzzy rules) to obtain a complex,
in general non linear, mapping [Bonarini1996]. In par-
ticular, it is common to consider partially overlapping
fuzzy sets, as the ones represented in figure 1. In this
case, any set of real values for the input variables is
matched to some extent by at least two rules.

To summarize: fuzzy sets can provide an alternative
representation of real numbers, a fuzzy rule imple-
ments a model that maps real values to real values in
given intervals, a set of fuzzy rules implement a com-
plex mapping on the full range of the involved vari-
ables.

Interesting aspects of the fuzzy LCS mapping are:
a compact, clear representation, global results com-
ing from the combination of local models, smooth
transition between close models. These aspects have
some impact also on learning. A compact representa-
tion means that the model to be learnt is small, and
so is the search space. The accent on local models
implies the possibility to learn by focusing at each
step on small parts of the search space only, thus
reducing useless interaction among partial solutions.

The interaction among local models, due to the in-
tersection of neighbor fuzzy sets guarantees that local
learning reflects on global performance [Bonarini1996].
It is not so for crisp LCSs. Moreover, the smooth
transition among different models implemented by
fuzzy rules implies robustness with respect to data
noise [Klir et al.1997]. These are the main reasons why
fuzzy LCSs are an interesting approach to learn rela-
tionships among real values.

3 Credit assignment algorithms

In this paper we focus on some credit assignment al-
gorithms that we have implemented as modules of our
system to be applied to learn the rule-based models
described in the last section. We firstly introduce
the ones used with crisp models, then presenting a
methodology to extend them to fuzzy models by con-
sidering their intrinsic nature. We associate to each
classifier many parameters, among which we mention
here only strength, and accuracy.

3.1 Algorithms for crisp classifiers

Here, we consider only the three algorithms, of the
eleven we have implemented, which show the most dif-
ferent characteristics.

3.1.1 Crisp Q-Learning

At time f the system is in the real-valued state s,
after having executed action a; 1 from a state s; 1
matched by the interval-valued antecedent 3;_ 1, and
receives the reinforcement r;. The Q-value given to
the pair {§;_1,a;_1) is updated by:

Qi(—1,0e-1) = Qe1(8e-1,00-1)+
a (ry + vymaz, (Qu (8, a))

_Qt(gtfhatfl)

with the learning rate 0 < o < 1 and the discount
factor 0 < v < 1. The strength of the classifier
¢;_1 selected by the exploration policy at time ¢ is

Q(5t-1,ae-1).

The accuracy of the classifier ¢; 1 is updated by the
formula:

Eci—1) = Eia1(e-1)+
w (|re +ymaza(Qe(8e-1,0a))

—Qi(8t—1,00-1)| — Ei—1(ce-1))

with the learning rate 0 < w < 1.

3.1.2 Crisp TD()\)

At time t the reinforcement distribution algorithm per-
forms these steps.

1. Receive the eventual reinforcement r;_; due to the
action a;_1 selected by the policy in state s;_1.

2. Compute the estimation error of the evaluation
function V(+) in 8,_1, equivalent to the immediate pre-
diction error AE of the corresponding classifier c; 1
by:

AE(ci-1) =1 +7Ve(st) — Vic1(si-1)

with the discount factor 0 < v < 1.

3. For any state s:

3.1. Update the eligibility e(3) by the formula:
B 1 ifs =3 1

er(s) = { vhei—1(8) otherwise

with 0 < A < 1.

3.2. 1If the eligibility of the state § is greater than
a threshold value ¢ (0 < ¢ < 1), update the value
function V(-) for any § according to:

Vil8) = Vi1 ()0 Bler1)er(8)
with 0 < a < 1.

4, Update the value of the policy for the pair
(81—1,a;—1), that is the strength w of the classifier
¢:_1, by the formula:

we(cr—1) = we1(ce-1) + B(AE(ci1))

with 8 > 0.
5. Update the accuracy of the classifier ¢; 1 by:

Eci—1) = Eia(e-1)+

w (IAB(er 1) = Eva(er1))
with 0 < w < 1.

3.1.3 Crisp Bucket Brigade

At time t the reinforcement distribution algorithm fol-
lows these steps.

1. Receive the eventual reinforcement r;_; due to the
action a;_ 1 selected by the policy in state s; _; and the
new action a; selected by the policy to be done in the
current state s;.

2. Update the strength of the classifier ¢;_; belonging
to the action set of the previous step A;_i, by the
formula:

wt(0t71)=wt71(0t71)+7“t+% Z Bwe(ce)

ce—1€As—1

where the bid coefficient 0 < 8 < 1, and n is the
number of classifiers in A;_1.

3. Update the accuracy of each classifier ¢;_1 in A;_1
by:

Eci—1) = Eia(e-1)+

w(Jwe(ei—1) —wi—1(ei—1)| —
Er1(ci-1))

with 0 <w < 1.

4, Reduce the strength of any classifier ¢; in A;, by
the formula:

wt(ct) =1- 51015(015)

3.2 Algorithms for fuzzy classifiers

We have extended the above presented algorithms to
learn fuzzy models, following the considerations dis-
cussed here below.

A real-valued state is a set of real values for the input
variables. We say that a real-valued state s matches
a fuzzy state 3 to some extent jiz: (s), when each real
value s* belonging to s belongs to the corresponding
fuzzy set belonging to 3%, and pz:(s) comes from the
conjunction of the values pz(s*), computed by the
selected conjunction operator. Such operators belong
to the class known as T-norms [Klir et al.1997], among
which the most common are min and product.

A crisp state usually matches more than one fuzzy
state, while in standard LCS, it matches the set of in-
tervals that define only one interval state. Let us con-
sider subpopulations of classifiers for each fuzzy (or
interval) state. In crisp LCS, classifiers belonging to
the only subpopulation that matches the current state
put actions in the action set, whereas in fuzzy LCS, we
have many subpopulations matching the same crisp
state, each proposing an action with some strength,
proportional to the degree of matching of the classifier
selected within the subpopulation. The strength val-
ues of the proposed actions are composed by an aggre-
gation operator, usually implemented by a T-conorm
(such as max), and then defuzzyfied by one of the
many methods available [Klir et al.1997]. Whatever

T-norm, T-conorm, and defuzzyfication method is se-
lected, the resulting action proposed by the set of se-
lected fuzzy classifiers @ is a function of the actions
a' proposed by the matching classifiers and of their
degrees of matching fiz:.

Since all the matching classifiers contribute to the per-
formance of a Fuzzy LCS, the reinforcement should be
distributed to all of them, proportionally to their con-
tribution. Therefore, the first step to extend the rein-
forcement distribution algorithms consists of introduc-
ing a factor (let us call it £.:) that weights each clas-
sifier contribution. For each step, this factor is equal
to the current contribution of the classifier (its degree
of matching), weighted by the sum of the contribution
given till now, saturated to a given value T' (in these
experiments 7' = 2). This enhances the learning rate
of classifiers that do not have participated too much
to the performance, yet.

pisi (¢)

T i (7. S 50

The other important point concerns the evaluation of
the best value in a given state, used in the Q—learning
and T'D(A) formulas. In this case, we cannot just take
the value corresponding to the best value in the given
state, since this state matches many fuzzy states, each
contributing with different actions. We present our
proposal for Q-learning, leaving to the reader the anal-
ogous passages for T'D()). Let us consider Q*(c}), the
highest values of the classifiers ¢}" belonging to each
subpopulation corresponding to the matching fuzzy
states ¢ at time ¢.

Q' (ci') = maz;(Q(c]"))

Let us call m,(s) the sum of the Q*(c;?), each weighted
by 1% (s), the degree of matching of the corresponding
classifier the current, real-valued state s. This means
that we consider as the reference best value in the cur-
rent state, the combination of the best classifiers that
can trigger in this state, one for each matching sub-
population. The corresponding formula is:

mi(s) = Y pi(s) Q' (")

k=1,K

3.2.1 Fuzzy Q-Learning

At time f the system is in the state s;, after having
executed action a;_; from a state s;_; matched by the
fuzzy antecedent S;_ 1 , and receives the reinforcement
r;. The Q-value given to the classifiers ¢! , selected

by the policy for each pair (3! ,al ;) is updated by
the formula:

Qt(Ci,l) = Qt,l(cifl) +
agcifl (rt + ’Ymt71(8t71) - Qt(ciq))

The accuracy of the classifier ¢!, is updated by the
formula:

Eyci_)) = Eia(c)+
wée (Ire +yme—1(se-1) — Qelci_1)| —
Ei1(ciy))

3.2.2 Fuzzy TD())

The extension of the T'D()\) algorithm presented for
crisp LCS is straightforward, given the considerations
done at the beginning of this section. We do not
present again all the steps, but only the key formu-
las.

The eligibility trace of the fuzzy state § is updated by
the formula:

e(3') = {

The strength of the classifier ¢; 1, is updated by the
formula:

Y]
if 8 =514
otherunse

YApgi (8)ec—1(3Y)

wi(ei_y) = wt71(0i71)+55c;‘71(7“t+

gl Zu (50V(5") = Vie1(3e-1))

The accuracy of the classifier ¢!, is updated by:

Eiciy) = Eia(d)+

we Z ps (s0)V (3') = Vier (o) =

Etfl(czitfl))

3.2.3 Fuzzy Bucket Brigade

At time t the reinforcement distribution algorithm ex-
ecute these steps.

1. Receive the eventual reinforcement r;_; due to the
action a;_1 selected by the policy in state s;_; and the
new action a; selected by the policy to be done in the
current state s;.

2. Compute the bid basing on the action sets of each
subpopulation:

Bid, =

Z Bz (s)we(cr)

ViVei €Al

3. Vi,Vci € Al reduce the strength of ¢!, by a quantity
equal to its contribution to the bid:

wi(et) = wi-1(c}) + (1 = Bwrprsi(s))

4, Distribute the bid to the classifiers belonging to
the action set of the previous step Vi,Ve;_; € A},

welci_y) = we1(ci_q) + & (Bidg + 1)

5. Update the accuracy of any classifier ¢; 1 in A; 4
by:

Eic_) = Eealgy)+
wéei (Jwlcp1) —we—r(cp1)| —

Be1(c; 1))

4 Experimental results

In this section, we first present the experimental set-
tings, then discussing some of the results we obtained.
Since the aim of these experiments is the comparison
among different reinforcement distribution algorithms
applied to fuzzy and crisp LCS, we kept fixed all the
other learning parameters and procedures. Namely,
the exploration policy is a Boltzman selection, with
temperature equal to 5. The classifiers are generated
by cover detection, and the worst matching the current
state is deleted whenever the population size reaches a
given threshold. Classifiers are stochastically selected
for genetics by strength. The mutation probability
is 0.3, the allele mutation probability is 0.1, and the
probability of introducing a ”don’t care symbol” is also
0.3. Each trial lasts 20,000 steps and sets of trials to
be compared with each other have the same stochastic
seed.

4.1 The application

The application we have selected is navigation of a
simulated mobile robot in a simplified environment.
The robot we have considered is CAT [Bonarini1996],
a mobile base with car-like kinematics, 700 mm long,
600 mm wide, running at a maximum speed of 300
mm/sec both forward and backward. The maximum
steering degree is 30° on each side. In the configu-
ration we adopted for these experiments, CAT had 8
bumpers (on/off contact sensors) and six sonar sen-
sors, placed as shown in figure 2. Each sonar produces
an ultrasonic wave and the time between emission and
detection of a reflected wave (Time of Flight - ToF) is
measured. This is proportional to the distance from
the closer surface orthogonal to one of the rays of a

600 mm

700 o

Figure 2: The upper view of CAT. The sonar sensibil-
ity cones are represented in gray, and the bumpers as
solid lines around the robot body.

[K

Backward Forward

NL | NM|NS | ZO | PS | PM | PL

30 -20 -10 0 10 20 30 Steering[] -300 300 speed [mmis]

Figure 3: The output values of steering and speed.

60° cone originating from the sonar. The range is be-
tween 200 to 3,200 mm. The distance obtained by each
sonar is affected by a noise, uniformly distributed in
the interval 5% of the maximum range. This model is
rough, but realistic, and may be implemented by cou-
pling two sensors available on the market, each having
a detection cone of about 30°.

Data from bumpers are interpreted as eight different
discrete values of the same input variable. Data from
sonars are interpreted either in terms of fuzzy sets, or
in terms of intervals, as described in figure 1. Notice
the special singleton value used to represent a charac-
teristic feature of sonars: when no echo returns within
the maximum ToF, the sensor gives a specific out of
range value. This happens both when no object is
within the range, and when the object deflects the ul-
trasonic wave, due to its relative direction. A state is
thus represented by six sonar variables and one for the
bumpers. The action variables are speed and steering,
represented by singletons, as in figure 3. Notice that,
while crisp LCS can only produce one of the 7 values
for steering (and one of the two for speed), fuzzy LCS,
by composition of the actions proposed by each clas-
sifier belonging to the different subpopulations that
cover the state, produce a real value for each of the
output variables.

The reinforcement function 7 is the same in all the ex-

|

Figure 4: The environment for the experiments with
QQ-learning and Bucket Brigade, and one of the learnt
fuzzy behaviors: CAT (black and white dot) starts
from the center and goes along the corridors.

periments, and it is designed to evolve a controller that
makes the agent go forward, as far as possible from ob-
stacles and walls. We are not concerned in this paper
to optimize the reinforcement function for the task. In
the formula below, V is the speed of CAT, D is the dis-
tance from the closer object, and K is a normalizing
constant to keep this part of the reinforcement in the
interval [0, 1].

if CAT goes forward,
KVD and does not bump
7= 0 if CAT does not go forward,

and does not bump

-1 if CAT bumps

From the final set of learnt classifiers we consider only
the best classifier for each subpopulation that have a
strength higher than a threshold value (in this exper-
iments, 0), and we evaluate their performance.

4.2 Results

The first results we are presenting concern the compar-
ison between Q-learning and Bucket Brigade with crisp
and fuzzy classifiers. The environment in which CAT
operates is shown in figure 4. It is a shell labyrinth;
each corridor is two meters wide. A detailed analy-
sis of the characteristics of this environment is beyond
the scope of this paper. We would like to notice only
that there is some perceptual aliasing, and that there
are qualitatively different sections of the environment
to be faced (the most evident: straight and L-shaped
corridors).

All the algorithms produce satisfying controllers. In
general, the fuzzy controllers contain more classifiers

120 120
0 ™
0 ol
0 01
0 ‘ ‘ ‘ 0 : : |

Figure 5: Generation frequence in QQ-learning: crisp
(left) and fuzzy (right)

120 120

4] 4]

0 0
0 ‘ 1 1 0 : 1 1
(0108 006 on 016 0 005 01 015

Figure 6: Accuracy in Q-learning: crisp (left) and
fuzzy (right)

(about 800 vs. 600 crisp classifiers). This comes from
the fact that more fuzzy states than interval states
match the crisp states visited by CAT, and also that
more fuzzy classifiers have the chance to obtain rein-
forcement, since more than one subpopulation matches
a crisp state. In general, fuzzy controllers are a little
bit more effective than crisp, and more robust with re-
spect to increased noise or errors in measurements or
actuation. A discussion about this is beyond the scope
of this paper and can be found in [Bonarinil996].

It is interesting to compare some plots shown in figures
through 5 to 9; all of them report averaged data from
12 trials of 20,000 sense-act (or control) cycles each.

Figure 5 shows the plots of the distribution of the fre-
quence of classifier generation in crisp and fuzzy Q-
learning (solid line) over time (cycles), and its mean
square error (lower line). We may notice that the
crisp LCS generates more classifiers at the beginning,
then reaching a stable, quite low generation rate, while
fuzzy LCS keeps a high generation rate also later on.
This means that fuzzy LCS is still actively search-
ing for an optimal configuration after 20,000 cycles.
Therefore, we may expect that accuracy is higher for
crisp LCS, since each crisp classifier is reinforced in
average, more times than fuzzy. This is confirmed by

400 400

300 300

20 20

100 100

0 == 0 T T i
-1 05 0 05 -1 05 0 05

Figure 7: Distribution of classifier strength in Q-
learning: crisp (left) and fuzzy (right)

figure 6. Comparing the distribution of the strength
among classifiers (figure 7) between fuzzy and crisp
LCS, we may notice that a relatively higher num-
ber of fuzzy classifiers concentrates in a smaller set
of strength values around 0.2, whereas the strength of
crisp classifiers is more distributed towards high val-
ues. This may be explained by noticing that fuzzy
classifiers receive a small reinforcement also when the
speed is not the maximum, since the speed they pro-
duce may take values in the full range [-300, 300].
Crisp classifiers are reinforced only when the speed
is 300 mm/sec, therefore only the best classifiers sur-
vive. This is a characteristic of fuzzy LCS, and a full
discussion about it will be presented in a forthcoming
paper, where we will also explain why fuzzy LCS seem
to work better with delayed reinforcement, and crisp
L.CS with continuous reinforcement.

We cannot show the plots concerning the Bucket
Brigade algorithm in this apper. The generation fre-
quence is similar for both the crisp and the fuzzy
version, and similar to that of the crisp Q-learning:
the algorithm seems to converge to a small rate of
population updating. The accuracy of most of the
fuzzy classifiers is low, whereas that of crisp classi-
fiers distributes almost uniformely on the whole range.
Bucket Brigade tends to reinforce classifiers proposing
the same action. This is in contrast with the fuzzy
philosophy, where the agent action comes from the
combination of different actions proposed by differ-
ent classifiers. The strength distribution confirms this,
showing a high number of fuzzy classifiers with simi-
lar, relatively low strength, whereas crisp classifiers
are more distributed, and more of them reach higher
values. The conclusion may be that Bucket Brigade
is inappropriate for fuzzy LCS, but we are identify-
ing some interesting application niches, where fuzzy
LCS with high level of generalization show interest-
ing results. However, it is too early to make general
considerations about this topic.

())
®
() O

Figure 8: The environment for the experiments with

TD())

Figure 9: Distribution of classifier strength in TD())

The second experiment we propose concerns T D()).
The environment is shown in figure 8. We cannot show
all the plots also for this algorithm. We only notice
that the frequency of classifier generation has a be-
havior similar to the others, reaching and equilibrium
before them, thus showing that T'D(}\) is faster than
other algorithms. The accuracy has the same quali-
tative shape of that of (Q-Learning, but, here, fuzzy
classifiers are less distributed. From figure 9 it is pos-
sible to notice that not only fuzzy rules are more accu-
rate, but also that they are stronger, since, in average,
they have received a larger amount of reinforcement
each, given that the same reinforcement is distributed
to a number of fuzzy classifiers, but to only one crisp
classifier.

5 Conclusions

We have presented an extension of classical reinforce-
ment learning algorithms to crisp and fuzzy LCS and a
first comparison among some of them. This would like
to be a first contribution towards the foundation of a
methodology to select components of learning systems
to face specific applications. We have also shown that
these algorithms can be applied to fuzzy LCS to learn

robust mapping from real-vauled input to real-valued
output. Our model is very simple, and more inves-
tigation is needed to cope with more complex mod-
els [Cordon et al.1997], once the principal properties
have been clarified. We are also working on the iden-
tification of characteristics of the environment and of
the model (variables, values, granularity) in order to
match them with characteristics of the different learn-
ing algorithms: reinforcement function, reinforcement
distribution, exploration policy, genetics.

Acknowledgments

This research has been partially supported by the
MURST Project CERTAMEN. I an indebted with
Nicolino De Marco who implemented the tool sup-
porting this research, and with Matteo Matteucci
and Claudio Bonacina for many interesting discussions
about the experiments.

References

[Bonarini and Basso1997] A. Bonarini and F. Basso.
Learning to compose fuzzy behaviors for au-
tonomous agents. International Journal of Approz-
imate Reasoning, 17(4):409 — 432, 1997.

[Bonarini1996] A. Bonarini. Evolutionary learning
of fuzzy rules: competition and cooperation. In
W. Pedrycgz, editor, Fuzzy modeling: paradigms and
practice, pages 265284, Norwell, MA, 1996. Kluwer
Academic Press.

[Bonarini1l997] A. Bonarini. Anytime learning and
adaptation of hierarchical fuzzy logic behaviors.
Adaptive Behavior Journal, 5(3 —4):281 — 315, 1997.

[Bonarini1998] A. Bonarini. Reinforcement distribu-
tion to fuzzy classifiers: a methodology to extend
crisp algorithms. In IEEE International Conference
on FEwvolutionary Computation — WCCI-ICEC’98,
volume 1, pages 51-56, Piscataway, NJ, 1998. IEEE
Computer Press.

[Cordon et al.1997] O. Cordon, F. Herrera, and
M. Lozano. On the combination of fuzzy logic and
evolutionary computation: a short review and bibli-
ography. In W. Pedrycz, editor, Fuzzy Fvolutionary
Computation, pages 33 — 44, Norwell, MA, 1997.
Kluwer Academic Press.

[Klir et al.1997] G. J. Klir, B. Yuan, and U. St. Clair.
Puzzy set theory: foundations and applicatons, vol-
ume 49A. Prentice-Hall, Englewood Cliffs, MA,
1997.

