
Function Induction, Gene Expression, And Evolutionary
Representation Construction

Hillol Kargupta

School of Electrical Engineering and Computer Science
Washington State University

Pullman, WA 99164

Kakali Sarkar

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

Abstract

Di�erent portions of the DNA, the pri-
mary information career of a living or-
ganism, are evaluated in di�erent cells
through the process of gene expression
(DNA!mRNA!Protein). Such distributed
evaluation of the �tness is possible only
when its distributed representation using a
set of basis functions is available in a liv-
ing body. This paper argues that unless the
evolution was provided with such a repre-
sentation, we have every reason to believe
that there must be an e�cient mechanism to
construct such a distributed representation.
This paper considers functionally complete
Walsh basis functions and shows that e�cient
polynomial-time computation of the Walsh
representation (WR) is possible for problems
with bounded non-linearity. It also o�ers
a highly e�cient algorithm O(2kr) to com-
pute the WR for problems with non-negative
Walsh coe�cients, where r is the total num-
ber of non-zero terms in its WR.

1 INTRODUCTION

The last �fty years of this century witnessed the grad-
ual development of di�erent search algorithms that use
motivations from natural evolution. The Genetic al-
gorithms (GAs) [7], evolutionstrategie [17], evolution-
ary programming [3], and genetic programming [11]
are some examples that found many successful appli-
cations in search, optimization, and machine learn-
ing. Despite all the success stories of these di�er-
ent approaches and half-a-century of research, there
still remain many unanswered questions. Scalability
of the evolutionary search for adaptive organisms is
one among those many mysteries. The fundamental

mechanism behind the relatively quick evolution (only
about a couple of billions of years compared to the
huge evolutionary search space)[8] of amazing forms
of life is yet to be explained in the light of what we
know about the theory of learning, adaptation, and
optimization.

This paper takes a modest step in unraveling this mys-
tery. It explores evolutionary search in the light of our
existing understanding about inductive construction
of functions from data, in short, function induction.
It argues that the distributed evaluation of the �t-
ness of a DNA through the gene expression (the trans-
formation of DNA to Protein through the formation
of mRNA) demands the existence of a scalable, e�-
cient evolutionary mechanism for inducing functions
in a distributed representation. Moreover, it demon-
strates the feasibility of this argument by identifying a
polynomial time algorithm to do so for problems with
bounded non-linearity using Walsh analysis.

Section 2 discusses the role of function induction in
learning, adaptation, and optimization. Section 3 dis-
cusses the distributed �tness evaluation through the
gene expression process and argues the need for an ef-
�cient function induction mechanism in our model of
evolutionary computation. Section 4 brie
y overviews
the Walsh basis representation. Section 5 suggests a
possible evolutionary mechanism to compute Walsh
representation in polynomial time. Section 6 o�ers a
very e�cient algorithm for computing the Walsh rep-
resentation for functions with non-negative Walsh co-
e�cients. Section 7 concludes this paper.

2 FUNCTION INDUCTION IN

LEARNING, ADAPTATION, AND

OPTIMIZATION

Function induction plays an important role in machine
learning, adaptation, and non-enumerative black-box

optimization. In function induction the goal is to learn
a function f̂ : Xn ! Y from the data set
 = f(x(1);
y(1)); (x(2);y(2)); � � � (x(k);y(k))g generated by under-

lying function f : Xn ! Y , such that the f̂ approxi-
mates f . Any member of the domain x = x1; x2; � � �x`
is an `-tuple and xj -s correspond to individual feature
variables of the domain.

Empirical machine learning [14] is directly based on
the function induction. Given a set of observed behav-
iors, the goal of empirical machine learning is to learn
a function that closely approximates those behaviors,
which is essentially the function induction problem it-
self when the behavior is viewed as a function from the
domain of di�erent situations.

Function induction also plays a critical role in nat-
ural and arti�cial adaptation. The word adaptation
literally means \to �t to" (ad + aptare). However,
in general we call a system adaptive when it can
exhibit appropriate behavioral dynamics in response
to changes in an uncertain environment. Inductive
function learning has a close relation with adapta-
tion [7]. Adaptation in uncertain environments typi-
cally requires learning probabilistic behavior, learning
to predict uncertain future, learning strategies to out-
smart competitors, learning to co-operate, and others.
All these learning problems typically involve empirical
function induction from observed data.

Optimization in the absence of su�cient prior do-
main knowledge to guide search directions is often
called black-box optimization (BBO). Typical BBO
algorithms like evolutionary algorithms, simulated an-
nealing [10] sample the search space and make induc-
tive decisions in order to explore the promising parts
of the search space. The inductive decisions are fun-
damentally based on function induction. Here again,
the optimization algorithm needs to guess intelligently
about the landscape in either a local or a global sense
from the samples taken from the search domain. This
requires function induction. Clearly, the success of in-
ductive BBO fundamentally depends on the success of
function induction.

Learning a function from data is indeed a common
problem in many other domains like data mining, soft-
ware engineering, pattern recognition, signal process-
ing. Like all these problem domains, the emergence of
adaptive living organisms through evolutionary search
critically depends on function induction. Natural evo-
lution can be viewed as a search for evolving systems
that can adapt and survive the competition of natu-
ral selection. If this perspective is correct then the
living organisms must have an e�cient mechanism to
learn functions from observed data. Indeed, there ex-

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

5’

3’

3’

5’

Start site for transcription

5’

3’

3’

5’

DNA chain opening
and Initiation of RNA

Chain

RNA chain elongation

in 5’ - 3’ direction

RNA polymerase

Termination and Release of

Polymerase and complete

RNA chain

3’

5’

3’

5’

Stop Signal for RNA polymerase

RNA strand

Polymerase RNA

5’

3’

Figure 1: Transcription.

ist many facts that corroborate this observation. The
role of neural networks in our brain is now widely rec-
ognized to be an important mechanism for learning
functions from observed data [18]. This paper suggests
that there may be an alternate mechanism for function
induction in the evolutionary operators of living organ-
isms. The following section argues this possibility.

3 FITNESS EVALUATION

THROUGH GENE EXPRESSION

Evaluation of the �tness of an organism in nature is a
fairly interesting process. In order to fully appreciate
this process we need to understand the biology to some
extent. The following discussion tries to accomplish
this.

DNA is the primary carrier of the evolutionary infor-
mation that is transmitted from one generation to an-
other. DNA molecules consist of two long complemen-
tary chains held together by base pairs. DNA consists
of four kinds of bases joined to a sugar-phosphate back-
bone. The four bases in DNA are adenine (A), guanine
(G), thymine (T) and cytosine (C). Chromosomes are
made of DNA double helices. Bases in DNA helices
obey the complementary base pairing rule. T and G

pair with A and C respectively. In other words, if the
base at a particular position of a helix is T then the
corresponding base in the other helix should be A.

Evaluation of the �tness of a DNA takes place through
a process called gene expression. Expression of genetic
information coded in DNA requires construction of the
mRNA sequence, followed by that of proteins. The
main steps are,

� transcription: formation of mRNA (messenger ri-
bonucleic acid) from DNA

� translation: formation of protein from mRNA

� protein folding

In a particular cell, transcription produces the mRNA
from a small portion of the DNA. The mRNA de�nes
another level of representation of the genetic informa-
tion. It consists of four types of bases joined to a
ribose-sugar-phosphodiester backbone. The four bases
are adenine (A), uracil (U), guanine (G), and cytosine

(C). All the bases de�ning the mRNA are same as
those in DNA sequences, except that T is replaced by
U. As in Figure 1, the mRNA is produced from the
DNA by RNA Polymerase and the regulatory proteins
following the complementary base-pairing rules similar
to those in DNA. The RNA Polymerase initiates the
transcription at a place of the DNA marked by the
promoter region (start site). It splits the DNA double
helix and continue generating the mRNA using one of
the DNA strands as a template. The RNA Polymerase
stops when it �nds a termination signal sequence (stop
site)in the DNA strand. Note that only a small por-
tion of the DNA strand is transcribed and di�erent
cells may transcribe di�erent regions of the DNA for
producing proteins.

The mRNA acts as the template for protein synthe-
sis. A protein is de�ned by a sequence of amino acids,
joined by peptide bonds. The mRNA is transported
to the cell cytoplasm for producing protein in the ri-
bosome. There exists a unique set of rules that de�nes
the correspondence between nucleotide triplets (known
as codons) and the amino acids in proteins. This is
known as the genetic code. Each codon is comprised
of three adjacent nucleotides in a DNA chain and it
produces a unique amino acid. Amino acid sequence
de�nes a new representation of the information coded
in mRNA.

The �nal level of representation of genetic information
is de�ned by the three dimensional structure of folded
proteins. Although amino acid sequences fundamen-
tally de�ne proteins, formation of the three dimen-
sional structure of proteins involves a complex process,

often called protein folding. This process involves in-
teraction between multiple amino acid subsequences.

Since proteins play a key role in the performance of
a living organism, we can view the organism's �tness
as a direct function of the di�erent proteins generated
from the DNA. Since di�erent proteins are generated
at di�erent cells from di�erent portions of the DNA,
�tness evaluation in natural gene expression appears to
take place in a distributed fashion. In other words, the
�tness evaluation seems to be decomposed into di�er-
ent sub-function evaluations. Such distributed �tness
evaluation is possible under either of the two following
conditions:

1. the distributed representation of the �tness func-
tion was available to evolutionary mechanism a
priori;

2. the distributed representation of the function is
inductively constructed from the sample DNAs
and their respective �tnesses, observed in nature.

In the following section we shall adopt the latter pos-
sibility and explore it in the context of our basic un-
derstanding about function induction.

4 FUNCTION INDUCTION AND

DISTRIBUTED REPRESEN-

TATION

Any function can be represented in a distributed, de-
composed fashion using an appropriate set of basis
functions. Let � be a set of basis functions. � does
not necessarily have to be �nite. Let us index the basis
functions in � and denote the k-th basis function in �
by 	k. Let I be the set of all such indices of the basis
functions. A function f(x) can be represented as,

f(x) =
X

k2I

wk	k(x) (1)

Where 	k(x) denotes the k-th basis function and wk

denotes the corresponding coe�cient. The objective of
function induction can be viewed as the task to gen-
erate a function, f̂(x) =

P
k2Î ŵk	k(x), that approx-

imates f(x) from a given data set; Î denotes a subset
of I ; ŵk denotes the approximate estimation of the co-
e�cients wk. For a given basis representation, the un-
derlying inductive task can be viewed as the problem
to compute the non-zero, signi�cant (not negligible)
coe�cients, ŵk-s. Let us illustrate this using a sim-
ple example. Consider a function of boolean variables,
x1; x2; and x3. We can write,

f(x1; x2; x3) = w0 + w1	1(x1) + w2	2(x2) +

w3	3(x3) + w4	4(x1x2) +

w5	5(x1x3) + w6	6(x2x3) +

w7	7(x1; x2; x3)

Where, wi-s are constant coe�cients; 	i(:)-s are
monomial basis functions like Walsh functions [1] to
be de�ned later. At this point all we need to note is
that we can write f as a linear sum of a set of basis
functions, weighted by the corresponding basis coef-
�cients. In other words, computation of f(x1; x2; x3)
can be performed by computing di�erent sub-functions
that require only a subset of the feature set x1; x2; x3.
Although computation of 	7(x1; x2; x3) requires infor-
mation about all the three variables, if the value of w7

is close to zero then we can decompose the compu-
tation of f(x1; x2; x3) into di�erent components that
require only partial information about the feature set.

Distributed evaluation of �tness function is possible
only when we have its representation using a set of ba-
sis functions and their corresponding coe�cients. The
distributed �tness evaluation in gene expression is no
exception. The e�cacy of a certain portion of the DNA
depends on the 3-dimensional structure of the protein
it produces; since the shape of proteins depends on dif-
ferent physical factors such as energy, bond properties
and others, the set of basis functions used in nature are
likely to be functions of these physical factors. How-
ever, the exact mathematical structure of these basis
functions is not yet known. Therefore, in the following
discussion we choose to work with Walsh basis func-
tions, since it is functionally complete over the space
of all boolean strings and equivalent to other choices of
basis functions in this space. The following discussion
o�ers a brief overview of Walsh representation.

Walsh functions [1] are orthogonal functions that
found applications in many di�erent �elds such as
signal processing, image analysis, and others. Like
Fourier, Laplace, and other transformations, Walsh
functions are often used to represent the representa-
tion in a convenient form. Application of Walsh trans-
formation (WT) in understanding Genetic Algorithms
was �rst noted by Bethke [2]. Further investigation of
this approach can be found elsewhere [4, 5, 6, 13, 16].
Traditionally, the Walsh functions are used for repre-
senting real valued functions of binary variables. How-
ever, they can be easily extended to higher cardinality
representation, as shown elsewhere [15]. Although the
main arguments of the following discussion can be ex-
tended for higher cardinality representations, in this
paper we shall restrict ourselves to binary variables.

The Walsh basis set is comprised of 2` Walsh functions,

where each basis function is de�ned as follows:

 j(x) = (�1)(x:j) (2)

Where j and x are binary strings of length `. In
other words j = j1; j2; � � � j`, x = x1; x2; � � �x` and
j;x 2 f0; 1g`. j(x) can either be 1 or -1. The string
j is called a partition. The order of partition j is the
number of 1-s in j. Since a Walsh function depends on
some xi only when ji = 1. Therefore a partition can
also be viewed as a representation of a certain subset
of xi-s; every unique partition corresponds to a unique
subset of xi-s. If a partition j has exactly � number
of 1-s then we say partition is of order � since the cor-
responding Walsh function is a function of only those
variables corresponding to the 1-s in the partition j.
A function f(x) can be written using the Walsh basis
functions as follows:

f(x) =
X

j

wj j(x) (3)

where wj is the Walsh Coe�cient (WC) corresponding
to the partition j as de�ned in the following,

wj =
1

2`

X

x

f(x) j(x) (4)

We note from Equation 3 that a function can be ex-
pressed as a linear sum of the Walsh functions, each
weighted by the corresponding Walsh coe�cients. The
Walsh coe�cient wj can be viewed as the relative con-
tribution of the partition j to the function value of
f(x). Therefore, the absolute value of wj can be used
as the \signi�cance" of the corresponding partition j.

Partitions with non-zero Walsh coe�cients re
ect
the underlying non-linearity of the given problem.
For example, consider a function f(x1; x2; x3; x4) =
f1(x1; x2) + f2(x3; x4). In the Walsh representation
the values of w1111, w1110 and any such other Walsh
coe�cient corresponding to partitions involving a pair
of variables, one each from the two linearly decompos-
able partitions, are zero. Walsh functions can be used
for representing any functions of boolean variables. If
a function has non-linearity then its Walsh represen-
tation will re
ect that and the function can be evalu-
ated by computing the Walsh functions corresponding
to the non-zero Walsh coe�cients. If every variable in
a function non-linearly interacts with every other vari-
able then in the general case the Walsh representation
will have all the 2` terms. On the other hand if at most
some k variables non-linearly interact with each other,
all the Walsh coe�cients corresponding to partitions
with more than k number of 1-s will be zero. This
class of problems will be called problems with order-k

non-linearity. Detection of such non-linearity among
the genes is traditionally called linkage learning in the
genetic algorithms literature. A perspective of linkage
learning using Walsh representation has been proposed
elsewhere [9, 19].

If the distributed �tness evaluation of the DNA
through gene expression is a result of evolutionary
search, then evolution must have a mechanism for con-
structing such a distributed representation of the �t-
ness function. Walsh basis functions o�er one way to
decompose and distribute the �tness evaluation. How-
ever, construction of such a representation in a rela-
tively small period of time (in the evolutionary scale)
is unlikely to happen unless it is fundamentally pos-
sible to do so in rigorous computational ground. The
following section investigates the issue of polynomial
time computation of Walsh representation and o�ers
algorithms for that.

5 POLYNOMIAL-TIME EVOLU-

TIONARY REPRESENTATION

CONSTRUCTION

As we saw in the previous section (Equation 4) com-
putation of a single Walsh Coe�cient requires infor-
mation about all the 2` domain members. Clearly this
cannot be done in time, polynomial in `. In order to
make the problem tractable we are going to assume
that the problem has bounded non-linearity of order-
k. This is a reasonable assumption for many practical
domains. This results in a sparse Walsh representa-
tion. In general, function induction is fundamentally
di�cult if the orthonormal representation is not sparse
[12]. Even if the problem has bounded non-linearity,
explicit computation of WCs using Equation 4 requires
exponential time. Another possibility is to generate
m =

Pk

z=0

�
`
z

�
di�erent members from the domain

and solve a large (m �m) linear system of equations
in order to compute the m possibly non-zero terms in
the Walsh representation. Although it is theoretically
possible in polynomial time, it is not clear how and
if at all the evolutionary search is equipped with any
mechanism to do it this way. In the following discus-
sion we explore an alternate way to compute individ-
ual WCs in an e�cient and distributed manner that
appears to �t naturally into the realm of population
based evolutionary computation.

From Equation 3 we can write,

f(x) i(x) =
X

j

wj j(x) i(x)

Let i be a partition and S(i) be the set of all strings

that satis�es the following conditions: (1) every mem-
ber of S(i) has same values at all positions where there
is a 0 in i and (2) the substring de�ned by the positions
corresponding to 1-s in i is unique in every member of
S(i). Let us denote the invariant values at the po-
sitions, corresponding to 0-s in i by T and call it the
template. For example, if i = 001100 then one possible
choice of S may be f000000; 001000; 000100; 001100g.
jS(i)j is the size of the set S(i) and jS(i)j = 2k when
the partition i is of order-k. In this the template
T = 00 00. Since there exists di�erent such S(i)-s
depending on the choice of T, we may choose to use
the symbol ST(i) to denote the set S(i) with respect
to certain template T, wherever needed. Now we can
write,

X

x2ST(i)

f(x) i(x) =
X

j

wj

X

x2ST(i)

 j(x) i(x)

=
X

j2J(i)

wj

X

x2ST(i)

 j�i(x)

Where J(i) denotes the set of all partitions that com-
pletely subsumes partition i. In other words, every
partition in J(i) must have a 1 at every location where
there is a 1 in i. j� i denotes the partition de�ned by
the boolean XOR between j and i. Now let us rewrite
the above equation in the following form.

jST(i)jwi +
X

j2J0(i)

wj

X

x2ST(i)

 j�i(x)

=
X

x2ST(i)

f(x) i(x) (5)

Where J 0(i) is J(i), excluding the partition i. Since we
can choose any invariant set of values for the template,
let us consider a special case where all the required
values of the template are set to 0. Let us denote
the ST(i) corresponding to this special case template
T = 0 by S0(i). Note that the example that we gave
earlier follows this case. Equation 5 can be specialized
for this case as follows.

X

j2J(i)

wj =
1

jS0(i)j

X

x2S0(i)

f(x) i(x) (6)

Note that we included the �rst term of Equation 5 in-
side the summation and therefore replaced J 0 by J .
Equation 6 can be used to e�ciently detect the signif-
icant Walsh coe�cients of the function with bounded
non-linearity. Recall that for functions with at most k
variables non-linearly interacting with each other, all
the WCs corresponding to partitions with more than
k 1-s will be zero. Therefore, for all partitions i with
more than k number of 1-s, J 0(i) will be a null set.

For any partition with the order equal or more to k,
we can write,

wi =
1

jS0(i)j

X

x2S0(i)

f(x) i(x) (7)

Note that the computation of wi requires only 2
k eval-

uations of f(x). The bounded non-linearity property
can therefore be exploited to compute the WCs using
only a small number of evaluations (2k) compared to
the usual 2` evaluations needed using the regular ap-
proach. Once we compute all the k-th order non-zero
WCs using Equation 7, lower order coe�cients can be
computed using the known higher order coe�cients
and Equation 5. The main algorithmic steps of this
technique can be summarized as,

1. select k � `, some constant that bounds the high-
est order non-linearity of the given problem;

2. compute the order-k WCs using Equation 7;

3. use Equation 5 and the already evaluated order-
k WCs in order to compute order-(k � 1) WCs;
continue this process iteratively for (k � 1); (k �
2); � � � 1-order WCs; note that no additional func-
tion evaluation is needed after the order-k WCs
are computed.

This technique can �nd all the non-zeroWCs of a prob-
lem with order-k non-linearity in polynomial time us-
ing 2k

�
`
k

�
function evaluations. The computation of

individual WCs simply requires computing the aver-
age of 2k �tness values and a few addition and sub-
traction. It is also fairly distributed and it does not
require solving a large system of linear equations. This
technique can be made further e�cient when the WCs
are all non-negative. The following section discusses
this.

6 SPECIAL CASE: FUNCTIONS

WITH NON-NEGATIVE WALSH

COEFFICIENTS

The Walsh representation construction can be made
further e�cient when all the WCs are non-negative.
Consider Equation 6. Note that when the right hand
side of Equation 6 is zero and the WCs are all non-
negative, we can conclude that all the WCs in J(i)
must be individually equal to zero. Therefore Equa-
tion 6 can be used to determine whether there exists
any partition with non-zero WCs that completely sub-
sumes a given partition i or not. Figure 2 illustrates

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1011 1101 0111

1111

Figure 2: E�cient detection of non-negative Walsh
Coe�cients.

this approach. It shows the lattice of all sixteen par-
titions for a four-bit problem. Let us say, we have a
function for which only the partitions, encircled with
solid lines, have non-zero WCs. The proposed algo-
rithm �rst computes the right hand side of Equation
6 for all nodes for order-1 partitions. For this prob-
lem at each of these nodes the test will result in non-
zero value, indicating that the partition is subsumed
by some partitions with non-zero WC. Next we move
to the third level from top in Figure 2. Since all the
order-2 partitions subsume some set of order-1 parti-
tions and all the order-1 partitions returned non-zero
value for our test, we need to apply our test at every
node corresponding to the order-2 partitions. Our test
will return non-zero values only for 1100, 1001, and
0101. Next we consider every unique order-3 partition
that subsumes at least one of the partitions 1100, 1001,
and 0101 but do not subsume any of the partitions
1010, 0110, and 0011. There is only one such partition
and that is 1101. We again apply our test at this node
and observe that test returns a zero value. Next we
backtrack to the order-2 partition level and note that
the outcomes of the tests that we performed earlier at
each of these nodes are essentially the WC of the cor-
responding node since the coe�cient of the partition
1101 is zero. Similarly, we continue to backtrack and
compute the coe�cients of every non-zero partition.
This technique requires O(2kr) function evaluations,
where r is the total number of non-zero WCs in its
Walsh representation.

It may be possible to extend the above algorithm to
the general case where the functions can have both
negative and non-negative WCs. From Equation 4 we

can write,

wj =
X

x2
+(j)

f(x) j(x) +
X

x2
�(j)

f(x) j(x) (8)

where
+(j) and
�(j) de�ne the set of all strings
for which j(x) is 1 and -1 respectively. Clearly
there exists a decomposition of any function f(x) =
f1(x)� f2(x) in such a way that both f1 and f2 have
non-negative WCs. Note that this requires controlled
generation of x-s such the corresponding basis func-
tions for a give j return either all positive or all nega-
tive. This simple construction shows that it is always
possible to transform a given function so that all the
WCs are non-negative. A simple way to do that is to
translate the f(0) value by some large enough posi-
tive constant, �. Since j(0) = 1 such translation will
translate every WC by the amount �

2`
. If � is large

enough then all the WCs will be non-negative. Al-
though this makes our algorithm applicable, the prob-
lem is that this may destroy the underlying sparseness
of the coe�cients. In other words, coe�cients that
were originally zero will become non-zero because of
the translation. This may give rise to an exponential
value of r and as a result the algorithm may no longer
remain computable in polynomial time.

An alternate approach to address this problem is to
manipulate the representation in such a way that the
coe�cients become non-negative without destroying
the sparseness. It is not clear how to do that. However,
it is interesting to observe that complementary alpha-
bet transformations in the transcription o�er some
control over the basis functions that may be useful.

Let x be a binary string and let T be an complemen-
tary operator that maps 1 to 0 and vice versa. Let
T�(x) be the complementary transformation applied
on the �-partition of x. In other words, T�(x) comple-
ments only those positions of x where there is a 1 in �.
Let us now consider the di�erence between the Walsh
function �(T�(x) and �(x). Recall that �(x) can
be either -1 or 1. It turns out that �(T�(x) = �(x)
when the number of transcribed features is even; on
the other hand �(T�(x) = � �(x) when the number
of transcribed features is odd. This can be understood
as follows. Let g be the number of 1-s in �; g1 and g0
be the numbers of 1-s and 0-s in x within the partition
de�ned by the 1-s in �. The number of ones in T�(x)
within the partition �, g01 = g0 = g � g1. Now if both
g and g1 are even numbers then g01 must be even. On
the other hand if g and g1 are even and odd numbers
respectively then g01 must be odd. In other words the
sign of �(x) does not change when x is transformed to
a di�erent string by applying T over an even number
of bits. Consider 0110(1011) = �1. Now if we apply

T to the underscored bits we get 0110(1101) = �1. A
similar rationale can be developed for the case when g
is odd.

Now consider a transformation of the representation
of the domain in such a way that every x is repre-
sented by T1(x), where 1 is an `-bit string of 1-s.
Such representation
ips the sign of the WC corre-
sponding to every odd-order partition. However, it
does not destroy the sparseness; WCs with a value
of zero, remain zero. We may be able to exploit such
complementation-based representation transformation
techniques for computing the summation of all non-
negative coe�cients. However, this is only our hy-
pothesis since this is very similar to the physical rep-
resentation transformations in gene expression.

The following section concludes this paper and identi-
�es the future work.

7 CONCLUSIONS

This paper notes that �tness evaluation in natural evo-
lution takes place in a distributed fashion in di�erent
living cells through the process of gene expression. It
argues that such distributed evaluation of the �tness
is only possible when the function can be decomposed
in a distributed fashion using a set of basis functions.
Unless such a representation was available a priori, we
have every reason to believe that there must be an ef-
�cient mechanism to compute such a distributed rep-
resentation. This paper considers functionally com-
plete Walsh basis functions and shows that e�cient
polynomial-time computation of the distributed repre-
sentation is possible for problems with bounded non-
linearity. It also o�ers a highly e�cient O(2kr) algo-
rithm to compute the Walsh representation for prob-
lems with non-negative Walsh coe�cients. This ap-
proach is based on the computation of the average �t-
ness over a small set of size 2k that appears plausible
in a population based evolutionary algorithm. This
approach also requires controlled generation of di�er-
ent samples from speci�c partitions, that may be ac-
complished using the evolutionary operators. Either
transcription or mutation, and crossover may be used
for such controlled sample generation. At this point
our interest in the fundamental polynomial-time com-
putation of such orthonormal representation. Further
investigation is needed to identify the actual operator
responsible for such controlled scheme in nature. We
are also currently investigating ways to generalize the
algorithm presented in Section 6 for the general class
of problems with a combination of negative and non-
negative Walsh coe�cients.

Acknowledgments

This work was supported by the United States Na-
tional Science Foundation Grant IIS-9803360.

References

[1] K. G. Beauchamp. Applications of Walsh and Re-

lated Functions. Academic Press, USA, 1984.

[2] A. D. Bethke. Comparison of genetic algorithms
and gradient-based optimizers on parallel pro-
cessors: E�ciency of use of processing capacity.
Tech. Rep. No. 197, University of Michigan, Logic
of Computers Group, Ann Arbor, 1976.

[3] L. J. Fogel, A. J. Owens, and M. J. Walsh. Ar-

ti�cial Intelligence through Simulated Evolution.
John Wiley, New York, 1966.

[4] S. Forrest and M. Mitchell. The performance of
genetic algorithms on Walsh polynomials: Some
anomalous results and their explanation. In R. K.
Belew and L. B. Booker, editors, Proceedings of

the Fourth International Conference on Genetic

Algorithms, pages 182{189. Morgan Kaufmann,
San Mateo, CA, 1991.

[5] D. E. Goldberg. Genetic algorithms and Walsh
functions: Part I, a gentle introduction. Complex

Systems, 3(2):129{152, 1989. (Also TCGA Report
88006).

[6] D. E. Goldberg. Genetic algorithms and Walsh
functions: Part II, deception and its analysis.
Complex Systems, 3(2):153{171, 1989. (Also
TCGA Report 89001).

[7] J. H. Holland. Adaptation in Natural and Arti�-

cial Systems. University of Michigan Press, Ann
Arbor, 1975.

[8] F. Hoyle and N. C. Wickramasinghe. Evolution

from Space. Dent, London, 1981.

[9] H. Kargupta and S. Bandyopadhyay. A perspec-
tive on the foundation and evolution of the link-
age learning genetic algorithms. Accepted in the
Special Issue in Genetic Algorithms: The Journal
of Computer Methods in Applied Mechanics and
Engineering. Editors: Goldberg, D. E. and Deb,
K.

[10] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671{680, 1983.

[11] J. R. Koza. Genetic programming: On program-

ming computers by means of natural selection and

genetics. MIT Press, Cambridge, MA, 1992.

[12] S. Kushilevitz and Y. Mansour. Learning decision
rees using fourier spectrum. In Proc. 23rd Annual

ACM Symp. on Theory of Computing, pages 455{
464, 1991.

[13] G. E. Liepins and M. D. Vose. Polynomials, ba-
sic sets, and deceptiveness in genetic algorithm s.
Complex Systems, 5(1):45{61, 1991.

[14] R. S. Michalski. Theory and methodology of
inductive learning. In R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, editors, Ma-

chine learning: An arti�cial intelligence ap-

proach, pages 323{348. Tioga Publishing Co,
1983.

[15] C. K. Oei. Walsh function analysis of genetic al-
gorithms of nonbinary strings. Unpublished mas-
ter's thesis, Urbana, 1992. University of Illinois
at Urbana-Champaign, Department of Computer
Science.

[16] S. Rana, R. B. Heckendron, and D. Whitley. A
tractable Walsh analysis of SAT and its implica-
tions for genetic algorithms. In Proceedings of the

AAAI-98, 1998. AAAI Press.

[17] I Rechenberg. Kybernetische l�osungsansteuerung
einer experimentellen forschungsaufgabe. Semi-
narvortrag, Hermann-F�ottinger-Institut
f�ur Str�omungstechnik der Technische Universit�at,
Berlin, 1964.

[18] D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group. Parallel Distributed Process-

ing: Explorations in the Microstructure of Cogni-

tion, Vol 1: Foundations. MIT Press, Cambridge,
Mass., 1 edition, 1986.

[19] D. Thierens. Estimating the signi�cant non-
linearities in the genome problem-coding. To
be published in the Proceedings of the Ge-
netic and Evolutionary Computation Conference,
AAAI Press, 1999.

