
Extending the Representation of Classi�er Conditions
Part I: From Binary to Messy Coding

Pier Luca Lanzi

Politecnico di Milano Arti�cial Intelligence and Robotics Project
Dipartimento di Elettronica e Informazione

Politecnico di Milano
lanzi@elet.polimi.it

Abstract

We present the �rst part of a study on
the alternative representations of classi�er
conditions. We introduce an extension of
the XCS classi�er system in which variable-
length messy chromosomes replace the origi-
nal bitstring representation. With a series of
experiments we show that to reach optimal
performance covering, matching, and muta-
tion must be adequately de�ned in order to
avoid overgeneralization due to underspeci�-
cation of classi�er conditions.

1 INTRODUCTION

Classi�er conditions are usually represented by bit-
strings of �xed length on the ternary alphabet f0,1,#g.
This simple representation, that was initially intro-
duced by Holland [5] for sake of simplicity, has been
used to tackle many di�erent types of problems: au-
tonomous robotics [2], classi�cation [6], or personal
agents [15].

Although there had been a signi�cant amount of work
in the �eld of Fuzzy Classi�er Systems [1], the use
of bitstring for coding classi�er conditions has never
been perceived as a limit of this learning paradigm.
This is mainly because in the past years the research
in learning classi�er systems focused on the learning
capabilities of these types of systems rather than on
their generalization capabilities. Recently, Wilson [12]
introduced a new model of learning classi�er system,
XCS, which has moved the focus of a branch of learn-
ing classi�er system research from the performance is-
sue to the generalization issue.

XCS represents a major advance in learning classi�er
systems research because it has an accurate general-
ization mechanism, and a learning mechanism which

is based on a well-known reinforcement learning tech-
nique, namely Q-learning [11]. Wilson [13] presented
experimental results showing that XCS can learn opti-

mal behaviors which are represented by a small num-
ber of accurate and maximally general classi�ers.

Since in XCS optimal performance is achieved by the
use of a powerful reinforcement learning technique, the
focus of the research for XCS has moved to the general-
ization issue [7, 9, 13]. From a more general viewpoint,
XCS' capability of producing compact representations
of the learned tasks makes it an interesting alterna-
tive to others and maybe most common reinforcement
algorithms like tabular Q-learning. In this perspec-
tive the ability of XCS to generalize properly implicitly
supports the use of learning classi�er systems instead
of other reinforcement learning techniques that come
from the Machine Learning community that do not
employ any sort of generalization.

As generalization becomes the main focus of the re-
search, the representation of classi�er conditions turns
out to be probably the most interesting topic. The
generalization capabilities of adaptive agents in fact
rely on their ability to represent the knowledge they
acquire in a compact form. Unfortunately, when the
sensory inputs are coded as bitstrings part of the struc-
ture of the environment may be lost. As a conse-
quence the agent may be unable to generalize properly
since the regularities of the environment have been lost
through binary encoding. Wilson [13] suggests that an
interesting extension to the classi�er conditions syntax
would consist of using conjunctions of interval predi-
cates over continuous sensory inputs, or as more gen-
eral s-expressions [12].

Following Wilson's ideas, we studied di�erent ways to
extend the representation of classi�er conditions. To
begin we replaced the usual bitstring coding of classi-
�er conditions with a messy coding in which sensory
inputs are still translated into bitstring but the bits in



the classi�er's conditions are not bound to the posi-
tion of sensory input bits anymore. We analyzed the
behavior of this messy version of XCS in grid environ-
ments to test how the change of condition representa-
tion inuences the system performance. Although this
extension to classi�er conditions may appear simple,
the analysis of the results with the messy version of
XCS highlight many interesting phenomena that we
also �nd when we pass to more complex representa-
tions like s-expressions. As a second step (not dis-
cussed here) we extended the condition representation
to the more general syntax in which s-expressions are
used to represent general conditions on sensory inputs
(results are discussed in [10]).

In this paper we present the results of the �rst part of
our research which involves the use of amessy coding to
represent classi�er conditions. We begin by introduc-
ing XCS in Section 2 and the design of experiments we
use in this paper in Section 3. In Section 4 we discuss
the reasons that took us to choose the messy repre-
sentation; in Section 5 we briey overview the princi-
pal ideas introduced with messy genetic algorithms [3].
In Section 6 we introduce the messy version of XCS,
XCSm, and apply it to two environments showing that
its performance is only near optimal. We discuss these
results in Section 7 and present a series of modi�ca-
tion to the original system that is able to reach optimal
performance. In Section 8 we present an experiment
which shows how messy classi�ers make the reuse of
previous learned behavior easy. Finally, in Section 9
we draw some conclusions and directions for future
works. XCSm can evolve optimal solutions and we
discuss the di�erent problem that can be encountered
when this type of representation is used in learning
classi�er systems. Finally, in Section 9 we draw some
conclusions.

2 DESCRIPTION OF XCS

The major di�erence between Wilson's XCS classi�er
system [12] and Holland's classi�er system [5] is the
de�nition of �tness. In XCS the �tness of a classi�ers
is evaluated as the accuracy of the classi�er predic-
tion, while in Holland's learning classi�er systems the
�tness is evaluated as the classi�er prediction itself.
Accordingly, in XCS the original strength parameter
is replaced by three parameters: (i) the prediction p,
which evaluates the payo� that the agent is expected
to gain; (ii) the prediction error ", which evaluates the
error of the prediction p; �nally, (iii) the �tness F ,
which evaluates the accuracy of the prediction p.

XCS works as follows. At each time step the sys-
tem input is used to build the match set [M] contain-

ing the classi�ers in the population whose condition
matches the sensory inputs. If the match set is empty
a new classi�er that matches the input sensors is cre-
ated through covering. For each possible action ai the
system prediction P (ai) is computed. P (ai) gives an
evaluation of the expected payo� if action ai is per-
formed. Action selection can be deterministic (the ac-
tion with the highest system prediction is chosen), or
probabilistic (the action is chosen with a certain prob-
ability among the possible actions). Those classi�ers
in [M] that propose the selected action are put in the
current action set [A]. The selected action is performed
and an immediate reward is returned to the system to-
gether with a new input con�guration. The reward re-
ceived from the environment is used to update the pa-
rameters of the classi�ers in the action set correspond-
ing to the previous time step [A]

�1. Classi�er param-
eters (p, ", and F ) are updated using a Q-learning-like
technique [11, 12].

Covering. Covering is used when the match set [M]
is empty or the system is stuck in a loop. In both
cases, the covering operator creates a classi�er that
matches the sensory inputs and has a random action.
This classi�er is then inserted in the population and, if
necessary, another classi�er is deleted. The situation
in which the system is stuck in a loop is detectable
because the predictions of the classi�ers involved start
to diminish steadily. To detect this phenomenon when
[M] is created the system checks whether the total pre-
diction of [M] is less than � times the average predic-
tion of the classi�ers in the population.

Genetic Algorithm. The genetic algorithm in XCS
is applied to the action set. It selects two classi�ers
with probability proportional to their �tnesses, copies
them, and with probability � performs crossover on the
copies while with probability � mutates each allele.

3 EXPERIMENTAL DESIGN

All the experiments presented in this paper have been
conducted in the woods environments. These are grid
worlds in which each cell can contain an obstacle (a
\T" symbol), a goal (an \F" symbol), otherwise it can
be empty. An agent placed in the environment must
learn to reach goal positions. The agent perceives the
environment by eight sensors, one for each adjacent
cell: food is perceived as \11"; an obstacle is perceived
as \10"; �nally, an empty cell is perceived as \00".
The agent can move into any of the adjacent cells. If
the destination cell contains an obstacle the move does
not take place; if the destination cell is blank then the
move takes place; �nally, if the cell contains a goal



the agent moves receiving a constant reward, and the
problem ends.

Each experiment consists of a number of problems that
the agent must solve. For each problem the agent is
randomly placed in a blank cell of the environment;
then it moves under the control of the system until
it reaches a goal position receiving a constant reward,
and the problem ends. The agent can solve a problem
by exploring the environment trying to learn a bet-
ter solution; otherwise, the agent can solve a problem
exploiting the knowledge it has acquired. The agent
takes this decision at the beginning of a new prob-
lem when it decides with probability 0.5 whether it
will solve the problem in exploration or in exploita-

tion. When solving a problem in exploration the sys-
tem selects the action to be performed randomly (i.e.
the action selection procedure is probabilistic). When
solving a problem in exploitation the system selects
the action that predicts the highest payo� (i.e. the
action selection procedure is deterministic). The per-
formance of XCS is computed as a running average of
the number of steps to a goal position in the last 50
problems solved in exploitation. Every statistic pre-
sented in this paper is averaged over ten experiments.

4 WHY MESSY CODING?

Bistring representation of classi�er conditions has two
major limitations. The most recognized one concerns
the use of binary encoding for sensors which, in gen-
eral, can result in a loss of information about the en-
vironment structure. The second limitation concerns
the �xed correspondence between the position of bits
in the classi�er condition and the position of sensors
bits. Wilson's proposal [14] of using conjunctions of
interval predicates over continuous inputs to represent
classi�er conditions would eliminate the �rst kind of
limitation. The proposal of using general s-expression
to represent classi�er conditions [12] would eliminate
both limitations at once.

Comparing the two types of limitations that current
representation has, we observe that the use of binary
coding for sensors can become a limitation only in
some types of environments. Conversely, the posi-
tional bound between sensory inputs and classi�er con-
ditions is independent from the environment and from
the types of sensors.

We believe that to start developing a general purpose
representation for classi�er conditions we should ini-
tially face general problems in a simple way. Accord-
ingly, in this paper we start by introducing a very basic
extension of the bitstring representations in which con-

ditions have variable-length and there is not a �xed
correspondence between the positions of sensory in-
puts and genes in classi�er conditions.

The simplest solution for eliminating the �xed corre-
spondence between the positions of condition bits and
the positions of sensory bits consists of (i) naming the
sensors with a tag so that the classi�er system can sep-
arate the inputs of the di�erent sensors, (ii) using the
sensors tags to separate the di�erent subparts of the
condition string that are devoted to a speci�c sensor.
This type of solution was �rstly introduced in genetic
algorithms by Goldberg [3] who introduced the idea of
Messy Genetic Algorithms. This type of messy repre-
sentation was also used by Ho�mann [4] with Fuzzy
Classi�er Systems.

5 MESSY GENETIC ALGORITHMS

Messy genetic algorithms were introduced in [3] as
an enhancement of standard genetic algorithms with
�xed-length chromosomes. In the following, we briey
overview some of the characteristics of messy genetic
algorithms that are particularly interesting for learn-
ing classi�er systems. We do not discuss the general
properties of messy genetic algorithms, and we refer
the interested reader to [3] for a complete overview.

Representation. In messy genetic algorithms genes
are represented as pairs: (Gene Number, Allele Value).
A messy chromosomes is a sequence of messy genes; for
example ((1; 1)(5; 0)(1; 2)(0; 3)) is a chromosomes with
four genes. A messy chromosomes can be underspeci-

�ed, i.e., the chromosome does not have an allele value
for all the possible genes (in the example genes number
2 and 4 are not represented). To evaluate the �tness
of a chromosome that is underspeci�ed a partial eval-

uation of the �tness function is introduced. A messy
chromosome may also be overspeci�ed in that it may
specify more values for the same gene (in the example
above two values are given for gene number 1). Over-
speci�cation is solved by using positional precedence:
the value of a gene is speci�ed by the �rst messy gene
found in a left-to-right scan of the chromosome.

Genetic Operators. In messy genetic algorithms
crossover is replaced by two operators named cut and
splice. The cut operator given a bitwise cut probabil-
ity pk and an overall cut probability pc = pk(� � 1)
(where � is the number of messy genes in the chro-
mosome), cuts the chromosome into two parts. The
splice operator concatenates with probability ps two
messy chromosomes. Recombination of two chromo-
some is performed as follows. First, cut is applied to



the two individuals selected for recombination. Then
splice is applied with a certain probability on the pos-
sible couples that have been produced by the cut op-
erator. Mutation is applied with a certain probability
to the value part of messy genes.

6 A MESSY VERSION OF XCS

We now introduce the messy version of XCS, XCSm, in
which classi�ers conditions are represented by variable
length messy chromosomes. Then we apply XCSm to
two environments to test whether XCSm as de�ned
here can learn an optimal policy in these environments.

6.1 DESCRIPTION OF XCSm

It is quite straightforward to extend XCS adding messy
representation to classi�er conditions. The messy ver-
sion of XCS, XCSm, works basically as XCS, but it
di�ers from it in three main parts: covering, match-
ing, and in the genetic operators. In the following we
introduce the messy representation of classi�er condi-
tion and show how covering, matching, and the genetic
operators works in XCSm.

Representation. In XCSm, the original �xed
length binary representation is replaced by a messy

representation of classi�er conditions. A messy classi-
�er condition is a sequence of messy genes which repre-
sent elementary conditions on a speci�c sensor. Messy
genes consist of a tag that speci�es which sensor the
messy gene tests, and a �xed length bitstring that rep-
resents a condition on binary sensors. Speci�cally, in
woods environments the tag speci�es one of the eight
possible agent sensors (N, E, S, W, NE, SE, SW, and
NW). For instance the messy gene (N,1#) matches
current sensory input if the position at the north of
the agent (symbol N) contains a goal (sensed as \11")
or an obstacle (sensed as \10");

Matching. To de�ne how messy classi�ers are
matched against sensory inputs we need to decide a
policy for dealing with the possible underspeci�ca-
tion and overspeci�cation of a classi�er condition. Al-
though in messy genetic algorithms underspeci�cation
is diÆcult to handle, in messy classi�er systems deal-
ing with underspeci�cation is straightforward. Genes
that are not speci�ed in the conditions are treated as
though their bitstrings would contain only don't cares.
Note that this approach introduces two forms of gener-
alization: A classi�er can be general because its condi-
tion tests many sensors (i.e., it contains many di�erent
tags) each one against a very general condition. On
the other hand a classi�er can be general because it

T T F
T T T
T T T

Figure 1: The Woods1 environment.

tests only few sensors. To deal with overspeci�cation
(i.e., more genes in the condition test the same sensor),
we employed the same approach, based on positional
precedence, that is used in messy genetic algorithms.
When a condition is matched, messy genes are checked
in left-to-right order: the �rst messy gene that tests a
sensor is used for matching.

Covering. Covering creates a classi�er with a ran-
dom messy condition that matches the current sensors
and a random action. The messy condition is gener-
ated as a random sequence of messy genes. Covering
in XCSm is a combination of two random factors: the
number of sensors explicitly covered by messy genes
(which in a certain sense represents the degree of un-
derspeci�cation of the classi�er), and the creation of
the bitstring that covers the sensors bits. For each sen-
sor the system generates with probability Ps a messy
genes with the tag corresponding to that sensor. Then
the bitstring of the messy gene which matches that
sensor is generated like in XCS. To avoid trivial classi-
�ers, conditions generated through covering must have
at least one gene.

Genetic Algorithm. In XCSm the genetic algo-
rithm selects two classi�ers from the action set with
probability proportional to their �tnesses, copies them,
and with probability � recombines them through cut
and splice. Probability � is not �xed, like in XCS,
but is computed as pk(��1) where pk is the probabil-
ity of cutting a single messy gene and � is the length
of the shorter condition of selected classi�ers. Splice
combines the four segments of the two classi�ers condi-
tions according to one the four policies discussed in [3]
which is selected with uniform probability. Mutation
is applied with probability � on the bitstrings of each
messy gene in the messy condition and on the action
part of the classi�er.



T T T T T T T T
T T F T
T T T T
T T T T T
T T
T T T T
T T T
T T T T T T T T

Figure 2: The Maze4 environment.

0

5

10

15

20

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L 

S
T

A
T

E

NUMBER OF PROBLEMS

Messy Version of XCS
OPTIMUM

Figure 3: Performance of the �rst version of XCSm in
Woods1. Population size is 800 classi�ers. The curve
is an average over ten runs. Horizontal line represents
optimal performance.

6.2 EXPERIMENTAL RESULTS

We now apply the version of XCSm we introduced in
the previous section in two environments, Woods1 (Fig-
ure 1) and Maze4 (Figure 2), to test whether XCSm can
learn an optimal policy in these environments. In the
�rst experiments we apply XCSm in Woods1. Popula-
tion size is set to 800 classi�ers; general XCS parame-
ters are set as follows: �=0.2, =0.71, �= 25, "0=.01,
P#=.3 �=0.01, �=0.5;

1 XCSm speci�c parameters are
set as follows: Ps = 0:5, pk = 0:1. The results reported
in Figure 3 show that XCSm can converge to a solution
that is quite near to the optimum but it never reaches
it. In particular neither can a single run reach the
optimum. We have the same type of result when we
apply XCSm to Maze4 with a population size of 1600
classi�ers and the same parameter setting we used in

1Some of these parameters have not been presented in
the overview in Section 2 but are reported here for sake
of completeness. We refer the interested reader to Wil-
son's original paper [12] for a complete discussion of XCS
parameters.

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L 

S
T

A
T

E

NUMBER OF PROBLEMS

Messy Version of XCS
OPTIMUM

Figure 4: Performance of the �rst version of XCSm in
Maze4. Population size is 1600 classi�ers. The curve
is an average over ten runs. Horizontal line represents
optimal performance.

the previous experiment. The results depicted in Fig-
ure 4 show that XCSm cannot reach the optimum in
Maze4.

7 HOW TO IMPROVE XCSm

We now analyze the results presented in the previ-
ous section and show what are the causes that prevent
XCSm from reaching optimal performance.

7.1 ANALYSIS OF THE RESULTS

Analyzing the �nal populations evolved during the pre-
vious experiments we observe that most of the clas-
si�ers which represent the �nal solutions are overgen-
eral. In particular we noted that only few sensors were
used by most classi�ers while the rest of them were left
unspeci�ed in the majority of the conditions. This may
suggest that the cut-and-splice policy XCSm employs
to recombine classi�ers cause a proliferation of messy
genes that match a limited set of sensors. However,
di�erent cut-and-splice policies that we evaluated did
not cause any signi�cant modi�cation in the overall
system performance in the two environments.

The bet of covering. Since from our experiments
it seems that optimal performance is not reached be-
cause of sensor underspeci�cation, in the �rst instance,
we can force the covering operator to cover almost ev-
ery sensor and let evolution decide which sensors are
important. Accordingly, we repeated the above exper-
iments for di�erent values of probability Ps (we remind
the reader that Ps is the probability of covering a sin-
gle sensor). The experimental results (not reported)



show an improvement in both environments for a value
of Ps greater than 0.8. However, the performance of
XCSm in the two environments is still not optimal.
This result can be easily explained. When XCSm cov-
ers a certain sensor con�guration it makes a bet on
what may be important in the future. In XCS, the
system bets on single sensory bits: a condition bit can
be set to # betting that it will unimportant. During
covering XCS takes only few risks because although it
would cover all the bits of an important sensors with
#s, as the evolution proceeds, genetic operators can
recover this situation through crossover, mutation, or
speci�cation [9]. On the other hand when XCSm cov-
ers it bets: (i) on which sensors will be important in
the future by including a messy genes for a certain sen-
sor with probability Ps; and (ii) on which bits of the
sensor will be important by means of #s. Note that in
XCSm overgeneralization due to #s symbol can still
be corrected through evolution like in XCS. However,
the case when a classi�er is overgeneral because it is
underspeci�ed, can be only recovered by the cut-and-
splice operator because it is the only operator that
can introduce new messy genes in classi�er conditions.
Briey, XCSm can easily deal with overgeneralization
on sensors, but has diÆculty with overgeneralization
due to underspeci�cation.

Extended mutation. We have seen that XCSm
does not reach optimal performance because in gen-
eral it cannot deal with overgeneralization due to un-
derspeci�cation. This happens because XCSm can re-
cover an underspeci�ed condition only through cut-
and-splice. To improve XCSm' capabilities of dealing
with underspeci�cation, we extend the mutation oper-
ator so that: (i) tags can be mutated with the same
probability � as value bits; (ii) a messy gene, that
matches one of current sensory inputs, can be added
to classi�er condition with probability �; (iii) a messy
gene can be eliminated with probability �. This ex-
tended version of mutation can deal with underspec-
i�cation by modifying the tags of existing genes and
by adding new messy genes. If we apply XCSm with
a high covering probability (Ps � :8) and extended
mutation to the previous environments (results not
reported) we �nd that XCSm can learn an optimal
solution in Woods1, but not in Maze4 (results not re-
ported). In particular XCSm performance in Maze4

suddenly decreases suggesting that, in some way, the
population is corrupted.

Dealing with overspeci�cation. If we analyze in-
termediate populations produced during the experi-
ments with this latest version of XCSm in Maze4, we
note that when a classi�ers is overspeci�ed (i.e. it

has multiple messy genes testing one sensor) the genes
that are used for matching tend to represent a cor-
rect condition for the positions the classi�er applies
to. On the contrary messy genes that are not tested
during matching because they follow other genes that
have the same tags, usually test overgeneral conditions
over the sensors or otherwise do not apply to the sit-
uations the classi�er matches. It would seem that the
use of the positional precedence policy for matching
a classi�er condition results in a proliferation of over-
general or non admissible messy genes. This obser-
vation suggests that the unstable performance we ob-
served with XCSm and extended mutation in Maze4

may be explained by the presence of such overgen-
eral or non admissible messy genes that for long pe-
riods are not checked because of overspeci�cation and
suddenly, through cut-and-splice, become active parts
in the classi�er matching process. To limit this phe-
nomenon we modi�ed the matching procedure so that
when a condition is matched against sensory inputs all
messy genes are tested on the corresponding sensors.
Therefore a condition matches current inputs if all its
messy genes match the sensors they test.

7.2 EXPERIMENTS WITH AN

EXTENDED XCSm

We now apply the extended version of XCSm we devel-
oped so far (which consists of a high covering probabil-
ity, extended mutation, and new matching procedure)
in Woods1 and Maze4 to show that this XCSm can learn
an optimal solution in both environments; parame-
ters are set like in the original experiments except for
covering probability, Ps, that is 0.8. The XCSm per-
formance in Woods1 depicted in Figure 5 shows that
the new version of XCSm can learn an optimal pol-
icy for this environment. Optimal performance is also
reached in Maze4 as the results in Figure 6 show.

8 KNOWLEDGE REUSE

One possible advantage of messy representation in
learning classi�er systems is that it does not bind
classi�er syntax to a speci�c sensory con�guration.
Conditions are de�ned in terms of which sensors the
speci�c condition matches, not in term of which po-
sition of the sensory inputs matches. Accordingly,
classi�ers evolved to solve a certain problem can be
reused in another application assuming that the tags
of messy genes are still valid in the new application.
We illustrate this idea with an example. Consider the
Maze4 environment that we used in the previous sec-
tion. First we apply an agent with four sensors, one
for each cardinal direction, in Maze4. We apply XCSm



0

5

10

15

20

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L 

S
T

A
T

E

NUMBER OF PROBLEMS

New Version of mXCS
Simple Version of mXCS

OPTIMUM

Figure 5: Performance of the enhanced version of
XCSm in Woods1 (solid line) and of the original XCSm
(dashed line). Population size is 800 classi�ers. The
curve is an average over ten runs. Horizontal line rep-
resents optimal performance.

in Maze4 when only the tags corresponding to the four
cardinal sensors are used for 10000 problems.2 Popula-
tion size is set to 1600 classi�ers. The results depicted
in Figure 7 (�rst 5000 problems) show that the agent
cannot learn a good solution for Maze4 when only four
sensors are available.

Suppose now that we \buy" an improved agent that
has all the eight possible sensors (one for each adjacent
cell). We apply this agent in Maze4 with the starting
population consisting of the previous solution. Note
that we do not explicitly introduce messy genes that
test new sensors in classi�ers conditions, but we let
mutation use all the new admissible tags. We apply
XCSm with eight sensors to Maze4 for 10000 problems.
Results in (last 10000 problems) show that starting
from the previous solution, and using only mutation,
XCSm can evolve an optimal solution for Maze4. This
result suggests that extending classi�er with represen-
tations that are independent from the position of the
sensors can improve the portability of the behaviors
learned between di�erent agents.

9 CONCLUSIONS

We have presented an initial study concerning the pos-
sible extensions to the current representation of clas-
si�er conditions. In particular, we extended the XCS

2Note that when the agent has only the four cardinal
sensors, there are many di�erent positions in the environ-
ment that the agent perceives as identical; briey we say
that with four sensors Maze4 is partially observable with
respect to agent sensors [8]. Accordingly, XCSm cannot
evolve an optimal solution in Maze4 with four sensors.

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L 

S
T

A
T

E

NUMBER OF PROBLEMS

New Version of mXCS
Simple Version of mXCS

OPTIMUM

Figure 6: Performance of the enhanced version of
XCSm in Maze4 (solid line) and of the original XCSm
(dashed line). Population size is 1600 classi�ers. The
curve is an average over ten runs. Horizontal line rep-
resents optimal performance.

classi�er system by replacing the current �xed-length
bitstring representation with a variable-length messy
representation that was borrowed from messy genetic
algorithms. We applied an initial version of XCS with
messy conditions, XCSm, to two environments and we
showed that XCSm can reach only near optimal per-
formance. The analysis of these results pointed out
that the possible underspeci�cation and overspeci�ca-
tion of classi�er conditions is a important factor in
learning with a variable-length representation. Ac-
cordingly, great care must be taken when designing
the covering operator, the matching procedure, and
the mutation operator. We repeated previous exper-
iments with an enhanced version of XCSm in which
covering, matching, and mutation were designed in
order to cope with underspeci�cation and overspeci-
�cation of classi�er conditions. Experimental results
we reported show that this new version of XCSm can
reach the optimum in both environments. Finally, we
presented an experiment in which a behavior initially
learned by an agent with a small sensory equipment
was used by another agent, with an improved sensory
equipment, as the basis for learning an improved be-
havior by exploiting newly available sensors.

Overall we believe that this work contributes in draw-
ing some directions for subsequent explorations of the
alternative representations that might be employed in
classi�er systems. In particular, our results with messy
classi�er systems will help us in the second part of
our research [10] in analyzing and understanding the
behavior of the next representation we are going to
introduce, which is based on s-expressions.



0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

N
U

M
B

E
R

 O
F

 S
T

E
P

S
 T

O
 A

 G
O

A
L 

S
T

A
T

E

NUMBER OF PROBLEMS

OPTIMUM

Figure 7: Performance of XCSm in Maze4. First 5000
problems are solved by an agent with four sensors.
Subsequent 10000 problems are solved by an agent
with eight sensors that started to learn from the solu-
tion evolved by the former agent.

Acknowledgments

This work was partially supported by the Politec-
nico di Milano Research Grant \Development of Au-
tonomous Agents Through Machine Learning," and by
the project \CERTAMEN" co-funded by the Italian
Ministry of University and Scienti�c Research.

I wish to thank Andrea Bonarini and Pino Contini
who helped me in making this submission possible af-
ter that �re devastated part of my department. Many
thanks go also Stewart W. Wilson for his invaluable
advices and to Tim Kovacs for his comments and cor-
rections.

References

[1] Andrea Bonarini. Genetic Algorithms and

Soft Computing, chapter Delayed Reinforcement,
Fuzzy Q-learning and Fuzzy Logic Controllers,
pages 447{465. Physica-Verlag, A Springer-Verlag
Company, 1996.

[2] Marco Dorigo and Marco Colombetti. Robot

Shaping: An Experiment in Behavior Engineer-

ing. MIT Press, 1997.

[3] David E. Goldberg, B. Korb, and K. Deb. Messy
genetic algorithms. motivation, analysis and �rst
results. Complex Systems, 3:493{530, 1989.

[4] Frank Ho�mann and G. P�ster. Genetic Algo-

rithms and Soft Computing, chapter Learning a
Fuzzy Control Rule Base Using Messy Genetic
Algorithms, pages 279{305. Physica-Verlag, A
Springer-Verlag Company, 1996.

[5] John H. Holland. Machine learning, an arti�-

cial intelligence approach. Volume II, chapter Es-
caping Brittleness: The possibilities of General-
Purpose Learning Algorithms Applied to Paral-
lel Rule-Based Systems, pages 593{623. Morgan
Kaufmann, 1986.

[6] John H. Holmes. Hierarchical exemplar based
credit allocation for genetic classi�er systems. In
J. Koza et al, editor, Proceedings of the Third

Annual Genetic Programming Conference, pages
622{628, Madison (WI), 1998. Morgan Kaufmann
San Francisco (CA).

[7] Tim Kovacs. XCS Classi�er System Reliably
Evolves Accurate, Complete, and Minimal Rep-
resentations for Boolean Functions. In Chawdhry
Roy and Pant, editors, Soft Computing in Engin-
erring Design and Manufacturing, pages 59{68.
Springer-Verlag London, 1997.

[8] Pier Luca Lanzi. An Analysis of the Memory
Mechanism of XCS. In J. Koza et al, editor, Pro-
ceedings of the Third Annual Genetic Program-

ming Conference, pages 643{651, Madison (WI),
1998. Morgan Kaufmann San Francisco (CA).

[9] Pier Luca Lanzi. An analysis of generalization in
the xcs classi�er system. Evolutionary Computa-

tion Journal, 1998. To be published.

[10] Pier Luca Lanzi and Alessandro Perrucci. Ex-
tending the representation of classi�er conditions,
part ii: From messy coding to s-expressions. 1999.

[11] C.J.C.H. Watkins. Learning from delayed reward.
PhD Thesis, Cambridge University, Cambridge,
England, 1989.

[12] Stewart W. Wilson. Classi�er �tness based on
accuracy. Evolutionary Computation, 3(2):149{
175, 1995.

[13] Stewart W. Wilson. Generalization in the XCS
classi�er system. In J. Koza et al, editor, Pro-
ceedings of the Third Annual Genetic Program-

ming Conference, pages 665{674, Madison (WI),
1998. Morgan Kaufmann San Francisco (CA).

[14] Stewart W. Wilson. Structure and function
of the XCS classi�er systems. Available at
http://prediction-dynamics, 1998.

[15] Stan Franklin Zhaohua Zhang and Dipankar Das-
gupta. Metacognition in software agents using
classi�er systems. In AAAI, editor, AAAI-98

Proceedings of the Fifteenth National Conference

on Arti�cial Intelligence, pages 83{88, Madison
(WI), 1998. AAAI-Press and MIT Press.


