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Abstract

This paper develops a macro-level theory of
e�cient time utilization for genetic and evo-
lutionary algorithms. Building on popula-
tion sizing results that estimate the criti-
cal relationship between solution quality and
time, the paper considers the tradeo� be-
tween large populations that converge in a
single convergence epoch and smaller popu-
lations with multiple epochs. Two models
suggest a link between the salience structure
of a problem and the appropriate population-
time con�guration for best e�ciency.

1 INTRODUCTION

Great strides have been made in our understanding
and design of a variety of diversity prolonging or reju-
venating operators in genetic-evolutionary algorithms
(GEAs). Such diverse mechanisms as adaptive and
self-adaptive mutation operators (B�ack & Schwefel,
1995), dominance and diploidy (Goldberg & Smith,
1987), and even linkage learning (Harik & Goldberg,
1997; Harik, 1997) have been used to prolong or re-
juvenate diversity in the face of continued selection
and the vagaries of genetic drift. Despite this appar-
ent progress at the micro- or operator-design level of
detail, less has been said regarding the need for such
mechanisms at the macro-level of solution quality and
speed.

This paper takes a number of steps in the direction
of remedying this situation. Speci�cally, the paper
derives two idealized macro-models of the interaction
between run duration, population size, and solution
quality and then uses those models to investigate the
most e�cient con�guration of a GEA in time. Al-
though idealized, the modeling does consider real-life

di�culties such as the cost of rework when diversity
rejuvenating operators mistakenly diversify genes that
have converged correctly. Together, the modeling and
its application help explain the important role of diver-
sity prolongation and rejuvenation operators in contin-
uing the search in time.

There can be a variety of reasons why runs must be
continued. Perhaps most commonly, continuation is
necessary because salient building blocks attract the
greatest attention early on, and badly scaled build-
ing blocks then must be preserved or resurrected if
they are to be properly searched subsequently in the
run. In other kinds of problems, certain allele com-
binations cannot be properly determined until others
have converged to their proper value (van Nimwegen &
Crutch�eld, in press). In either case, there is an essen-
tial dimension of serial search that must be followed,
and this raises the need for operators that continue the
run in time.

At one level, this continuation hypothesis should help
us understand how to con�gure GEAs to solve prob-
lems to a given level of accuracy most quickly. At
another level, I believe it will help us redraw the bat-
tle lines between proponents of recombination on the
one hand and mutation on the other. Viewed from the
perspective of continuation, the issue is not recombi-
nation versus mutation, but instead how to combine
the two to best bene�t the overall GEA.

We start by examining the fundamental tradeo� be-
tween population size and and run duration. We con-
tinue by reviewing the building-block theory neces-
sary for building the continuation models. We then
construct two continuation models, one appropriate
for problems with building blocks of uniform salience,
and one appropriate for building blocks of decreasing
salience. We then look at some supporting evidence in
the literature, and conclude with a number of contin-
uations and extensions of the work.
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Figure 1: A run with a large population size nbig ter-
minates in a single epoch with an accurate solution
.

2 THE FUNDAMENTAL

TRADEOFF

This section explores the fundamental tradeo� that
often exists in GEA runs. Consider the situation de-
picted in �gure 1. There, a population has been sized
large enough (n = nbig) such that the desired solu-
tion quality (solution accuracy and reliability) is ob-
tained. More will be said on how to do such sizing
in a moment, but for now su�ce it to say that large,
complex problems, with badly scaled building blocks
need larger populations than smaller, simpler, more
uniformly scaled problems. At the end of the run of
�gure 1, a total number of function evaluations

T = nbig � gbig (1)

will have been performed. Here, T is the total num-
ber of function evaluations, and gbig is the number of
generations to completion of the run.

Contrast this situation to that depicted in �gure 2,
where a smaller population has been chosen. Here, we
start by assuming that the GEA is run to substan-
tial convergence under the action of selection and a
mixing operator such as crossover. At the end of this
�rst convergence epoch, the use of a smaller population
compared to that of �gure 1 leaves us with a poorer
quality solution. But the comparison is not fair, be-
cause the use of a smaller population means that we
have not expended the same number of function eval-
uations as in the nbig case. This opens the door to the
possibility of applying a diversity rejuvenating or what
I shall call a continuation operator to preserve or pro-
vide appropriate diversity to permit the search to go
on. Here, we imagine this procedure continuing epoch

size
n

population

number of generations

Epoch 3

g

g

smalln

small

Epoch 1 Epoch 2

Figure 2: A run with a small population size may
run a larger number of epochs and consume the same
amount of time as the large population situation de-
picted in �gure 1
.

by epoch, until such time as the number of function
evaluations is the same as in �gure 1. This condition
will occur when

T = e � nsmall � gsmall (2)

Here e is the number of epochs of population size
nsmall and length gsmall used in the run.

Having constructed two situations, each with a com-
mon number of function evaluations (and thus requir-
ing approximately the same amount of clock time on
a serial computer), we might then ask, which of the
two situations is superior in generating a solution with
higher quality? The answer is \it depends," and a
large portion of the remainder of the paper is devoted
to giving a rational, quantitative answer to this impor-
tant question. It should be pointed out that this trade-
o� between large and small population n values has
been understood since the early days of rational popu-
lation sizing (Goldberg, Deb, & Clark, 1992; Goldberg
& Rudnick, 1991) and indeed a number of operators
that qualify as e�ective continuation operators have
been developed, although that term has not been used
before|except in my talks over the last two years|
nor has their function been viewed through this lens.

We will take up the challenge of modeling continuation
in time in a moment, but �rst we consider the charac-
teristics of the perfect operator for continuation.



2.1 IDEALIZED CONTINUATION

OPERATOR

Suppose we could construct the perfect operator for
continuing a run|an idealized continuation operator

(ICO). How should it behave? Again assuming that
selection plus mixing operates in isolation and to sub-
stantial convergence, we might imagine that an ICO
would then do three things:

1. Leave correctly converged alleles (those that agree
with an optimal or target solution) alone.

2. Substantially perturb improperly converged alle-
les.

3. Achieve conditions (1) and (2) without additional
cost to the solution process.

Of course, an ICO is idealized precisely because it is
not possible to do these three things exactly, but we
can measure the quality of a continuation operator by
how closely it achieves the ideal. Moreover, we can
start our analyses of continuation from the viewpoint
of an ICO and then modify that analysis to re
ect
some cost associated with trying to do items (1) and
(2).

2.2 CONTINUATION ERRORS AND

THEIR COST

Thinking about the perfect continuation operator im-
mediately begs us to think about the ways in which a
real continuation operator (RCO) might go wrong and
apparently there are at least two:

1. Type I error: Perturb a good allele.

2. Type II error: Leave a bad allele alone.

GEAs with background mutation rates are unlikely to
make type II errors permanently, and here we focus
on the type I error. Adaptive mutation operators and
expression-abeyance operators can learn to mutate the
right alleles at appropriate rates, but there is still the
issue of the length of time that it takes to stop per-
turbing good stu�. Moreover, if background mutation
is employed as assumed above, there will always be
some non-zero (albeit small) probability of revisiting
properly converged alleles.

Both of these e�ects lead us to consider the cost of re-
work, whereby alleles that have been properly decided
must be revisited and decided again. Such costs are
especially pernicious in cases where a salient build-
ing block or allele is perturbed. More will be said

about this in a moment, but a building block with
high marginal value to the solution will generate a sig-
ni�cant amount of �tness variance upon perturbation.
This variation makes it more di�cult to detect and de-
cide upon the correct values for less salient alleles, and
often the continuation of the solution must wait until
the type I error is corrected. Such an e�ect places a
premium on perturbing or preserving diversity among
only those alleles that have not yet been decided cor-
rectly.

With these ideas under our belts, we brie
y review
some of the theory necessary to perform �rst analyses
of continuation economics and quality.

3 BUILDING BLOCK THEORY

NEEDED HEREIN

Our theory needs are straightforward and have been
available for some time. First, we need to estimate the
relationship between solution quality and population
size at the completion of a single epoch of a compe-
tent genetic algorithm. Second, we need to estimate
the length of time to achieve such solutions. We start
by examining the notion of a competent genetic al-
gorithm, continue by considering rational population
sizing, and continue by considering recent estimates of
run duration.

3.1 COMPETENT GAs

Elsewhere (Goldberg, 1993), I have de�ned competent
genetic algorithms as those that solve hard problems,
quickly, reliably, and accurately. The ideal of compe-
tence has been approached in practice by a number of
procedures, including the fast messy genetic algorithm
(Goldberg, Deb, Kargupta, & Harik, 1993), the gene
expression messy genetic algorithm (Kargupta, 1996),
the linkage learning genetic algorithm (Harik, 1997;
Harik & Goldberg, 1997), and the Bayesian optimiza-
tion algorithm (BOA) (Pelikan, Goldberg, & Cant�u-
Paz, 1999). In experimental studies, competent GAs
can be modeled e�ectively by using one- or two-point
crossover operators on codings where tight linkage has
been prespeci�ed (Goldberg, Deb, & Clark, 1992). In
theoretical studies, the assumption of competence im-
plies that the primary determinant of solution qual-
ity is adequate statistical decision making and thus
population size, because the other conditions (build-
ing block growth, supply, mixing, and di�culty) are
properly accounted.



3.2 RATIONAL POPULATION SIZING

Rational signal-to-noise population sizing was sug-
gested in 1991 (Goldberg & Rudnick, 1991), tested
in 1992 (Goldberg, Deb, & Clark, 1992), and re�ned
in 1996 (Harik, Cantu-Paz, Goldberg, & Miller, 1996).
The idea derives from Holland's idealization (Holland,
1973) of the decision making in genetic algorithms as
multiple quasi-independent k-armed bandit problems.
Although the k-armed bandit has undergone its share
of criticism, the idea is profound and suggests that
all decision-making in complex problems|even deter-
ministic problems|is statistical in nature, because (1)
hard problems force one to decompose, and (2) that
decomposition means that one building block's exper-
imentation is another building block's statistical vari-
ation or noise.

Here, we rely on recent work tying the solution of the
GR problem to BB-wise decision making. Details of
that work are available elsewhere (Harik, Cantu-Paz,
Goldberg, & Miller, 1996). For our purposes we rec-
ognize that appropriate population sizing can be given
approximately by an equation of the following form:

n = �c�
d

p
m ln�; (3)

where c depends on the complexity of the problem
(constant for problems of given di�culty), � is the
probability of not meeting criterion, � is the root-
mean-squared (RMS) building-block �tness variation,
and d is the �tness accuracy or signal desired in the
�nal solution. This equation will be used in two dif-
ferent ways in what follows.

3.3 RUN DURATION ESTIMATES

The other item we need in our calculations is run
or epoch duration. An early study of takeover time
can be used to estimate run durations of O(` logn)
and convergence studies based on selection-intensity
methods borrowed from quantitative genetics estimate
durations of O(`1=2) (M�uhlenbein, 1992; Thierens &
Goldberg, 1994) for problems with nearly uniformly
scaled building blocks and of O(`) for those with large
variations in building block salience (Goldberg, 1997;
Thierens, Goldberg, & Pereira, 1998). Since the dura-
tion is primarily determined by the size of the problem
`, for a given problem we consider epoch duration to
be essentially constant as the population size varies.

With these three items as background, we now build
and use two models of the economy of continuation
in GEAs: a model of problems where building blocks
are uniformly scaled and a model of problems where
building blocks are badly (exponentially) scaled.

4 ECONOMY OF CONTINUATION,

CASE I: UNIFORM SCALING

This section considers a problem where all building
blocks are equally salient; that is, the proper solution
of each building block results in an equal increment of
�tness compared to that of any other. Additionally,
we assume that the problem may not be solved easily
by simple mutative GEAs or hillclimbers alone. Else-
where (Goldberg, 1991), I have attempted to delineate
between problems that are easy for simple hillclimbers
and those that are not; we do not revisit those theo-
ries here. We do, however, recognize that any empiri-
cal test of these theories must be carried out with test
functions that meet this assumption. More will be said
about this later, but here we turn to the assemblage
of our model.

4.1 ECONOMY BOTH IDEAL AND REAL

Under the assumption of discrete mixing epochs and
an ICO, we may write the relationship between the
number of function evaluations T , population size n,
number of generations g, and epoch count e as follows:

T = egn (4)

This equation assumes that there is no rework or other
cost in transition from epoch to epoch. Moving from
an idealized continuation operator to a real one, we
consider the cost of rework as follows:

T = e[gn+ r]; (5)

where r is the average rework in terms of numbers of
function evaluations per epoch.

4.2 QUALITY AND POPULATION SIZE

These equations account properly for the economy of
continuation in the idealized and real cases, but the
solution quality must be evaluated by considering the
population size, and we must make some assumption
regarding the epoch duration. As discussed earlier,
we will assume a constant number of generations per
epoch (what we shall call g0) irrespective of the varia-
tion in population size. Turning to the probability of
not meeting criterion|what we shall call the proba-
bilistic error or simply error|we appeal to the popu-
lation sizing (equation 3) and write

� ln�1 =
n

n0
; (6)

where �1 is the error in the �rst epoch, and n0 is a con-
stant that depends on problem size, di�culty, signal-
to-noise ratio, and building block chunk size (all of



which are constant given a particular, �xed problem).
Raising e to the indicated power on both sides of the
equation yields

�1 = exp(�n=n0) (7)

Under reasonable assumptions this leads to an inter-
esting solution in the case of an idealized continuation
operator.

4.3 SOLUTION FOR AN ICO

Imagine that the population from epoch to epoch is
held constant and that an ICO is used to perturb
only those variables that have been incorrectly solved.
Thus, in the second epoch, we should expect that
the error on the remaining improperly solved variables
(call it the marginal error �02) should be less than or
equal to that in the initial epoch: �02 � �1. More gen-
erally, the marginal error of the ith generation should
be less than the error of the initial generation.

�0i � �1; i > 1 (8)

Under conditions of ideal continuation then, we should
expect the actual error in the eth epoch to go as the
product of the actual marginal errors:

�e =

eY
i=1

�0i (9)

The exact solution of equation 9 is quite di�cult and
unnecessary for our purposes. The inequality of equa-
tion 8 allows us to bound the accumulated error of
epoch e as

�e � �e1 (10)

In the case of an idealized continuation operator, we
may rewrite equation 4 as e = T=(g0n) and we may
then rewrite the inequality 10 as follows:

�e � [exp(�n=n0)]T=(g0n) (11)

The expression [exp(�n=n0)]T=(g0n) may be reduced
to exp(�T=(g0n0)). Thus, we have shown that under
idealized continuation the probability of solution error
is less than a constant function of population size.

If we assume for the moment that marginal epoch er-
ror is equal to initial error (the uniform epoch error
assumption), we note that genetic and evolutionary
algorithms employing an ICO are indi�erent to the
epoch-size tradeo�: a single implicitly parallel solu-
tion costs the same as a solution solved building block
by building block.

Next, we consider what happens if we hold the uni-
form epoch error assumption in place, but introduce
the rework of a real continuation operator.

4.4 SOLUTION FOR AN RCO

If we permit the more realistic conditions of an RCO,
we may express the number of epochs using equation 5
as e = T=(ng0 + r). and the accumulated error may
be calculated as previously as

�e = exp

� �T=n0
g0 + r=n

�
; (12)

where the equality replaces the inequality under the
uniform epoch error assumption. Inspection of the
equation is enlightening. Assuming a �xed amount
of time T and the ability to vary the population size
n with all other values (including the rework) held as
speci�ed constants, minimization of the error suggests
that the right thing to do is to choose as large a popu-
lation size as possible. Indeed a small value of n causes
the term r=n to be large, which makes the overall ar-
gument to the function exp a relatively small negative
number, which makes the error relatively large. In
practice we don't want to increase the population size
so much as to not complete the run, and this condi-
tion leads to a solution in a single epoch (e = 1) with
n = T=g0.

Thus, under uniform scaling of the building blocks|
under conditions of uniform salience|and the assump-
tion of uniform epochal error, the economic solution is
to solve the problem in a single epoch. This analysis
places an economic face on the terms implicit paral-
lelism for the �rst time. Although it may be argued,
that the assumption of uniform epochal error is overly
conservative, in real GEAs, the perturbation of RCOs
will inevitably lead to the perturbation of building
blocks with high marginal �tness, which in turn will
lead to a need for large population sizes to promote
e�ective continuation. More study of this tradeo� is
warranted, but the analysis here is consonant with
current knowledge about real GEAs. Moreover, the
real need is to inquire about the economy of large ver-
sus small populations when the problem has a severely
non-uniform salience distribution, a matter to be taken
up in the next section.

5 ECONOMY OF CONTINUATION,

CASE II: EXPONENTIAL

SCALING

The straightforward calculation of the last section ap-
pears to suggest that continuation is a loser in prob-
lems of uniform or near-uniform salience. Here we
modify the analysis to permit straightforward evalu-
ation of the economy-quality tradeo� of continuation



when building blocks are non-uniform in their contri-
bution to the solution.

The economy equations (4 and 5) serve us well as be-
fore, but we need to take a somewhat di�erent ap-
proach to assessing solution quality.

As before, we recognize that ln�1 = �n=n0, but here
instead we de�ne the coe�cient n0 for a problem with
unit signal d0 = 1, unit building-block RMS �tness
variance �0 = 1, and a single building block m0 =
1. Thus, in a problem where � BBs are tackled in a
given epoch with varying signals, the population sizing
relationship may be written as

n = �n0
p
�

d
ln�1: (13)

As distinct from the uniform analysis, we set a con-
stant reliability (and error) with c0 = � ln�1. Letting
n0 = c0n0 yields

n = n0
p
�

d
(14)

Thus, the population size required goes up as the
square root of the number of BBs solved and inversely
with the signal of the least salient BB among the can-
didate set.

5.1 SCALING RELATIONSHIPS

We now turn to the importance of the relative scaling
of di�erent building blocks. We assume that the sig-
nal d is a non-increasing function of the parameter �.
In words, � is an index of variables or building blocks
from high salience to low salience. This parameteriza-
tion proved useful in a selection intensity solution of an
exponentially scaled problem �rst presented elsewhere
(Goldberg, 1997) and recently published in Thierens,
Goldberg, & Pereira (1998).

5.2 EXPONENTIAL SCALING

We will generalize the result in a moment, but we start
with an assumed exponentially decreasing BB signal

d = 21�� (15)

The bounding importance of the exponential case was
recognized in Rudnick's (1992) and Thieren's (1995)
theses, because when ordinal selection schemes are
used it is the dividing line between problems where
low salience building blocks can or cannot overpower
a higher salience building block.

Substituting the signal relationship into the popula-
tion equation 14, we obtain a relationship between

population and salience rank as follows:

n = n0
p
�2��1 (16)

Substituting into the ICO economy equation (4) and
rearranging in terms of the number of epochs.

e =
T

n0g02��1
p
�

(17)

If we now think of applying the equation iteratively
under an ICO, the population size required in the next
generation to correctly solve another � BBs is the same
as in the previous epoch (with appropriate rescaling).
Thus, at the end of the run, the number of correctly
solved building blocks will be the number per epoch
(�) times the number of epochs. Calling this quantity
the quality Q yields

Q = e� (18)

=
2T

n0g0

�

2�
p
�

(19)

= c0f(�) (20)

Ignoring the constant and recognizing that the func-
tion of � decreases with increasing �, the economic
way to maximize quality in a badly scaled problem is
to solve building block by building block.

This is remarkable, and is exactly the opposite of our
conclusion under the uniformly salient building blocks.
There, our reasoning suggested that a single implicitly
parallel epoch was the way to go, whereas here, bad
building block scaling makes it uneconomic to solve
more than a single building block at a time. Clearly,
there must be a dividing line between these two qual-
itatively di�erent types of behavior. A matter that
becomes clearer if we inspect the function of � in the
quality equation.

5.3 NEUTRAL SCALING

Noting that in the previous solution f(�) =
p
�

2�
and

recognizing that the term 2� comes inversely from
d(�), we might enquire as to what kind of function
would make the quality function f indi�erent to vari-
ations in �. The dividing line occurs when d = c��1=2:
a function with salience that decreases in proportion
to the inverse of the square root of the salience index.

Because of the fairly large number of assumptions
made herein, we should not expect this prediction
to be particularly crisp. Nonetheless, it should act
as a rough guide to economics and quality inter-
relationships in real GEAs, and the next section sug-
gests such study.



6 WHAT EVIDENCE AND WHAT'S

NEXT?

This paper is largely a theoretical contribution, but we
brie
y cite a number of pieces of evidence to suggest
that the theory is at least qualitatively correct and
outline a research program to test the theories more
rigorously.

6.1 4 PIECES OF EVIDENCE

There are at least four pieces of evidence to support
the theories herein:

1. Results on uniformly scaled order-k trap functions
with a 1+1 ES (M�uhlenbein, 1992) come more
slowly than with a competent GA on the same
problems (Goldberg, Deb, Kargupta, & Harik,
1993).

2. Empirically, micro-GAs are often successful in
real problems (KrishnaKumar, 1989).

3. Adaptive and self-adaptive ESs are preferred to
�xed ESs, and adaptive and self-adaptive ESs
with recombination are preferred to their coun-
terparts without (B�ack & Schwefel, 1995).

4. The linkage learning GA can more easily solve
badly scaled problems than uniformly scaled ones
(Harik, 1997)

These items deserve additional discussion, and an ex-
panded paper will do just that at a later date. At this
time, interested readers should consult the relevant lit-
erature, and consider the proposed experimental pro-
gram outlined below.

6.2 AN EXPERIMENTAL PROGRAM

The models of this paper make a number of predic-
tions that can be con�rmed through careful experi-
ments. Experiments are being designed with the fol-
lowing constraints in mind.

� The theory assumes the operation of competent
mixing and continuation.

� Problems that may be solved bitwise or with con-
tinuation (selection and mutation) alone will not
demonstrate the utility of mixing.

� Poorly designed mixing operators will not demon-
strate the utility of mixing.

� Poorly designed continuation operators will not
demonstrate the utility of continuation.

Competent mixing operators can be approximated
with tight linkage and low-order or tailored crossing
operators, and an ICO can be modeled by using prob-
lem knowledge and always mutating improperly con-
verged alleles at relatively high rates.

7 CONCLUSIONS

This paper has considered the economy of continua-
tion and has attempted to draw a sharper line between
those problems in which substantial implicit paral-
lelism should be undertaken and those where a more
serial mode of processing should be adopted. The di-
viding line and launch point for the discussion largely
comes from thinking of the decision making in GEAs
as largely being statistical in nature and this helps us
to make some rational distinctions between implicitly
parallel versus serial processing.

An economic role for e�ective mixing has been out-
lined and likewise a role for e�ective continuation has
been suggested. Some limited empirical evidence has
been cited for the theory qualitatively, and more sys-
tematic experiment is clearly needed and has been
outlined. But if the predictions of the paper hold
up, the great debate between crossover and mutation
may soon be replaced with a new respect for each
of their important|and economic|roles in obtaining
high quality solutions to the array of problems before
us.
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