Generating Lemmas for Tableau-based Proof Search Using
Genetic Programming

Marc Fuchs
Fakultat fur Informatik
TU Munchen
80290 Munchen, Germany
fuchsm@informatik.tu-muenchen.de

Abstract

Top-down or analytical provers based on the
connection tableau calculus are rather power-
ful, yet have notable shortcomings regarding
redundancy control. A well-known and suc-
cessful technique for alleviating these short-
comings is the use of lemmas. We propose
to use genetic programming to evolve use-
ful lemmas through an interleaved process
of top-down goal decomposition and bottom-
up lemma generation. Experimental studies
show that our method compares very favor-
ably with existing methods, improving on run
time and on the number of solvable problems.

1 Introduction

Automated theorem proving (ATP) is an impor-
tant area of artificial intelligence. There are two
major paradigms for ATP that can be character-
ized as bottom-up reasoning and top-down reason-
wng. Usually, theorem provers centering on bottom-up
reasoning—realized by saturation-based or resolution-
style provers—infer consequences from the initial for-
mulas (clauses) until an obvious inconsistency is de-
rived, whereas top-down provers—often realized by
analytical or tableau-style provers—attempt to recur-
sively break down the proof goal until it 1s reduced to
axioms. Both bottom-up and top-down provers apply
given inference rules to create the search spaces that
need to be traversed in search for a proof.

The search spaces in general are infinite which re-
quires appropriate search-guiding heuristics to control
the search. Both bottom-up and top-down reasoning
have advantages and disadvantages that affect the ef-
ficiency of the search. Bottom-up reasoning can make
use of strong simplification techniques to prune the
search space (e.g., subsumption in resolution systems),
but in its purest form lacks any kind of goal orienta-
tion. Top-down reasoning is per se goal oriented, but
1t suffers from redundant search effort since it is much
more difficult to apply powerful simplification methods
in the context of top-down reasoning (see [11]).

Dirk Fuchs
Fachbereich Informatik
Universitat Kaiserslautern

67663 Kaiserslautern, Germany
dfuchs@informatik.uni-kl.de

Matthias Fuchs
Automated Reasoning Project
Australian National University
Canberra ACT 0200, Australia

fuchs@arp.anu.edu.au

In a way, the strong points of top-down reasoning
are the weak points of bottom-up reasoning and vice
versa. Hence it makes sense to combine both meth-
ods in an appropriate way. For instance, the approach
described in [16] employs a bottom-up prover, but re-
stricts its inferences to certain relevant ones which are
detected by top-down computations. In this paper
we want to go another way and focus on top-down
reasoning with the connection tableau calculus (CTC)
[11]. Past research has demonstrated that introducing
a bottom-up reasoning component into the CTC in the
form of lemmas can be very profitable [14, 6, 5]. The
difficulty of this approach is to provide a small number
of lemmas that are reasonably likely to be useful. Cur-
rent techniques for lemma generation as described in
[14, 6] generate lemmas in a preprocessing phase and
use the produced lemmas in the top-down proof run.
Essentially, the lemma generation is a hill-climbing
search for useful lemmas. Local decisions made during
that process with the help of a quality function may
prevent suitable lemmas from being generated.

Our solution to this problem is to use genetic pro-
gramming (GP) [10] for the lemma generation in order
to avoid local optima during the generation process.
In using GP, we combine, similar to co-evolution, goal
decomposition (i.e, breaking down the goal) with a
saturation-based lemma generation. The fitness mea-
sure used is based on some notion of quality that uti-
lizes similarity criteria. It guarantees that the lemma
production influences the goal decomposition and vice
versa. Thus, we introduce goal orientation into the
bottom-up generation of lemmas. Since the top-down
goal decomposition is also influenced by generated
lemmas, the search is concentrated on “interesting”
regions of the search space in a self-adaptive way. The
performance of our approach is evaluated in the light
of several examples taken from the TPTP library [17].

The paper 1s organized as follows. Section 2 outlines
the basics of the CTC. Section 3 explains how lemmas
can be utilized to alleviate its shortcomings. Our GP-
based approach to create useful lemmas 1s described
in Section 4 and 1s empirically evaluated in Section 5.
Finally, a discussion in Section 6 concludes the paper.

2 Basics of the CTC

The CTC, like resolution, attempts to refute a set of
(input) clauses. A clause C'is a disjunction of literals:
C =0l V...VI],. Each literal is either a negative or
a positive atom, i.e.,l; = A or l; = A. ~[denotes A
or mAif Il =—A or [= A, respectively.

The CTC refutes a clause set C by constructing a
closed connected tableau for C. A (clausal) tableau
is a tree where all non-root nodes are labelled with
literals so that the following condition is satisfied: if
the immediate successor nodes vy, ..., vy of a node N
are labelled with literals ly,...,[,,, respectively, then
l1 V...V, is (an instance of) a clause in C. Hence-
forth, “node or leaf [” will be short hand for “node or
leaf v labelled with {”. A tableau is called connected if
for each node v labelled with [(hence v cannot be the
root) and successor nodes Iy, ..., Iy, there is at least
one [; so that I; = ~I. Connected tableaux will also be
called connection tableauz in the following. A tableau
i1s closed if all branches of 7' are closed. A branch
of T is closed if nodes | and !’ occur on the branch
such that [= ~!’. Otherwise, the branch is open. (A
tableau with at least one open branch is open.)

The CTC employs the inference rules start, exten-
ston, and reduction to produce a closed connected
tableau from a given set C of input clauses. The start
rule can only be applied to the trivial tableau con-
sisting of the root node only. It selects a start clause
from C and attaches its literals (as nodes) to the root.
It is not necessary to consider all clauses in C as pos-
sible start clauses. Commonly, only negative clauses
(all literals are negative atoms) need be a start clause.

Extension attaches a clause C' € C to a leaf [of
an open branch, so that the resulting tableau remains
connected. That is, for at least one literal I’ in C,
there must be a most general unifier (mgu) o such that
o(l'y = o(~l). o is then applied to the whole tableau.
Note that extension closes at least one branch. Reduc-
tion closes a branch of a tableau by finding a mgu ¢ of
the leaf [and a literal I’ elsewhere on the branch such
that o(I) = o(~l'). o is again applied to the whole
tableau (cp. [2]).

Finding a closed connected tableau is a search pro-
cess that, for non-trivial problems, almost certainly
involves inappropriate choices, in particular regarding
extension and reduction steps. Hence, backtracking is
required. However, since it is possible to construct in-
finite tableaux from a finite set C, backtracking criteria
other than “dead ends” are necessary.

To this end, completeness bounds [9, 15] are intro-
duced which restrict the structure of tableaux that can
be constructed. For example, the depth bound limits
the depth, i.e., the maximal length, of a branch. Given
a resource n for the depth bound, backtracking is em-
ployed as soon as an open branch exceeds this limit n.
If all tableaux complying with the chosen completeness
bound and resource have been enumerated without ob-
taining a closed tableau, the resource can be increased.

The literals at leaves of open branches are called
subgoals. Let [y, ..., [, be the leaf literals at the end
of open branches of a tableau T'. The clause {1 V...V,
is called the subgoal clause of T'. The subgoal clause
of T'is a logical consequence of the input clauses (cp.
[11]). The search scheme of the CTC can be viewed as
systematically enumerating all subgoal clauses which
can be derived from the original queries, i.e., the start
clauses. More precisely, a tableau with an instance of
a start clause below the unlabelled root node is called
a query tableau. Such tableaux are enumerated by
the CTC. The subgoal clauses of these tableaux are
called query clauses. Clearly, the CTC is goal ori-
ented, since each enumerated query clause has some
connection with the original queries.

Goal orientation certainly is a strong point of the
CTC. However, the CTC also has its weak points.
The main shortcomings are long proof lengths and
poor redundancy control. The proof length of a closed
tableau 1" is equal to the number of inference appli-
cations to obtain 7. Long proof lengths often are a
consequence of repeatedly solving the same subgoal or
instances thereof.

3 Lemmas in the CTC

To deal with the problems pointed out in the previous
section, a bottom-up reasoning component in the form
of lemmas can be employed.

Basically, lemmas can be seen as macro inference
rules in the search space. A lemma originates from an
open tableau and represents a sequence of inferences
which transforms a subgoal into a (possibly empty) set
of new subgoals. We use the following definition of a
lemma which extends the notions given in [14, 1, 5].

Definition 3.1 (lemma tableau, lemma clause)
Let C be a clause set. Let T be a connection tableau
for C. Let s V...V s, be the subgoal clause of T.
Let H be the set of the subgoals which are immedi-
ate successors of the root node. If H # () we call
T a lemma tableau. If T is a lemma tableau, let s;,
1 < ¢ < n, be the element of H which is left-most
m T. We call sy V...V s, the lemma clause of T
We write s; ¢ ~s1,...,~8i_1,~Sit1,...,~sy and call
s; the lemma head and ~s1, ..., ~8;_1,~8i11,...,~Sn
the lemma tail. In the following, a sentence s; <«
NS, 81, 84, ., 8y (1 < j < n) s called a
contrapositive of sV ...V s,. o
Lemmas can be used like conventional input clauses
during the inference process. An extension step with
a lemma L (by unifying a subgoal with the lemma
head) can be seen as implicitly attaching the lemma
tableau for L below the subgoal.

The following example illustrates our notion of a
lemma and the lemma use in the CTC.

Example 3.1 Let

C = { =h(X),h(X)V=p(X),p(X) V—q(X)V-r(X),
r(X) VA(X),q(a) }

/’\ ‘

pla) ~a(@) ~r(a) ~h{a)
q<‘a> r(a) ha) M@ Pl
pla) hla)

If the negative clauses are the start clauses, the left
tableau is a lemma tableau (but no query tableau)
representing the clause p(a) < —h(a) (which is equiv-
alent to p(a) V h(a)). The right tableau, which is a
query tableau, shows the application of the lemma in
order to close the subgoal =p(a) by extension with the
lemma and performing reduction into the lemma tail.
By using the lemma both proof length and proof depth
can be reduced. o

The example demonstrates that the use of lemmas
as macro operators can reduce the proof depth and
the proof length. Moreover, repeatedly solving cer-
tain subgoals can be avoided by using lemmas, which
also reduces the proof length. Most of the complete-
ness bounds which are of practical interest can profit
from a proof length or depth reduction obtained with
lemmas in the form of a resource reduction (see also
[5]). This means that with lemmas the given input
clauses can be refuted with a smaller resource value.
However, the use of lemmas increases the branching
rate of the search tree. More clauses may be applica-
ble to specific subgoals and a lot of superfluous new
inference possibilities may be introduced, thus enlarg-
ing the search space. One approach to alleviate these
problems is the restriction of the lemma generation to
unit lemmas which are lemmas with an empty tail.
Such lemmas immediately close subgoals and do not
introduce new subgoals.

Even when restricting the lemma use to units, there
is still the problem to generate lemmas which are rel-
evant for the given proof task, i.e., lemmas which can
be used in a proof. A rather small set of lemmas which
is sufficient to reduce the proof length can result in a
dramatic speed-up of the proof search. It is in general
not decidable whether a lemma is relevant for a given
proof task. Therefore, heuristic criteria are applied.
Lemmas are judged with respect to a quality function.
Current lemma generation approaches use a prepro-
cessing phase to generate lemmas by employing some
saturation procedure controlled by a quality function
(see e.g. [14]). The generated lemmas are then used
in a final proof run. This proof run tries to refute the
input clauses to which all (or some selected) generated
lemmas are added.

The generation procedures have two serious diffi-
culties. Firstly, the quality functions used to assess
lemmas are rather vague. The quality of lemmas is
Judged without taking into account the current proof
task. Quality criteria are, for instance, the number of
symbols and the generality of a unit lemma. The crite-

ria, however, ignore the proof goal. A consideration of
query clauses occurring during the refutation attempt
of the input clauses could improve the relevancy esti-
mations. Secondly, the procedures basically perform
some hill-climbing search for useful lemmas. Only the
lemmas with high quality values persist. The gener-
ation of lemmas whose derivation requires the use of
other lemmas, which are considered inappropriate, is
impossible.

To overcome these difficulties, we introduce a novel
GP-based approach for lemma generation. Our gener-
ation procedure works with connection tableaux as in-
dividuals and tries to generate lemma tableaux which
are useful for a proof. In order to allow for better
relevancy estimations of lemmas we also have query
tableaux in the population. Our genetic operators are
similar to conventional GP operators and extend the
inference rules of the CTC. Our fitness measure—Ilike
the quality functions—is based on general purpose cri-
teria like the number of symbols of the lemma or query
represented by an individual. Additionally, we employ
similarity criteria between open subgoals and lemmas
in order to make the lemma generation more goal ori-
ented. If a maximal number of generations is reached,
lemmas are extracted from the final population.

4 The GP Approach

Our algorithm works on a population of fixed size. An
individual corresponds to a connection tableau which
represents a lemma or a query clause. We add type in-
formation to each tableau to clarify whether a tableau
should be viewed as query or lemma tableau. This 1s
necessary since a tableau may represent a query clause
as well as a lemma clause. The initial population is
created in the following way. The input clauses should
be part of the initial population. This means that for
each contrapositive of an input clause, a tableau of
type ‘lemma’ is part of the population which repre-
sents the clause. Furthermore, for each start clause, a
tableau is part of the population which is obtained by
applying the start rule with the respective start clause.
These tableaux are of type ‘query’. In order to start
with more difficult lemmas we may additionally use
lemma clauses which are produced with conventional
lemma generation algorithms (see also Section 5).

We employ three genetic operators, namely repro-
duction, a variant of crossover, and a kind of mutation
operator in order to produce a successor generation.
The operators are applied with fixed probabilities p,,
De, and pp,, respectively (see Section 5). The selected
operator is applied to individuals of the old generation,
which are selected probabilistically proportionate to
their fitness, and produces new individuals which be-
come a part of the successor generation.

To ensure that each generation has available all
lemma and query tableaux which represent input
clauses, reproduction (which simply copies an individ-
ual) is applied to these tableaux as a first step when

producing a successor generation. Deterministically
copying these “designated” tableaux makes sense, be-
cause they are elementary “building blocks” for con-
structing connection tableaux, and should therefore be
present in each generation. After that, the rest of the
successor generation is obtained as described above.

Our crossover operator differs from standard
crossover which exchanges two randomly chosen sub-
trees of two parent individuals. Since in many cases
such an operation will not result in a connection
tableau, crossover has to be constrained. A simple
approach would be to allow crossover at nodes v; and
va (labelled with literals {; and l2) of two individuals
Ty and Th, respectively, only if 4 = mgu(ly,ls) exists.
Then, an exchange of the subtrees could take place and
the resulting tableaux are instantiated with p. This is
certainly a reasonable method, but it neglects the fact
that a re-use of a sub-deduction below v; in tableau
T1 may be possible below vs in 75 although the above
criterion is not applicable. We want to illustrate this
with the following example.

Example 4.1 (Crossover) Let

€ 2 {q(a) vV =p(f(a)), p(f (X)), p(a), =p(X) V —r(X)}.
The following figure shows two tableaux 77 (left)
and T (right) for C. The arrow (also called link)
indicates that the sub-deduction below the literal
-p(f(a)) at node vy in 77 can be re-used below the
goal —p(a) at node vy in Ty. Although —p(f(a)) and
—-p(a) are not unifiable, a reuse is possible, because
we can generalize the sub-tableau below —p(f(a)).
The sub-tableau can be generalized to a closed sub-
tableau with root node —p(f(X)) (by applying the
inferences in the sub-tableau to a most general goal
-p(X)). Analogously, the query —p(a) can be gen-
eralized by performing all inferences which have to
be performed to create 7%, but omitting the infer-
ences in the sub-deduction below —p(a). This re-
sults in a more general query —p(Y). Since —p(Y)
and —p(f(X)) are unifiable, the sub-deduction be-
low node vy 1n 77 can be used below node vy 1n T5.

q(a) —p(f(a))

Crossover creates the following tableau by attaching
the generalized sub-tableau below —p(f(a)) below the
(generalized) goal. The resulting tableau is:

N
ﬂp(f()f)) —r(f(X))
p(f(X))

The sub-deduction below —p(a) cannot be used below
the goal —=p(f(a)) in T} since no generalization can be
performed and the literals are not unifiable. o

In summary, asymmetric link relations between
tableaux can be set up that show which sub-deductions
can replace others (see also [4]). Our crossover vari-
ant produces one new individual. In compliance with
the link relation, in a destination tableau a (possi-
bly empty) sub-tableau is replaced by a sub-tableau
from a source tableau. Then, the modified destina-
tion tableau is instantiated in an appropriate manner
(details can be found in [4]). In the above example,
T1 and T3 serve as source and destination tableau, re-
spectively. Crossover can be viewed as a generalized
extension step which allows us to attach sub-tableaux
rather than only clauses to (inner) nodes. Note that it
is sensible to restrict the depth of tableaux which are
produced by crossover (see Section 5).

Our mutation operator does not perform mutation
in the usual sense. Instead, we use another kind of
genetic operator with the aim to guarantee that each
connection tableau can be created using only the ge-
netic operators. In view of the fact that the start rule
is represented by having in each generation all lemma
and query tableaux corresponding to input clauses (see
above), and that crossover is a generalized form of ex-
tension, we have to make sure that reduction steps can
be performed. Therefore, we employ a genetic opera-
tor which allows for closing (inner) nodes of a tableau
by reduction, and hence serves as a generalized reduc-
tion operator. Since reduction is an asexual operator,
and a structural change of one individual takes place,
we call this operation mutation or reduction mutation.
A detailled description of the genetic operator can be
found in [4].

The application of the genetic operators is con-
trolled with an explicit fitness function which maps
an individual to a real number. Smaller values are
associlated with fitter individuals. The abstract prin-
ciples for measuring the fitness are as follows. Firstly,
clauses should be rather small. If a query clause has a
simple term structure and i1s quite general, it is more
probable that the clause can be solved. Analogously,
it 1s more probable that a general lemma is applicable
in order to close open branches of a tableau. A “size
part” ®g,;.. of the fitness is defined according to these
criteria (see [4] for details).

Furthermore, we use a fitness component which is
based on the similarity between a query and a lemma
clause. If the literals of a query clause appear to be
“almost solvable” (unifiable) with unit lemmas or with
lemma heads (and the tail literals appear to be solv-
able by reduction), then the clause should be given
a small fitness value. It is quite probable that such
a goal decomposition is used in a proof. Conversely,
lemmas which appear to be useful in order to close
subgoals of goal decompositions may be helpful for re-
futing the input clauses. We employ a simple distance
measure defined on literals 1,5 as introduced in [4].
This measure considers certain syntactical properties
of literals (features) and computes the Euclidean dis-
tance between the feature-value vectors of two literals.

We consider query tableaux to be useful if all sub-
goals are similar to unit lemmas. Due to efficiency
reasons we do not consider non-unit lemmas, which
would require a comparison of the open branches with
the lemma tail literals. Lemma clauses are considered
to be useful if the lemma head seems to be applicable
to subgoals of queries and if the lemma tail is small,
preferably empty. We refer the reader to [4] for details
and an exact definition of the “similarity part” ®g;p,.

Finally, the fitness measure ® is computed as a
weighted sum of the size and the distance fitness value.
Thus, we prefer tableaux which appear to be useful for
the given proof task based on the currently available
lemma and query information (small value of ®4;,,) as
well as tableaux which may be useful based on general
experiences (@, small).

The evolutionary search stops if a query tableau
can be extended to a closed tableau using the lemma
tableaux, or a given maximal number of generations is
reached. In the latter case all or some selected lemma
clauses of the current population are used in a final
proof run to refute the given input clauses.

5 Experimental Results

In the following we want to analyze the perfor-
mance of our GP approach when assisting the prover
SETHEO [12] which is based on the CTC. We exam-
ine whether the GP approach improves on conven-
tional lemma generation techniques. Moreover, we
investigate if our new theorem prover which uses a
GP-based lemma preprocessor improves on the con-
ventional prover without assistance by lemmas.

The test problems for examining these aspects are
taken from the domains BOO, COL, GRP, and SET
of the problem library TPTP [17]. We tackled only
“hard problems”. These are problems which cannot
be solved with the conventional SETHEO system within
10 seconds. We used a SUN Ultra 2 and allowed for
a run time of 15 minutes for each problem, which in-
cludes the time for the lemma generation as well as for
the final top-down refutation run.

We employed three systems in our experiments.
The first system is the conventional prover SETHEO
as in [12]. The second system SETHEO/SAT addi-
tionally uses a conventional saturation-based lemma
preprocessor which can be configured in various ways
(described in [4]). In the experiments we used the best
configuration found. Note that we consider a system
which generates only unit lemmas. A final proof run
which tackles the input clauses augmented by lemmas
selected according to [5] is done with the same version
of SETHEO as in our first variant.

The third system SETHEO/GP is based on our new
GP-based lemma generator. At first, in a preprocess-
ing phase, lemmas are generated with GP. The initial-
ization is done as described in Section 4, i.e., the in-
put clauses are used for the generation of lemma and
query tableaux. We also add to the initial popula-

pop. size Mmaz 150, in SET theory 600
max. tableau depth d 7
reproduction prob. p, 0.3
mutation prob. pm, 0/0.3 for Horn/non-Horn logic
crossover prob. p. 1—pr—pm
max. gen. no. Gmazr 15, in SET theory 7

Table 1: Configuration of the GP lemma preprocessor

tion a few lemma tableaux (a subset of the lemma
set used by SETHEO/SAT) generated with the method
given in [4]. Furthermore, we use additional query
tableaux which are derived from the start clauses in a
breadth-first search (see [4] for details). Reproduction
of elements chosen randomly from the current partial
population fills up the population until a given maxi-
mal size is reached. Thus, GP can operate from a well
chosen starting point in the search space, and does
not have to generate all lemmas from scratch. Note
that with these initial lemmas worse results than with
SETHEO/SAT would be obtained. After the initializa-
tion a GP run takes place. The specific configuration
can be found in Table 1. Since the problems from the
SET domain may contain up to 300 clauses, a large
population size is needed there. After the generation
of lemmas with GP, selection criteria are applied anal-
ogously to SETHEO /SAT (see also [5]) in order to select
unit lemmas. Then, a run of SETHEO for refuting the
input clauses plus the chosen lemmas takes place.

The results of our experiments are listed in Ta-
ble 2. We show the number of problems solved within
1, 5, and 15 minutes. The results of SETHEO and
SETHEO/SAT are displayed in the first two columns.
The results of SETHEO/SAT include the time for
lemma generation and selection. The last two columns
list the results of SETHEO/GP. “GP global” shows
statistics regarding the total run-time of a prover con-
sisting of the time for lemma generation with GP (in-
cluding the time for creating the initial population),
lemma selection, and the final proof run, whereas “GP
top-down” gives statistics when omitting the time for
lemma generation and selection. (The GP results are
the best of 5 runs.) Since our actual implementation
of GP is rather inefficient, in particular in SET long
generation times are needed (about 80 seconds).

All lemma methods improve on the conventional
SETHEO system in a rather stable way. Often, the use
of these lemmas leads to a reduction of the resource
needed to find a proof. Thus, considerably smaller
search spaces have to be traversed. Nearly all of our
successes result from reductions of the resource value
needed and not from reordering effects of the search
space within the smallest initial part of the search
space which contains a proof.

When examining our results it becomes clear that,
in spite of the fact that the lemma generation is more
costly when using the GP-based approach, it improves
on the other methods. In all of our domains we achieve
either better or comparable results. Only in the COL

domain Serueo | SAT | GP GP
global | top-down

<1 5 11 11 11

BOO <5 6 12 12 13
<15 11 13 14 14

<1 8 14 10 10

COL <5 10 29 27 27
<15 28 33 33 33

<1 5 9 g g

GRP <5 9 11 15 15
<15 9 11 15 15

<1 18 40 0 43

SET <5 36 48 50 51
<15 41 50 54 54

Table 2: Experimental Results in the TPTP library

domain does GP lead to slightly longer run-times.
9 problems could be solved using GP-generated lem-
mas which are out of reach of the conventional lemma-
generation techniques.

Preliminary tests have shown that GP itself can
only solve trivial problems by closing query tableaux of
the population with lemma tableaux. These problems
can also be solved with a conventional prover within
a few seconds. This is not surprising since we have to
deal with tremendous search spaces. A solution of a
hard problem with a small population size and a small
number of generations as used in the experiments is
unlikely. The use of GP as an “intelligent” lemma
generator is nevertheless very profitable.

6 Discussion

Top-down theorem proving 1s a rather powerful
methodology that can be improved significantly with
lemma-generation techniques. In this paper we
demonstrated that a GP-based lemma generation tech-
nique produces very promising results.

Compared to existing techniques, the population-
based search of GP and its inherent random effects
paired with a simultaneous evolution of top-down goal
decomposition (query tableaux) and bottom-up lemma
generation (lemma tableaux) are novel. In our opin-
ion, these properties are very advantageous, because
they make it possible to guide the search in a sensible
way despite the vagueness and the heuristic nature of
available knowledge.

Applications of GP to automated theorem proving
(ATP) are quite scarce [8, 13, 7], and applications ac-
knowledged by the ATP community are even rarer [3].
We believe that the method presented in this paper
has the potential to make a significant contribution to
ATP research.

References
[1] O.L. Astrachan and D.W. Loveland. The Use

of Lemmas in the Model Elimination Procedure.
Journal of Automated Reasoning, 19(1):117-141,
1997.

[2] M. Fitting. First-Order Logic and Automated
Theorem Proving. Springer, 1996.

[3] M. Fuchs. Evolving combinators. In Proc. CADE-
14, pages 416-430. LNAT 1249, 1997.

[4] M. Fuchs. An Evolutionary Approach for
Combining Top-down and Bottom-up Proof
Search. Technical report, TU Minchen,
1998. See also http://wwwjessen.informatik.
tu-muenchen.de/ftp/Automated Reasoning/
Reports/AR-98-04.ps.gz.

[5] M. Fuchs. Relevancy-Based Lemma Selection for
Model Elimination using Lazy Tableaux Enumer-
ation. In Proceedings of ECAI-98, pages 346-350.
John Wiley & Sons, Ltd., 1998.

[6] M. Fuchs. Similarity-Based Lemma Generation
for Model Elimination. In Proceedings of CADE-
15, pages 33-37. Springer, LNAT 1421, 1998.

[7] M. Fuchs, D. Fuchs, and M. Fuchs. Solving prob-
lems of combinatory logic with genetic program-
ming. In Proc. GP-97, pages 111-118. Morgan
Kaufmann, 1997.

[8] T. Haynes, R. Gamble, L. Knight, and R. Wain-
wright. Entailment for specification refinement.

In Proc. GP-96, pages 90-97. MIT Press, 1996.

[9] R. Korf. Macro-Operators: A Weak Method for
Learning. Artificial Intelligence, 26:35-77, 1985.

[10] J.R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection. MIT Press, Cambridge, MA, 1992.

[11] R. Letz, K. Mayr, and C. Goller. Controlled Inte-
gration of the Cut Rule into Connection Tableau
Calculi. Journal of Automated Reasoning, 13:297—
337, 1994.

[12] M. Moser, O. Ibens, R. Letz, J. Steinbach,
C. Goller, J. S chumann, and K. Mayr. The Model
Elimination Provers SETHEO and E-SETHEO.
Journal of Automated Reasoning, 18(2), 1997.

[13] P. Nordin and W. Banzhaf. Genetic reasoning—
evolving proofs with genetic search. In Proc. GP-
97, pages 255-260. Morgan Kaufmann, 1997.

[14] J. Schumann. Delta - a bottom-up preprocessor
for top-down theorem provers. System Abstract.
In Proceedings of CADE-12. Springer, 1994.

[15] M.E. Stickel. A prolog technology theorem
prover: Implementation by an extended pro-
log compiler. Journal of Automated Reasoning,

4:353-380, 1988.

[16] M.E. Stickel. Upside-Down Meta-Interpretation
of the Model Elimination Theorem-Proving Pro-
cedure for Deduction and Abduction. Journal of

Automated Reasoning, 13:189-210, 1994.

[17] G. Sutcliffe, C.B. Suttner, and T. Yemenis. The
TPTP Problem Library. In CADE-12, pages 252—
266, Nancy, 1994. LNAT 814.

