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Abstract

We analyze XCS learning capabilities in
stochastic environments where the result of
agent actions can be uncertain. We show that
XCS can cope when the degree of uncertainty
is limited. We propose an extension to XCS,
called XCS�, which can learn optimal solu-
tions for higher degrees of uncertainty. We
test XCS� when the uncertainty a�ects the
whole environment and when the uncertainty
is limited to some areas. Finally, we show
that XCS� is a proper extension of XCS in
that it coincides with it when it is applied to
deterministic environments.

1 INTRODUCTION

The XCS classi�er system [6] represents a major ad-
vance in learning classi�er systems research because of
its accurate generalization mechanism, and its learn-
ing mechanism which is based on Q-learning [5], the
most known reinforcement learning technique. Wil-
son's XCS classi�er system mainly di�ers from tradi-
tional Holland's classi�er systems [2] in the de�nition
of classi�er �tness which in XCS is based on the accu-
racy of the classi�er prediction instead of the predic-
tion itself as in Holland's systems.

In XCS, classi�er accuracy measures the degree of
overgeneralization of classi�ers. A classi�er is con-
sidered accurate if its prediction closely estimates the
payo� level in every situation in which it matches.
Conversely, a classi�er becomes inaccurate when, be-
ing overgeneral, it applies in di�erent situations cor-
responding to di�erent payo� levels. When XCS is
applied to deterministic and completely observable en-
vironments, the accuracy parameter indeed identi�es
the only source of inaccuracy, i.e., overgeneralization.

However, when considering more general environments
there are two other sources of inaccuracy. One of these
is experienced when the agent faces an environment
which is partially observable with respect to the agent
sensors. In such cases, the agent is not always able to
determine the best action only looking at its sensors
because two or more situations may be aliased. If these
situations correspond to di�erent payo�s levels, classi-
�ers matching them tend to become inaccurate. The
last, and probably most common, source of inaccuracy
is found in stochastic environments where the result of
agent actions may be uncertain. Classi�ers matching
these situations to become inaccurate because the ac-
tions they advocate may have di�erent e�ects leading
to di�erent payo�s.

Note that in reinforcement learning algorithms, like
Watkin's Q-learning [5], the e�ects of these three
sources of inaccuracy (i.e., overgeneralization, percep-
tual aliasing, and uncertainty) are blended together.
On the other hand, XCS is able to single out the in-
accuracy due to overgeneralization [6] only when the
environment is both completely observable and deter-
ministic. Lanzi [3] showed that when the environment
is partially observable memory can be added to XCS in
order to disambiguate perceptually aliased situations.
But no results have been presented in the literature for
applying (Michigan-style) learning classi�er systems in
stochastic environments.1 In this paper we study the
behavior of XCS in stochastic environments, where the
e�ect of agent actions is a�ected by uncertainty. Note
that we do not consider the case of uncertainty a�ect-
ing the agent sensors which indeed is an important
topic that we plan to address in the future.

Initially, we analyze XCS performance in stochastic
environments for di�erent degrees of uncertainty. Our

1Schultz [1] presented experimental results for applying
the Samuel Learning System, a Pittsburgh-style learning
classi�er system, to stochastic/noisy environments.



results show that XCS can learn an optimal policy
when the uncertainty is limited, although signi�cant.
We analyze these results and suggest that this happens
because XCS can be unable to separate the inaccuracy
introduced by overgeneralization from the inaccuracy
due to the uncertainty in the environment. We pro-
pose an extension to XCS, called XCS�, in which a
new parameter is added to classi�ers to estimate the
degree of uncertainty that the classi�er experiences.
XCS� uses this parameter to try to separate the two
sources of inaccuracy. We show that XCS� can learn
optimal solutions under a higher degree of uncertainty
both when this a�ects the whole environment or only
some areas. Finally, we show that XCS� is a proper
extension of XCS in that it coincides with it when the
environment is deterministic.

2 THE XCS CLASSIFIER SYSTEM

Classi�ers in XCS have three main parameters: (i) the
prediction p, which estimates the payo� that the sys-
tem expects if the classi�er is used; (ii) the prediction
error ", which estimates the error of the prediction p;
�nally (iii) the �tness F , which estimates the accu-
racy of the payo� prediction given by p and thus is a
function of the prediction error ".

At each time step, the system input is used to build
the match set [M] containing the classi�ers in the pop-
ulation whose condition part matches the sensory con-
�guration. If the match set is empty a new classi�er
which matches the input is created through covering.
For each possible action ai in the match set the system
prediction P (ai) is computed as the �tness weighted
average of the classi�er predictions that advocate the
action ai in the match set [M]. The value P (ai) gives
an evaluation of the expected payo� if action ai is per-
formed. Action selection can be deterministic, i.e. the
action with the highest system prediction is chosen, or
probabilistic, i.e. the action is chosen with a certain
probability among the actions with a non-null predic-
tion. The classi�ers in [M] which propose the selected
action form the current action set [A]. The selected ac-
tion is then performed in the environment and a scalar
reward r is returned to the system together with a new
input con�guration.

Classi�ers parameters are updated as follows. First,
the Q-learning-like payo� P is computed as the sum of
the reward received at the previous time step and the
maximum system prediction, discounted by a factor 

(0 � 
 < 1). P is used to update the prediction p by
the delta rule with learning rate � (0 � � � 1): pj  
pj + �(P � pj). Likewise, the prediction error " is ad-
justed with the formula: " "j +�(jP � pj � "). The
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Figure 1: The transition function used in the exper-
iments in this paper. The parameter � is set to 0.5.
When the agent performs action go north with prob-
ability 0.5 (1 � �) the action produces the expected
result; with probability (�=2) the agent slips to the
left or right cell respectively.

�tness update is slightly more complex. Initially, the
prediction error is used to evaluate the classi�cation
accuracy � of each classi�er as � = exp(ln�("�"0)="0)
if " > "0 or � = 1 otherwise. Subsequently the rela-
tive accuracy �0 of the classi�er is computed from �
as �0 = �=

P
[A]
�1

�. Finally the �tness parameter is

adjusted by the rule F  F+�(�0�F ). The genetic al-
gorithm in XCS is applied in the environmental niches
represented by the action set [A]�1 corresponding to
the previous time step.

3 DESIGN OF EXPERIMENTS

The experiments we present in this paper have been
conducted in the woods series of environments. These
are grid worlds in which each cell can contain an ob-
stacle (a \T" symbol), a goal (an \F"), otherwise it can
be empty. An agent placed in the environment must
learn to reach goal positions. The agent perceives the
environment by eight sensors, one for each adjacent
cell, and can move into any of the adjacent cells. If
the destination cell contains an obstacle the move does
not take place; if the destination cell is blank then the
move takes place; �nally, if the cell contains a goal
the agent moves receiving a constant reward, and the
problem ends.

Each experiment consists of a number of problems that
the agent must solve. For each problem the agent is
randomly placed in a blank cell of the environment;
then it moves under the control of the system until
it reaches a goal position receiving a constant reward,
and the problem ends. The agent can solve a problem
by exploring the environment trying to learn a better
solution; otherwise, the agent can solve a problem ex-
ploiting the knowledge it has acquired. In the former
case we say that the agent solves a learning problem or,
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Figure 2: The Woods1 environment.

equivalently, that the agent solves the problem in ex-
ploration [6]; in the latter we say that the agent solves
a testing problem or, equivalently, that the agent solves
the problem in exploitation.

At the beginning of a new problem the agent decides
with probability 0.5 whether it will solve the problem
in exploration (i.e., if it will solve a learning problem)
or in exploitation (i.e., if it will solve a testing prob-
lem). When solving a learning problem the system
selects the actions to be performed randomly and the
genetic algorithm is in operation. When solving a test-
ing problem the system selects the action that predicts
the highest payo� and the genetic algorithm is not in
operation. The performance of XCS is computed as
the average number of steps to a goal position in the
last 50 testing problems. Every statistic presented in
this paper is averaged over ten experiments.

4 STOCHASTIC ENVIRONMENTS

To study XCS performance is stochastic environments
we employ the woods environments in which the usual
deterministic transition function is modi�ed adding
uncertainty to the results of agent actions. The
stochastic version of the woods environments works
as follows. When the agent tries to move in a certain
direction it has probability 1�� (0 � � < 1) of reaching
the correct destination; it has probability � of slipping,
reaching one of the two positions adjacent to its orig-
inal destination. The value � represents the degree of
uncertainty a�ecting agent actions. An example when
� is to 0.5 is illustrated in Figure 1.

We analyze XCS performance in a series of stochas-
tic environments to test how much the generalization
mechanism of XCS is in
uenced by the uncertainty of
the actions. For this purpose we use the stochastic
version of Woods1 (Figure 2), Woods1� for short, and
the stochastic version of Maze4 (Figure 3), Maze4� for
short. We apply two versions of XCS in these environ-
ments. The former is XCS as originally de�ned byWil-
son [6], that is, when generalization is operating; the
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Figure 3: The Maze4 environment.
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Figure 4: Performance of XCS when generalization is
operating, dashed line, and when the generalization is
turned o�, solid line, in Woods1�. Parameter � is set
to 0.12. Performance of tabular Q-learning indicates
optimal performance.

latter is XCS when generalization is not operating.2

In the �rst experiment, we apply these two versions of
XCS to Woods1� when � is 0.1 and 0.50. Population
size is set to 400 classi�ers, while general parameters
are as follows: �=0.2, 
=0.71, �= 25, "0=.01, �=0.8,
�=0.01, �=0.5.3 The results of these experiments are
depicted respectively in Figure 4 and Figure 5. In
each plot we use the performance of tabular Q-learning
to indicate optimal performance. As can be noticed,
when the uncertainty on the agent actions is limited
(i.e. � is 0.1), XCS converges very near to optimal per-
formance: the plots of XCS, XCS with no generaliza-
tion, and Q-learning (which represents optimal perfor-
mance) are almost indistinguishable (Figure 4). The

2Don't care symbols (#) are not inserted in the newly
created classi�ers, nor by the mutation operator.

3Some of these parameters have not been presented in
the overview in Section 2 but are reported here for the
sake of completeness. We refer the interested reader to
Wilson's original paper [6] for a complete discussion of XCS
parameters.
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Figure 5: Performance of XCS when generalization is
operating, dashed line, and when the generalization is
turned o�, solid line, in Woods1�. Parameter � is set
to 0.50. Performance of tabular Q-learning indicates
optimal performance.

performance of XCS, XCS with no generalization, and
Q-learning are still indistinguishable when � is 0.25
(results not reported). However, this does not hold
anymore when the uncertainty is higher, � is 0.5.

The results plotted in Figure 5 show that, when � is
0.5, XCS cannot converge to the optimum if general-
ization is operating. The analysis of the population
dynamics in each single run, shows that during the
�rst two hundred problems the agent has tried few
stochastic transitions that a�ected only a subset of
classi�ers. Consequently only few classi�ers become
inaccurate because of the uncertainty in the environ-
ment; in fact, at the beginning of the plot in Figure 5
XCS seems to converge to the optimum. However, as
the learning proceeds, the inaccuracy caused by un-
certainty on agent actions di�uses to the rest of the
population. 4 As a consequence, classi�ers tend to
become inaccurate, and the genetic algorithm in XCS
may be unable to distinguish between those classi�ers
that are inaccurate because they are overgeneral, from
the ones that are inaccurate because of the uncertainty
in the environment. Since all the classi�ers are al-
most equally inaccurate, the genetic algorithm selects
the classi�er for reproduction almost at random. This
phenomenon results in a loss of the pressure toward
truly more accurate classi�ers because these are not
reproduced preferentially anymore. The overall result
is that performance decreases with wide oscillations.

4This phenomenon is analogous to the propagation of
reward through the classi�ers, because the accuracy pa-
rameters (prediction error ", and �tness F ) are updated
together with the payo� prediction p.
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Figure 6: Performance of XCS when generalization is
operating, dashed line, and when the generalization is
turned o�, solid line, in Maze4�. Parameter � is set
to 0.50. Performance of tabular Q-learning indicates
optimal performance. Curves are averaged over ten
runs.

We �nd similar results when we apply the two versions
of XCS to the stochastic Maze4� using a population of
1600 classi�ers and the same parameter settings used
in the previous experiments. Experimental results re-
ported in [4] show that also in this environment XCS
can converge very near to the optimum when the de-
gree of uncertainty is limited, � is 0.1 or 0.25 (not re-
ported). Like in Woods1�, XCS performance decrease
when � is 0.5. In fact XCS performance in Maze4�
when � is 0.5 (Figure 6) is similar to XCS performance
in Woods1� for the same value of � (Figure 6). In par-
ticular, during the initial �ve hundreds problems, XCS
performance seems to converge to a near optimal so-
lution; then the performance suddenly decreases and
rapidly becomes completely unstable. The behavior
we discussed so far becomes more evident when we ap-
ply XCS to Maze4� when don't cares are not inserted
during covering but only during mutation. Figure 7
compares the performance of this version of XCS and
the optimal performance of tabular Q-learning. Specif-
ically, the average performance over ten runs is plotted
with a solid line, while two dashed lines represent two
single runs. In this case, classi�ers that are inserted
in the population cannot be overgeneral because they
have no don't cares. Accordingly, the system initially
learns an optimal solution for the problems (in Fig-
ure 7, XCS performance is optimal for the �rst part of
problems). As evolution proceeds don't cares are in-
serted in the population and XCS starts to become un-
able to distinguish between those classi�ers that are in-
accurate because they are overgeneral from those that
are inaccurate because of environmental uncertainty.
Accordingly, we have a sudden decrease of XCS per-
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Figure 7: Performance of XCS when don't cares are
not inserted in newly created classi�ers (solid line)
in Maze4� when � is 0.5. Two single runs are rep-
resented by dashed lines. Performance of tabular Q-
learning (horizontal dashed line) indicates optimal per-
formance. Curves are averaged over ten runs.

formance when this phenomenon becomes signi�cant.
As the plots of the two single runs in Figure 7 show this
phenomenon can start at di�erent times depending on
the exploration in the environment.

Before we proceed any further, we wish to note that
our results show that XCS can deal with a signi�cant
degree of uncertainty. In fact the system can converge
to a performance that is very near to the optimum
for values of � up to 0.35 (results not reported). When
the degree of environmental uncertainty increases XCS
performance can dramatically decrease.

5 DEALING WITH UNCERTAINTY

We showed that in stochastic environments XCS can
converge to an optimal solution when the level of un-
certainty is limited. For instance, in the stochastic
versions of Woods1 and Maze4 (Woods1� and Maze4�),
XCS can converge to optimal performance when � is
0.10 or 0.25, while it cannot converge to optimal per-
formance when � is 0.5. This happens because the
system is not able to separate the inaccuracy intro-
duced by overgeneralization from the inaccuracy due
to the uncertainty. In fact both these sources of inac-
curacy are blended together in the parameter ", which
represents the prediction error of a classi�er.

In these types of environments, the prediction error "
can be thought of as the combination of two distinct
components: the prediction error "gen due to overgen-
eralization, and the prediction error "env caused by the
uncertainty on the actions. Assume now that the de-
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Figure 8: The average prediction error of the classi�ers
in the population for XCS in the deterministic Woods1
(solid line) and in the stochastic Woods1� (dashed line).

gree of uncertainty in the environment does not change
in time, i.e., the transition probability distribution is
stationary.5 An extension of XCS can be developed
in which the component "gen caused by overgeneral-
ization is separated from the component "env caused
by the uncertainty in the environment. To follow the
philosophy underlying evolution in Wilson's XCS this
extension should separate the two sources of inaccu-
racy locally, by acting in environmental niches. In the
following, starting from the results discussed in the
previous section, we introduce an extension of XCS,
called XCS�, capable of separating the two compo-
nents, "gen and "env, of the prediction error.

The analysis of XCS behavior in Woods1�, when gener-
alization is not operating, shows the prediction errors
of classi�ers tend to converge to a value that is an in-
ternal representation of the uncertainty observed by
the agent. In particular, at the beginning classi�ers
have low prediction errors because their values have
been just initialized. As the system learns prediction
errors increase since the classi�ers experience the un-
certainty on their actions. Then, after 1000 problems,
prediction errors slightly oscillate because the agent
performs random exploration but, on the average, they
never go beneath a certain threshold.

This phenomenon is illustrated in Figure 8, where the
average prediction error of classi�ers for XCS (without
generalization) in the deterministic Woods1 (solid line),
and in the stochastic Woods1 (dashed line) are com-
pared. As can be noticed, in the deterministic case the
classi�ers become more accurate as the system learns,
and the average prediction error decreases. This con-

5Note that this is also the assumption that is made in
Q-learning to guarantee the convergence to the optimum.



tinues until all the classi�ers are accurate since their
prediction error is below the threshold speci�ed by
the XCS parameter "0. In the stochastic case (dashed
line), the average prediction error never decreases un-
der a certain threshold that depends on the degree of
uncertainty in the environment. If XCS could evaluate
such threshold it could also try to separate the two er-
ror components. Following this idea, we introduce an
extension of XCS in which the system tries to separate
"gen and "env by estimating that threshold.

When XCS is applied to Woods1� the prediction er-
ror of classi�ers oscillates for two reasons: the possible
overgeneralization, and the uncertainty due to the en-
vironment. These oscillations are wider than the ones
experienced when the system does not perform any
generalization. However, if we analyze the evolution
of the error of the classi�er that has the smallest er-
ror in each action set we observe that this statistic is
more stable than prediction error. This happens be-
cause the prediction error in a certain action set, on
the average, does not decrease beneath the threshold
de�ned by the environmental uncertainty that a�ects
agent actions.

Therefore, the minimum prediction error experienced
in each environmental niche can be used to evaluate
the inaccuracy introduced by the environment. We
de�ne a new parameter, �, estimating the minimum
prediction error that the classi�er has observed in the
positions it matched. Each time the classi�er parame-
ters are updated, � is computed as the minimum pre-
diction error of the classi�ers that match the current
environmental niche. The new parameter � is then
updated by the usual Q-learning like technique:

� �+ �"(�� �):

Parameter � estimates the minimum prediction er-
ror of the niches experienced by the classi�er. The
learning rate �" is smaller than the � used to up-
date the other classi�ers parameters (a typical value
is �" = 0:05). A small �" value guarantees that the
estimate given by � is less sensitive to the variance of
the population.

The parameter � is used to separate the prediction
error due to uncertainty "env from the prediction error
due to overgeneralization "gen. The original update
formula for the prediction error " is modi�ed as:

" "+ �(jP � pj � �� ")

In the formula the minimum prediction error � is con-
sidered an evaluation of the inaccuracy due to the un-
certainty on the agent actions. When updating the
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Figure 9: Performance of XCS�, solid line, and XCS,
dashed line, in Woods1�. Parameter � is set to 0.50.
Performance of tabular Q-learning is used to represent
the optimum. Curves are averaged over ten runs.

prediction error ", � is subtracted from jP � pj in or-
der to separate the inaccuracy due to the environment
(represented by �) from the total inaccuracy experi-
enced (represented by jP � pj). Note that, due to the
uncertainty in the environment both � and jP�pjmay
oscillate so that the di�erence jP � pj � � can become
negative. In general we expect that jP � pj � � � 0
because � is a lower bound to the prediction error.
Accordingly when jP � pj � � becomes less than zero
because of oscillations the prediction error update is
done using "0 in place of jP � pj � �.

6 EXPERIMENTAL RESULTS

We now test the extension of XCS we introduced in
the previous section by applying XCS� to the stochas-
tic versions of Woods1 and Maze4 when the uncertainty
a�ects the entire environment, as in the previous ex-
periments, and when uncertainty is limited to some
areas. Finally, we show that XCS� is a proper ex-
tension of XCS in that it coincides with it when the
environment is not stochastic.

6.1 XCS� WITH GLOBAL UNCERTAINTY

We now test the extension of XCS we introduced in the
previous section by applying XCS� to Woods1� and to
Maze4� when � is 0.5. Parameter �" is set to 0.05;
general parameters are set as in the previous experi-
ments. First, we compare XCS and XCS� in Woods1�.
The experimental results, depicted in Figure 9, show
that XCS� converges very near to the optimal perfor-
mance in this environment. Note that XCS� cannot
reach optimal performance because it tries to general-
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Figure 10: Performance of XCS�, solid line, and XCS,
dashed line, in Maze4�. Parameter � is set to 0.50.
Performance of tabular Q-learning is used to represent
the optimum. Curves are averaged over ten runs.
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Figure 11: Maze4 with local uncertainty: in grey cells
the results of agent actions can be uncertain.

ize and therefore it has to deal with overgeneralization.
We have similar results when XCS and XCS� are com-
pared in Maze4�. Results reported in Figure 10 show
that XCS� can converge to a performance that is near
optimal.

6.2 XCS� WITH LOCAL UNCERTAINTY

Uncertainty rarely a�ects the whole environment. In
most cases uncertainty is only limited to some areas.
As an example, consider a wheeled agent moving in
an oÆce environment where all the rooms are covered
with carpet, except for some rooms that are covered
with tiles. The action turn 90 degrees left will have
di�erent results depending on which type of 
oor the
agent is moving on.

Although an environment with limited uncertainty
might appear simpler than one with global uncertainty,
it is worth noting that learning with local uncertainty
implies that the agent learns that same actions may

C

B

A

0.5

0.250.25

Figure 12: The transition function used in the experi-
ments with the local version of Maze4.

behave di�erently in di�erent situations. In particu-
lar, when using XCS to learn in presence of local un-
certainty, the system must be able to evolve accurate
rules that propose the best action in situations free of
uncertainty, and rules which indeed propose the best
action but are inaccurate because they apply in situa-
tion subject to uncertainty.

We apply XCS� in Maze4 when only few cells are
subject to uncertainty. The new version of Maze4 is
depicted in Figure 11. Grey cells represent positions
where the result of agent's action follow the transition
model depicted in Figure 12. Note that cells subject
to uncertainty separates Maze4 into two main areas.
The idea is to make it more diÆcult for the agent
to reach the goal by having a strip of uncertainty to
pass through. Figure 13 compares the performance
of XCS, XCS�, and the optimal performance of tab-
ular Q-learning in Maze4 with local uncertainty. As
can be noticed, XCS� reaches an optimal solution for
this problem. On the contrary, XCS performance is
worse than it was when the uncertainty a�ected all of
the environment. This is mainly due to the fact that
classi�ers matching positions a�ected by uncertainty
tend to reproduce less because they are inaccurate.
Moreover, as in the global case, in these positions the
system rapidly becomes unable to distinguish between
classi�ers that are inaccurate because they are over-
general and classi�ers that are inaccurate because of
uncertainty. Due to the combination of these two fac-
tors, the system tends to learn a partial solution for the
problem in which for those cells subject to uncertainty
there are no classi�ers that propose the best action.

6.3 DETERMINISTIC ENVIRONMENTS

XCS� is an extension to XCS, in that it attempts to
preserve all the main characteristics of the original
system. Consequently, we should expect that in de-
terministic environments XCS� performs as XCS. To
show that this is the case, we apply XCS� and XCS
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Figure 13: Comparison of XCS performance, solid line,
and XCS� performance, dashed line, in the the version
of Maze4 with local uncertainty. Curves are averaged
over ten runs.
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Figure 14: Comparison of XCS performance, solid line,
and XCS� performance, dashed line, in the determin-
istic Maze4. Curves are averaged over ten runs.

to the deterministic Maze4 with the same parameter
settings employed in the previous experiment. Fig-
ure 14 compares the performances of XCS� and XCS
in Maze4. As it can be noticed the performance of
the proposed system is almost identical to that of the
original. These results con�rm that XCS� is a proper
extension of XCS.

7 SUMMARY

We have analyzed XCS behavior in stochastic envi-
ronments where the results of the agent actions are
a�ected by uncertainty. We have shown that XCS
converges to an optimal solution if the degree of uncer-
tainty is signi�cant but limited. Otherwise, XCS can-
not converge to an optimal solution because the sys-

tem may be unable to distinguish between classi�ers
that are inaccurate because they overgeneral and clas-
si�ers that are inaccurate because of the uncertainty
of the actions they advocate. We have introduced an
extension of XCS, XCS�, that tries to separate the in-
accuracy due to overgeneralization from that due to
uncertainty. We have shown that XCS� converges to
optimal performance for a higher degree of uncertainty
both when uncertainty a�ects the whole environment,
and when it a�ects only some areas of the environ-
ment. Finally, we have shown that XCS� is a natural
generalization of XCS, and in fact coincides with it
when the environment is deterministic.
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