
Problem Solving: Search, Exploration and Co-evolution

Josiah Poon

Information Environments Program
Dept. of CSEE

University of Queensland
Brisbane, QLD 4073, Australia

josiah@csee.uq.edu.au

Abstract

Genetic Algorithms have become useful problem
solving tools and they are frequently applied in
the area of optimization. The nature of an
optimization problem is that both the search
space and the objectives are well-defined in
advance. However, back to the nature where the
metaphor comes from, an individual species does
not evolve in isolation, a species co-evolves with
the other species. In this paper, the nature of
problem solving is examined and two
evolutionary algorithms are proposed to
overcome the limitation of a Simple Genetic
Algorithm (SGA). The new algorithms are
Exploratory Genetic Algorithm (ExpGA) and
Co-evolutionary Genetic Algorithm (CoGA)
which are capable to handle ill-defined problems.
It is further suggested that the SGA is a special
case of the CoGA.

1 INTRODUCTION

John Holland is considered to be the father of Genetic
Algorithms. Holland (1975) tackled the issue of
adaptation in natural and artificial systems. His theoretical
work laid the foundation for the conventional Genetic
Algorithm (GA). In a conventional GA, the global
optimum is searched in a solution space under a fixed
fitness function.

The modern GA attracted greater attention when
Goldberg (1989) introduced this adaptive search
technique to a larger community. Two keywords from the
title of this book – search and optimization - shifted the
attention to the optimization area which further draws
researchers from the engineering discipline to use GA as a
problem solving tool. The characteristics of an
optimization problem is that a performance evaluation
function is defined in advance, and this function remains
the same throughout the process when the solution is
sought.

To consider GA as a tool for optimization imposes the
view that GA is another implementation of a state-space
search. Harvey (1992) suggests that the notion of using a
search space as a metaphor is like asking the question:
“Where in this whole search space is the optimum?”, but
this metaphor implies a space of pre-defined extent with a
predefined goal. In most situations, a large part of the
effort is expended to find out what the problem is and
how the problem boundary should be defined. The
perspective of GA as a mere state-space search restricts
the potential of GA in problem solving. Problem solving
is not simply to search for a solution from a given well-
defined space. Problem solving is, in fact, similar to a
definition offered to Artificial Life by Langton (1992),

“… In addition to providing new ways to study
the biological phenomena associated with life here
on Earth, life-as-we-know-it, Artificial Life allows
us to extend our studies to the larger domain of "bio-
logic" of possible life, life-as-it-could-be ...”

Hence, problem solving should be viewed as the process
of what the sort of solution a problem can lead to, rather
than as solutions we have already known. This paper aims
to investigate the appropriateness of a Simple Genetic
Algorithm (SGA) for the revised view to problem solving.
In the next section of this paper, the process of problem
solving is studied to highlight the essential characteristics
of a well-defined problem and an ill-defined problem.
Three different types of evolutionary algorithms (based
on GA) are presented in Section 3, namely the SGA, the
Exploratory GA (ExpGA) and the Co-evolutionary
Algorithm (CoGA). A formal notation is used to
accompany these algorithms to highlight their similarities
and differences. It is then followed by a discussion to
address the relationships between these algorithms and
their relations with problem solving. The paper is
summarized by the conclusion in Section 4.

2 PROBLEM AND PROBLEM SOLVING

The terms “problem” and “problem solving” convey
different meanings to different people. These terms are

revisited in this section using three cases to reveal the
nature and characteristics that can stem from these terms.

Case 1. The first case study is cryptarithmetics. A typical
question for this kind of problem is

 SEND

+ MORE

 MONEY

where goal of this problem is to find out what digits in the
range of 0 to 9 that each of these letters represent. A digit
can only be mapped to one letter. The solution space is a
clearly defined space of digits of 0 to 9. There are explicit
constraints specified in advance, i.e. no repetition of
digits. To solve the problem, a reasoning process can be
employed. For example, the two initial numbers are 4-
digit long while the sum of them has 5 digits. The number
that can appear in the most significant digit by adding
these two numbers can only be 1 in this scenario, hence
“M = 1 ” is deduced. The reasoning process continues
until the mapping for all the letters are found. The
reasoning process may sometimes come to an impasse, by
then, the steps are backtracked and to go for the
alternatives. These problems are usually characterized by
a clearly defined evaluation function together with some
well-defined constraints. And the problem solving process
can be characterized by using the state-space search
paradigm in which the problem remains unchanged
throughout the process, while the solution can be found
from this pre-defined and fixed solution space. The
problem solving process is the traversal of possible
solutions in this space (Figure 1).

Figure 1 Problem solving as search

Case 2. Another case study to problem solving is the
scientific discovery. BACON is the pioneer
computational system by Langley et al (1987) in this area.
The system could re-discover quantitative empirical laws
by finding patterns from a given set of numerical data.
The system could derive some of the useful laws in
physics in an intelligent way.

On the surface, this problem seems to resemble the search
paradigm of problem solving where the goal of the system
is to find a relationship of the given parameters according
to the observed data. However, Langley et al (1987)
reported in their post-morterm analysis that the system
only mimics part of the discovery process of its human
counterpart. The critical decision on the choice of what
input data to be analyzed were made by the researcher. A
significant research time is required by human scientists
to make hypotheses on the possible relationships among
the parameters before the data are analyzed. In other
words, given a solution space, scientists make special
focus to the problem before the search goes on. The result
produced from a focussed search helps the scientists to
determine if the right focus has been concentrated. The
scientists shift attention based on the current results for
the next attempt if the solution is not found. Hence, when
BACON started crunching the data to determine the
relations among the data from a search, the researchers
decided a focus of the search bound by some pre-
identified parameters. In other words, BACON worked
with a well-defined problem after the human researchers
have untied the knots of a complex problem. The tactics
of this problem solving approach is to explore the solution
space by paying special focus in each search, and the
search may shift to a different area in the solution space
according to the feedback of the interim solution. This is a
kind of problem solving by exploration (Figure 2).

Figure 2 Problem solving as exploration

Case 3. The last case study is a floor plan layout design.
In general, a client asks an architect to design a house
with a preliminary requirement of room-types, sizes,
budget etc. If this were a true state-space search
paradigm, there should exist a floor plan (or a definite set
of plans) in the search space for architects to recognize as
the final solution. This same plan should be proposed by
any architect working on the given set of requirements.
The selected plan would be commonly agreed by all other
architects to be the best design within the requirements
and constraints specified by the client. As soon as this
design solution is found, the design process could be
called to a halt. That is to say, there is a right plan for a
given set of requirements while the other plans are wrong!

Problem (P)

Solution (S)

However, this does not occur in real design projects. The
reason is that the requirements are generally ambiguous,
imprecise and inconsistent, and the client always has
second thoughts on seeing the interim plans produced by
the architect. The client revises his requirements after
reflection to the extra information provided by the plan.
Frequent changes to the requirements gives us a non-
stationary fitness landscape in the solution space, whereas
optimization is characterized by an unchanged goal and a
static fitness landscape. An optimum design solution in
one landscape may be a poor performer when the
landscape is modified. As a result, the final solution is too
ambiguous to be named as an optimum floor plan. The
final plan is admitted as a “satisficing solution” (Simon,
1981).

To consider this problem as state-space search model
imposes a restriction of not allowing the requirements
(goal) to change. The concept of a problem being defined
once-and-for-all is not generally true (Logan and
Smithers, 1993). However, simply considering the
process as exploration is not sufficient because this
eliminates the interaction (mutual influence) between the
problem space and the solution space. Hence, to generate
a solution for a given initial problem is not the whole of
the problem solving process, part of the process to solve
an ill-defined problem is to deliver a well-defined
problem and an associated well-defined solution (Figure
3). This type problem solving is classified as co-
evolution.

Two or more interacting species evolve in parallel in a co-
evolution. The interaction between the species may cause
new genetic materials to inject to the other species. For
instance, many plants in North America are adapted
through co-evolution by hummingbirds. The
hummingbird carries genetic material from one species to
another while pollinating the flowers. By carrying the
genetic material, different colors are transferred from one
plant to another. Therefore, a co-evolutionary approach to
problem solving allows the requirements to change during
the process where the change is due to the interaction with
the new knowledge from the solution space. New
variables may be introduced which alter the problem
space. This phenomenon applies to the solution space as
well.

Figure 3 Outcome of solving an ill-defined problem

To conclude this section, a problem is characterized into
well-definedness and ill-definedness. A well-defined
problem maps out a fixed search space where optimum
solution is always assumed while an ill-defined problem
may not be able to construct a space due to the
contradicting and ambiguous conditions. Problem solving
can be categorized into search, exploration and co-
evolution. A typical search process generates a solution as
its output when the input is a well-defined problem. An
exploration process takes in a problem and the solution is
found by considering different foci, which lead to
separate regions in the solution space to be searched. A
co-evolutionary process derives a well-defined problem
and the corresponding solution from an ill-defined
problem. The view to problem solving as co-evolution
does not only consider different regions in a solution
space, the solution space is in fact changed because of the
introduction of new variables.

3 MODELING PROBLEM SOLVING
PROCESS

In this paper, a problem is specified as a set of
requirements, which can be considered as a topological
space. This is separate, and in addition, to the
consideration of the solutions as another topological
space. The focus of a problem solving is the way to
measure the quality of the solution. For example, if the
design of a floor plan focuses on maximizing the floor
space, the quality of alternative solutions is measured by
the amount of floor space each one provides. Therefore,
the focus of a search can be considered as a metric space
(Mendelson, 1963). The SGA is revisited in this section
together with the introduction of two more evolutionary
algorithms, i.e. ExpGA and CoGA. A notation is devised,
based on the topological theory, to highlight the
characteristics of these algorithms. The overview of each
algorithm is followed by a brief outline of a typical
implementation of the corresponding problem solving
process the algorithm intends to model. There is no
attempt to discuss and analyze these algorithms in details
in this paper. They are referred in this section as
computational models to problem solving process.

3.1 SIMPLE GENETIC ALGORITHM (SGA)

The efficiency and flexibility of biological systems is due
to rules of self-repair, self-guidance and reproduction that
hardly exist in most artificial systems. This metaphor
from nature is modeled as a SGA and is shown below:Ill-defined

Problem

Well-defined
Problem

Well-defined
Solution

Problem
Solvin g

t = 0;

initialize genotypes in Population(t);

evaluate phenotypes in Population(t) for
fitness;

while termination condition not satisfied do

t = t + 1;

select Population(t) from Population(t-1);

crossover genotypes in Population(t);

mutation of genotypes in Population(t);

evaluate phenotypes in Population(t);

Problem solving is a search when the focus of the
problem does not change as the process continues. The
requirement space and the solution space do not change
during the process. Problem solving as search can be
modeled as follows,

Sρ = bestρ{S1(P), S2(P), S3(P), …}

where

ρρ is f(P), a given focus of design,

P is the space of problem requirements,

Si(P) is the ith solution,

Sρρ is the best solution corresponding to the
space of P based on the focus ρρ.

Example. The experiment on the structural optimization
of truss design by Coello (1994) is a typical example in
this class of problem. The goal of the optimization is to
minimize the weight of a 10-bar truss structure (Figure 4)
where the objective function is

where x is the candidate solution, Ai is the cross-sectional
area of the ith member, Li is the length of the ith member,
and ρ is the weight density of the material. The truss is
subject to the following set of constraints

σi ≤ σa, for i= 1 to 10

ui ≤ ua

Figure 4 A 10-bar truss

where σi is the stress in member i, σa is the maximum
allowable stress for all members, ui is the displacement of
each node (horizontal and vertical) and ua is the maximum
allowable displacement for all nodes. Since ρ and L are
kept constant throughout the design, the values that need
to be found are the cross-sectional area, which in turn is a
set of 42 possible values that are defined by the American
Institute of Steel Construction Manual. As a result, a
chromosome of 60 bits long is constructed where each 6-
bit represents the 42 available sections (26 = 64).

Although the intrinsic size of the search space is large,
4210 (≈ 1016), the space is still finite and well-defined. The
application of a SGA to this problem is to find the right
cross-section for each of these 10 bars in the required
configuration from a well bound space.

3.2 EXPLORATORY GA (ExpGA)

Exploration is a search where the focus changes as the
process continues. A different focus, derived from the
requirement space, can imply a different solution space.
Exploration can be modeled as follows:

Sfinal ∈ {Sρ1, Sρ2, Sρ3, …}
Sρi = bestρi{Si}=best{Sρi1(P), Sρi2(P), Sρi3(P), …}

where

P is a space of problem requirements,
ρρI is ƒ(Pi) a given focus of the problem at time i,

Pi⊆P,
Si is the ith set of solution with the focus ρρi,
Sρρij(P) is the jth solution corresponding to the focus of

the problem ρρi,
Sρρi is the best solution in Si,
Sfinal is the final selected solution.

Problem solving as exploration aims to search other
solution spaces by changing the focus. Viewed from
different angles and perspectives, different parts of a
given solution space are considered or possibly different
solution spaces become relevant. The difficulty in
problem solving as exploration is to determine a way to
change the focus of the problem, when the conventional
evolutionary computation assumes a fixed fitness
function.

Example. An example of problem solving using
exploration is recorded in Maher and Poon and Boulanger
(1996). The problem in this experiment is to find the
appropriate configuration of a braced frame panel for a
multi-story building. There are a few criteria to be
considered which includes the conformity to the bay
layout, the structural efficiency and structural integrity.
However, instead of approaching the problem as a multi-
criteria optimization, an ExpGA looks at these criteria

f(x) = Σ ρAi Li
i=1

10

360”

360” 360”

135

246

separately and allows to change the focus of attention
during the problem solving. In each step, one criterion is
considered to be the most important and the other criteria
have to pay the sacrifice. Since the computational
resources are expended to find a solution for the current
focus, the solution found at each cycle may be the best
solution according to the current focus, but this same
solution may be of poor quality if other criteria are
considered at the same time. The ExpGA switches to
another focus when the problem solving process proceeds.

3.3 CO-EVOLUTIONARY GA (CoGA)

Co-evolution allows the focus of the problem to change.
The requirement space and the solution space can change
through mutual interaction. The interaction between the
two sets of spaces occurs through the focus of the search.
The focus for the solution space is based on the
requirements in the problem space and the focus for the
problem space is based on the solutions in the solution
space. The first interaction corresponds to the first
downward arrow in Figure 5, from P to S. If no
satisfactory solution is found with the stated requirements,
the solution space becomes the basis for the focus for
searching the problem space. Hence, the second part of
the first phase corresponds to a change in the fitness
function when a solution space is given, i.e. the upward
arrow from S to P. After searching for relevant
requirements in the problem space, another fitness
function is derived from the new requirement space to be
the focus of the search for a solution. The co-evolution
model is described as follows:

Sfinal ∈ {Sρ1, Sρ2, Sρ3, … Sρn}
Sρi = bestρi{Si}
ρi = ƒ(Pi)

Pfinal ∈ {Pρ'1, Pρ'2, Pρ’3, … Pρ’n}
Pρ'i = bestρ'i{PI}
ρ'i = ƒ(Si)

where

ρρi is a given focus for the solution at time i,
ρρ' i is a given focus for the requirements at time i,
P is a space of problem requirements,
S is a space of solutions,
Sρρi is the solution corresponding to the space of Pi

with the given focus ρρi, Sρρi∈∈ S,
Pρρ’i is the problem requirements corresponding to

the space of Si with the given focus ρρ’ i, Pρρi∈∈ P.

The pseudo code for this co-evolutionary algorithm can
be found at Figure 6.

Interactions in co-evolution may take different forms
during the process. With co-evolutionary problem

solving, the requirements and solutions interact with each
other through two kind of interaction mechanisms: natural
selection and niche construction. A set of requirements of
Pt1 is used to search for solutions St1 via the mechanism of
natural selection. The niche construction is founded on
the mechanism of “addition”. Some genetic materials
from the solutions St1 help generate the next requirements
Pt2. The interaction cycles continue until the co-evolution
terminates.

Figure 5 A model of co-evolution

T=0;

t=0;

initialize genotypes of requirements Pt and solutions
St ;

While termination conditions are not satisfied

{

T=T+1;

/* Phase 1 */

ρρT = f(Pt);

Repeat

t=t+1;

St ::= select genotypes in St-1 ;

reproduce, crossover and mutate genotypes in St ;

calculate fitness of phenotypes in St using ρρT ;

until convergence using DNA testing;

check for termination

/* Phase 2 */

ρρT’ = f(St);

Repeat

t=t+1;

Pt ::= select genotypes in Pt-1 ;

reproduce, crossover and mutate genotypes in Pt ;

calculate fitness of phenotypes in Pt using ρρT’;

Until convergence using DNA testing;

}

Figure 6 Pseudo code for a co-evolutionary algorithm

Pt2

St2

Pt1

St1

Requirements (P)

Solution (S)

Interactions
(Natural Selection) (Niche

Construction)

Interactions

Convergence in a SGA means that the search process has
led to the “best” solution in terms of the specified fitness
function. Convergence is typically the criteria for
termination of the evolutionary search process. Since the
fitness function in co-evolutionary problem solving
changes from one phase to another, the idea of
convergence needs to be reconsidered. This requires a
consideration of the purpose of co-evolutionary problem
solving as compared to evolutionary search. The purpose
of an evolutionary search is to find the best solution for a
given environment, where the environment is effectively
represented by the fitness function. In co-evolutionary
problem solving, the purpose is to explore both the
problem and solution spaces, allowing both to change in
reaction to each other until a satisfactory combination of a
problem statement and solution state is found. The
exploratory nature of the co-evolutionary process implies
that the process should continue until the potential for
new ideas is reduced. Hence, in co-evolution,
convergence is not related to fitness, but to the similarity
of the members of the population. A population in which
there is little change in the genotypes of the members
when compared to the previous population indicates that
the search process has converged.

Convergence is based on the comparison of the genotypes
in one population to the genotypes in the previous
generation. The idea of DNA testing is borrowed from
biology to support this procedure. DNA testing involves
the direct examination and comparison of the genetic
material that a child inherited from its biological
predecessors. If the DNA of the tested person does not
contain sufficient genetic characteristics present in his/her
predecessors, then the probability that this person is the
true biological successor is calculated and reported.

In co-evolutionary problem solving, DNA refers to the
genotype of a member of the population of the problem
space and the solution space. Genotypes are broken down
into fragments. The fragments are then separated
according to the representation of the function, behaviour
and structure, or some other relevant elements of
representation, and pieces from the highly variable
regions are “tagged”. The DNA patterns that are formed
as a result of the tagging provide identity profiles used in
establishing the identity of the requirements and solutions.

To carry out the proposed DNA testing in co-evolution, a
DNA bank is set up to store the DNA from the previous
generations. Those DNA are the genetic characteristics of
the functions, behavior and structures, or, for instance, the
shape patterns. During the DNA testing process, the
genetic characteristics of the requirements or solutions of
the members of the population are compared to those
stored in the DNA bank. If the genetic characteristics
cannot be found in the DNA bank, those fragments are
identified as new genetic characteristics and then are
added to the DNA bank. Usually, these new
characteristics come from the genetic changes of co-
evolution, either from crossover and mutation or the
interaction between the problem and solution spaces.

The link between convergence and termination in
evolutionary algorithms occurs because the convergence
to the “best” solution indicates that the search should be
terminated. In co-evolutionary design, convergence is
determined for each phase of the search, i.e. for a given
focus. Following the convergence for one focus, another
focus is determined and another search commences in the
other space. This indicates a separation of termination and
convergence. Termination is reserved to indicate when the
co-evolutionary process should stop, and convergence
relates to when the search in a given space for a given
focus should stop.

One criterion for termination is the number of cycles of
the co-evolution process. This criterion is equivalent to
setting a time limit for the problem solving process.
Often, the time limit is a major criterion for signaling
when exploration of changes in problem and solution
should stop.

Another criterion for termination is similar in concept to
the DNA testing described above for convergence. A
characterization of each phase in the co-evolution process
is a change in focus, or fitness. With each change in
phase, the fitness function is appended to a list of fitness
functions, a process terminates when there are no new
fitness functions added to the list. The significance of this
criterion is that the algorithm is not able to identify a
different focus and, therefore, new ideas have been
exhausted.

Example. An example to this class of problem the
crossword puzzle experiment that Maher and Wu (1998)
reported. Traditional crossword puzzle is a grid-space
which contains NxM cells where some of these cells are
blackened out. A crossword designer creates an N×M
crossword by constantly reconsidering and revision of the
words and the layout. The goal of a crossword player is to
fill in the blanks with some words according to the given
hints.

The characteristics of this open crossword is that the
crossword player is the crossword designer at the same
time. The NxM grid-space does not contain any black
squares and the goal is to enter interesting words without
resorting into the N×M crossword. The problem that an
open N×M crossword needs to resolve includes the
selections of words and words layout instructions.

Most conventional search techniques are not suitable for
creating crosswords problem because they usually expect
the requirements of problem have been defined clearly in
advance and does not change during the process.
However, this problem has a very fluid boundary where
the layout is allowed to change. Although it is
inappropriate for SGA or ExpGA, the CoGA is a very
good candidate to solving this problem.

The creation of an N×M crossword is modeled as problem
with two evolving populations; words and layout
instructions. The evolutions of words and layout
instructions cooperated through interactions between
them. A “good” N×M crossword can only be created

when the selected words and the layout instructions
satisfy each other.

Unlike a SGA, the genotype of a crossword employed in
this experiment uses a combined gene approach which
consists of two parts of gene: words part and layout
instructions part (Figure 7). A phenotype of crossword is
the physical characteristics of a crossword: what a
crossword actually looks like.

The score of a crossword derived from a genotype may be
improved because there are still a lot of unfilled spaces in
the crossword. However, the problem is that the existing
set of selected word may be not able to provide enough
words to fill these blank cells. The interaction between the
problem space and the solution space is the unique feature
in a CoGA. Therefore, one way to improve the
performance of a crossword with the current set of layout
instructions is via the niche construction. The niche for
this problem is to identify an extra set of words that can
improve the actual performance of a genotype.

Figure 7 Genotype representation of the a NxM crossword
puzzle

The termination of a co-evolutionary crosswording cannot
rely on the values of actual fitness of the crosswords
alone. Due to the incomplete nature of the open NxM
crossword, the performance of a co-evolutionary
crosswording has to consider the maximum fitness and
actual fitness of a crossword at the same time. The
maximum fitness presents the potential score that a
crossword can achieve. And the actual fitness presents the
behavior owing to the co-evolution. The form of the
solution is vague but the best set of words and layout
instructions to be identified should have the following
characteristics

• Their actual fitness and the maximum fitness are as
close as possible,

• The value of the crossword’s actual fitness is the
greatest.

Therefore, the termination conditions of a co-evolutionary
crosswording depends on the fitness evaluation and the
limitation of computation time.

3.4 DISCUSSION

Three evolutionary algorithms are introduced in this
section. A SGA works on a fixed focus, while the
problem space and solution space remain unchanged.
There is no feedback from the solution space to influence
the problem requirements. Solutions from the same space
are evaluated by the same fitness function under the same
focus.

The ExpGA is similar to SGA but this new algorithm
recognizes the significance of shifting focus during
problem solving. To consider one criteria as the focal
point implies the algorithm prepares to sacrifice the
quality of the other criteria for the sake of the focussed
criteria. When a specific focus is chosen, the problem
space, the solution space and the performance evaluation
are frozen, the “best” solution under these temporary
frozen conditions can be obtained using a SGA. However,
once the solution under these frozen conditions is found,
the information accumulated in the solution space
provides feedback to the problem space which can steer
the attention in the next exploration. From the above
description, a SGA is subsumed in an ExpGA.

The CoGA differs from ExpGA by allowing the
interactions between the problem space and the solution
space. New genes may be added to the gene pool as a
result of the interaction. The subsequent effect is that the
problem space and solution space are altered, and the
search space will be brought to a different dimension. The
search that takes place after the interaction “stage” can be
an ExpGA or a SGA. That is to say, SGA is a special case
of ExpGA, which in turn is a subset of CoGA (Figure 8).
Hence, to have a flexible problem solving environment, a
GA package should include parameters to control
interaction between spaces and to allow and the change of
focus during the evolution (Table 1).

Figure 8 Relations among the evolutionary algorithms.

Table 1: Parameter settings for evolutionary algorithms

Focus can change Interaction allowed

SGA no no

ExpGA yes no

CoGA yes yes

Word Part, P Layout Instruction Part, S

Genotype of Crossword, C

SGA ExpGA CoGA

It has been shown that the various evolutionary
algorithms are useful in different kind of problem solving.
The SGA is suitable to a well-defined problem while the
CoGA is appropriate for ill-defined problem. To borrow
what Langton (1992) has suggested for Artificial Life
(refer to Section 1), the aim of using a SGA concerns the
finding of a solution-as-we-know-it, while the goal for
co-evolutionary algorithm is to find a solution-as-it-
could-be. Using the view of co-evolution, problem
solving becomes more interesting and creative.

4 CONCLUSIONS

This paper briefly reviewed the nature of problem solving
process. A conventional SGA is found to be useful in
well-defined problems, e.g. optimization. There are other
types of problems that are beyond the limitations of a
SGA, and they can only be solved using the two new
algorithms (ExpGA and CoGA) introduced in this paper.
The paper has also argued that a SGA is only a special
case of the CoGA.

Acknowledgments

I gratefully acknowledge the useful discussion with Mary
Lou Maher and Peter Wu from the Key Centre of Design
Computing of the University of Sydney, Australia.

References

Coello, C. A. 1994. Discrete Optimization of Trusses
using Genetic Algorithms. In Chen, J. G. and Attia, F. G
and Crabtree, D. L. (eds). EXPERSYS-94, Expert Systems
Applications and Artificial Intelligence, I.I.T.T.
International Technology Transfer Series. Pages. 331-336.

Harvey, I. 1992. Species Adaptation Genetic Algorithms:
A basis for a continuing SAGA. In F.J. Varela and P.
Bourgine (eds.). Toward a Practice of Autonomous
Systems: Proceedings of the First European Conference
on Artificial Life, MIT Press/Bradford Books, Cambridge,
MA, 1992, Pages 346-354.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Goldberg, D. E. 1989. Genetic Algorithms: In Search,
Optimization and Machine Learning. Addison-Wesley.

Langley, P. and Simon, H. A. and Bradshaw, G. L. and
Zytkow, J. M. 1987. Scientific Discovery: Computational
Explorations of the Creative Processes. MIT Press.
Langton, C. G. 1992. Preface. In Langton, C. G., Taylor,
C., Farmer, J. D., and Rasmussen, S. (editors). Artificial
Life II, Volume X of SFI Studies in the Sciences of
Complexity, Addison-Wesley, Redwood City, CA. Pages
xiii-xviii.

Logan, B. and Smithers, T. 1993. Creativity and Design
as Exploration. In Gero, J. S. and Maher, M. L (eds.).
Modelling Creativity and Knowledge-Based Creative
Design, Lawrence Erlbaum Associates, Pages 139-175.

Maher, M. L. and Poon, J. and Boulanger, S. 1996.
Formalising Design Exploration as Co-evolution: A
Combined Gene Approach. In Gero, J. S. (ed.). Advances
in Formal Design Methods for CAD, Chapman and Hall,
London. Pages 1-28.

Maher, M. L. and Wu, P. 1998. Fitness and Convergence
in Coevolutionary Design. Proceedings of the AI’98,
Australia.

Mendelson, B. 1963. Introduction to Topology. Blackie &
Son Limited.

Simon, H. A. 1981. The Sciences of the Artificial, 2 edn,
MIT Press.

