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Abstract

This paper presents a new idea of modeling one-
dimensional dynamic systems by higher-order
ordinary differential equation (HODE) models in
stead of by the ARMA models used in the
traditional time series analysis. Accordingly,
based on the idea of hybrid evolutionary
modeling, we modify the HEMA algorithm in
(Cao et al., 1998a; Cao et al., 1998b) to approach
the modeling problem of HODEs for dynamic
systems. Two applications of time series are used
to demonstrate its effectiveness and advantages.

1  INTRODUCTION

Many complex systems and nonlinear phenomena which
dynamically change with time exist in real world. It has
long been a great issue for people to build dynamic
mathematical models for those systems based upon the
observed data (i.e., time series) so as to provide basis for
system analysis, design and prediction. The three kinds of
models people have used most in traditional time series
analysis are Autoregressive (AR) Models, Moving Average
(MA) Models and ARMA Models (Xiang et al., 1988; Gan,
1991). Some variations based on those three models are also
studied, such as Autoregressive Integrated Moving Average
(ARIMA) Models (Ozaki, 1977; Box & Jenkins, 1976),
Bilinear Models (Granger & Andersen, 1978; Gabr & Rao,
1981), Threshold Autoregressive (TAR) Models (Tong,
1978) and TARMA Models (Wang et al., 1984). The
traditional methods for solving the modeling problem of
dynamic systems are to choose a model structure for the
system initially, including the type and the order of the
model, determine the parameters contained in the model
subsequently, and test the validity of the model finally
(Brockwell & Davis, 1986; Anderson, 1975). However, it is
usually difficult for people to choose a suitable model
structure without sufficient domain details and human
expertise, and the determination of parameters also requires
the modeler have rich mathematical knowledge and
professional skills. Additionally, the traditional ARMA
Models are linear models which can only reflect a very

limited range of dynamic processes. Considering that the
ARMA Models are linear difference equations in essence,
we present a new idea of modeling one-dimensional
dynamic systems by higher-order ordinary differential
equation (HODE) models in stead of by the ARMA Models.

We have ever proposed a two-level hybrid evolutionary
modeling algorithm called HEMA to approach the modeling
problem of systems of ordinary differential equations
(ODEs) whose main idea is to embed a genetic algorithm
(GA) (Holland, 1975) in genetic programming (GP)
(Cramer, 1985; Koza, 1992; Koza, 1994; Banzhaf et al.,
1997) where GP is employed to optimize the structure of a
model (upper level), while a GA is employed to optimize
the parameters of a model (lower level) (Cao et al., 1998a;
Cao et al., 1998b). Some numerical experiments were done
to test HEMA’s effectiveness. In this paper, based on the
idea of HEMA, we make some modifications to this
algorithm and adjust it to the modeling problem of HODEs
by converting a HODE into a system of ODEs. The
modified algorithm is applied to two practical examples of
time series to testify its effectiveness.

This paper is organized as follows. The problem is defined
in Section 2. In Section 3, we present the structure of
HEMA for HODEs and give some detailed descriptions. In
Section 4, two typical examples are used to test the
effectiveness of the algorithm. Finally, conclusions are
summarized in Section 5.

2  PROBLEM STATEMENT

Suppose that a series of observed data collected from a one-
dimensional system X(t) at successive m time steps can be
written as

X = 
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where ti = t0 + i*∆t (i = 0, 1, 2, …, m), t0 denotes the starting
time, ∆t denotes the interval between two observations. The
modeling problem of HODEs for the dynamic system X(t)



is to find a model of nth-order  ordinary differential
equation (ODE)
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to describe the system such that || X* − X || is minimized and
reliable predictions of the system can also be given based
on the model. Here  || X* − X || is defined as

|| X* − X || = [ ]∑
=
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f is composed of some elementary functions including
triangle functions, exponential functions and power
functions.

For simplicity, the nth-order ordinary differential equation
model with the form of (2) is called ODE(n) model in
following sections.

3 HEMA FOR HODES

Base on the idea of two-level evolutionary modeling, the
structure of HEMA for HODEs can be described in
pseudo code as follows:
Procedure HEMA for HODEs;
begin
    input original data X (0) ;
    preprocess X (0) and get X (1) ;
    input the order of ODE models;
    compute the conversion matrix Y of X(1) ;
    initialize the ODE model population
P(0);
    evaluate P(0);
    s :=0;
    repeat
        simplify P( s);
        normalize P( s);
        for  i : = 1 to popsize  do
        begin
            if(structure( pi ) ∉optimized)
            begin
                check out all the constants
contained in pi ;
                initialize the parameter
population Q(0);
                evaluate Q(0);
                t := 0;
                repeat
                    select Q( t +1) from Q( t )
according to fitness and selection
strategy;
                    recombine Q( t +1) by
using genetic operators(crossover,
mutation and reproduction);
                    evaluate Q( t +1);
                    t  := t +1;
                until  termination

criterion II;
                replace all the parameters
in pi  with the best individual in Q( t );
            end
        end
        select  P ( s+1) from P( s) according
to fitness and selection strategy;

        recombine P( s+1) by using genetic
operators(crossover, mutation and
reproduction);
        evaluate P( s+1);
        s := s+1;
    until  termination criterion I;
    make system prediction based on the best
individual in P( s);
end
To avoid repeated descriptions, we will give some
explanations about those details which differ from the
HEMA for system of ODEs in following subsections.
Interested readers are strongly recommended to refer to
(Cao et al., 1998a; Cao et al., 1998b) to get more details.

3.1  DATA PREPROCESSING
  

As for the original data, we apply low-pass filtering to
eliminate noise at high frequencies by means of the discrete
Fourier transform.

3.2  CONVERSION OF HODE

Suppose that a HODE has the form of
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In order to calculate the approximate values of x in a time
series from t0 to tm by means of numerical integration of
system of ODEs, thus to evaluate the fitness of the model
subsequently, we first convert it into a set of n coupled first-
order ordinary differential equations having the form of
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by the replacement of variables
xy =1 , xy ′=2

, xy ′′=3
, , )1( −= n

n xy      (6)

and compute the conversion matrix Y of X(1):

Y = 
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If we denote Yi = ( yi(t0), yi(t1), , yi(tm))T  then Y1=X(1),
and Yi for i=2, 3, , n, which are the (i-1)st-order
derivatives of x in a time series from t0 to tm respectively,



can be figured out approximately by means of numerical
differentiation. For example, for n 4, we can use the
following formulae of order h2 error:

forward difference formula:
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central difference formula:
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backward difference formula:
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3.3 ENCODING OF THE MODEL POPULATION

Once a HODE is converted into a system of ODEs, we
notice that the only difference between two  HODE

models is the nth equation ),,,,( 21 nn yyytfy �=′ ,

namely the right-hand function of HODE. When initializing
the model population, the THEMA generates popsize such
individuals randomly and each individual is represented as
a binary tree. For example, given a fourth-order ODE

txextxxx +′−′′+′′′= )sin(3)4( , its corresponding equation

teytyyyy 12344 )sin(3 +−+=′ can be represented as a binary

tree shown in Fig. 1. Besides this, the maximum depth of
per tree is restricted by a constant D and the complexity of
a model is measured by the number of nodes contained in
each tree.

Fig. 1. An example of the representation
of a HODE model

3.4 FITNESS EVALUATION OF THE MODEL
POPULATION

Suppose that the corresponding system of ODEs of an
arbitrary individual pi in the model population has the
general form of (5), the fitness of pi can be calculated as
follows:

Procedure  cal_fitness;
begin
    let X*  and ∆X be both ( m+1)-dimensional
column vectors, Y * be a ( m+1) n empty
matrix
    assign the first row of Y to that of Y * ;
    for  i := 2 to m+1 do
    begin
        integrate the system (5) for a step
with some numerical methods by taking the
( i -1)st row of Y as the initial conditions;
       assign the solution to the i th row of
Y* ;
    end
    X * :=Y 1

* ;                  { Y 1
* denotes the

vector composed of the first column of Y * }
    ∆X := X (1) −X* ;
    fitness ( pi ) := || ∆X ||;{The notation “ || ||”
represents the norm of a vector }
end

Obviously, here the lower the fitness is, the better the
individual is. During the fitness evaluation, we use the
fourth-order Runge-Kutta method with fixed stepsize 0.01
to integrate the system and build ODE(1) models, ODE(2)
models, ODE(3) models and ODE(4) models for two
examples of time series respectively.

3.5 SIMPLIFICATION AND NORMALIZATION OF
MODELS

The simplification of models is that of simplifying the tree
structures of each individual in the model population by
replacing some subtrees which consist of some arithmetic
operations between constants with calculable values. This
operation is performed on all individuals in every generation
which will affect the number of parameters to optimize but
not change the fitness of individuals.

The normalization of models is that of adjusting the
structure of such subtree in the model whose root is  “+”
(plus) or “*” (multiplication) and whose left branch or right
branch is a constant to ensure that the constant always lies
on the right of  “+” or “*” in the S-expression of the model.
This operation is helpful to distinguish the model structures
correctly so that “a+x” and “x+a” or “a*x” and “x*a” will
not be regarded as different structures to do the optimization



process redundantly.

3.6 SYSTEM PREDICTION

Once the best evolved model is obtained in one run, we then
take the last row of Y as the initial conditions, integrate the
corresponding system of ODEs for several steps by using
the fourth-order Range-Kutta method with stepsize 0.01 and
get the predicted series of Y*. The first column of Y* is just
the predicted series of the dynamic system based on the
model.

4 COMPUTATIONAL EXPERIMENTS

4.1 PARAMETER SETTINGS AND MEASURES

To examine the effectiveness of the HEMA for HODEs,
we apply it to two practical examples of time series and
build ODE(1) models, ODE(2) models, ODE(3) models
and ODE(4) models for each example respectively. Ten
runs are conducted independently for ODE models with
different order. All the experiments are performed on
Pentium II (266Mhz) using Visual C++ Compilers.  The
parameter settings are as follows:
 For the evolutionary modeling process:
    We use the function set F = {+, −, *, /, ∧, sin, cos,
exp, ln} where  x^n  symbolizes xn (0<n<5), the
terminal set T = {y1 yn t c} where n is the order of
ODE and c is a random constant, a population size of 50,
a maximum tree depth of 4 and a maximum of 50
generations per run.
 For the parameter optimization process:
   We use a population size of 20, a 60% crossover rate,
a 30% mutation rate and a 10% reproduction rate, and the
termination criterion of that the fitness value of the best
individual has remained unchanged for 3 generations.

In addition, the following measures are applied to
compare the modeling results of HODEs with different
order for two examples:
  fitting error (FE) and prediction error (PE) which are
defined as

FE = ∑
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where ix denotes the observed value, ix̂ denotes the

fitting value and the predicted value of the HODE model
for FE and PE respectively, m is the number of observed
data to build a model and n is the number of time steps
required to predict. To be specific, for Example I, m=110,
n=4; for Example II, m=220, n=6.
  average fitting error (AFE) and average prediction
error (APE) which are the mean values of FE and PE of
the HODE models obtained in ten runs respectively.

  average number of nodes (ANnodes) which is the mean
value of the number of nodes of the HODE models obtained
in ten runs.
  number of success (Nsucc), namely the number of runs in
which the best evolved model can give reasonable
predictions. If the best evolved model in one run can not
make system predictions at all or its prediction error are
enormously large, we declare it a failure; or else a success.

4.2 EXAMPLE I: LEOPARD CAT QUANTITY OF
CANADA

The experimental data are cited from (Xiang et al., 1988)
which are about the quantity of the leopard cats of Canada
from 1831 to 1944. Many statisticians have ever shown
great interests to the dynamic data. We now take the
observed data of the first 110 years as history data to build
HODE models and predict the values of the last four years.

As the amplitude of original data leaps greatly, we first
compute their values of common logarithm and take the
transformed data as input to build HODE models.

The statistical results of ten runs for Example I are shown in
Table 1.

Table 1. The Statistical Results of Modeling by ODE
Models for Example I (10 runs)

Model ODE(1)  ODE(2) ODE(3) ODE(4)

AFE 3.561151  1.243644  0.124922 0.507806

APE 0.852183  0.522207  0.264809 0.574626

ANnodes 9.2 8.4 8.4 8.8

Mean
Time(sec.)

2280 3064  2325 1397

Nsucc 10 10 10 10

Obviously, the ODE(3) model is most desirable to describe
the system as both its AFE and APE are much smaller than
those of other three models. We show the best ODE(3)
model in ten runs in Table 2 and illustrate its curves of
fitting and prediction in Fig. 2.

Table 2. The Best ODE(3) Model in Ten Runs for Example I

Evolutionary
Solution 
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FE 0.123900
PE 0.264711

 Observed Value 3.000000 3.201397 3.424392 3.530968
Predicted Value 2.999852 3.219896 3.482772 3.788497



We can see that both the fitting values and the predicted
values are pretty good and, more importantly, the model is
quite simple in structure. In (Xiang et al., 1988), a TAR(2,
2; 8, 3) model has been built for the dynamic data, but its
structure is rather complicated.

4.3 EXAMPLE II: CHEMICAL REACTION
TEMPERATURE

The experimental data are cited from (Box & Jenkins,
1976) which are about the centigrade temperature of some
chemical reaction process recorded every other minute. In
this experiment, we take the recorded data of the first 220
minutes as history data to build HODE models and
predict the values of the last 6 minutes.

The statistical results of ten runs  for Example II are
shown in Table 3.

Table 3. The Statistical Results of Modeling by ODE
Models for Example II (10 runs)

Model  ODE(1)  ODE(2) ODE(3) ODE(4)

AFE 3.272348  0.938791 0.083298  0.387948

APE 3.773765  1.679618 3.648096  2.104190

ANnodes 7 7 8.4 6.6

Mean
Time(sec.)

4303 5299  4432 3488

Nsucc 10 10 10 7

From the results we see that of the four models, the ODE(1)
model is the worst as it has the largest AFE and APE; the
ODE(3) model has a minimal AFE but its APE is large; for
the ODE(4) model, its AFE and APE seem good, but it has
only a 70% rate of success. As a tradeoff of fitting and
prediction, we think that the ODE(2) model is superior to
other models in describing this time series whose order is
identical to the AR(2) model built in (Gan, 1991)

xt=1.806681xt-1"0.80668163xt-2 + at (
2

aσ =0.02774) (12)

The results of the best ODE(2) model in ten runs are shown
in Table 4 and its fitting and prediction curves are illustrated
in Fig. 3.

Table 4. The Best ODE(2) Model in Ten Runs for Example II

Evolutionary
Solution 
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FE 0.943623
PE 1.566485

Observed Value   20.2   19.7   19.3   19.1   19.0   18.8
Predicted Value 20.250847 19.711464 19.179573 18.653486 18.121416 17.589474

Fig. 2. The fitting and prediction curves of the best ODE(3) models for Example I
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It is surprising to see that the fitting values of the model can
coincide with the observed data so well and its predicted
values are also good. Moreover, the model is a complex
nonlinear differential equation which contains cosine
function in the expression. In fact, by running the HEMA
for HODEs, the computer can search out many such
complex models whose structures are usually unimaginable
to human minds.

5  CONCLUSIONS

This paper presents a new idea of modeling one-
dimensional dynamic systems by higher-order ordinary
differential equation (HODE) models in stead of by the
ARMA Models used in the traditional time series analysis.
Accordingly, based on the idea of two-level hybrid
evolutionary modeling, we modify the HEMA algorithm in
(Cao et al., 1998a; Cao et al., 1998b) to approach the
modeling problem of HODEs for dynamic systems. This
modified algorithm has some advantages compared with the
traditional modeling methods used for time series analysis:

1) It has broken through the limitation of linear models in
traditional ARMA Models, and is capable of building
complex non-linear HODE models for one-dimensional
dynamic systems.
2) The optimization of the model structure and the
optimization of the parameters of the model could be done
simultaneously by using the two-level processes in the
HEMA for HODEs.
3) It depends very little on domain details and human
expertise. The whole modeling process is carried on
automatically. By running the algorithm, the computer can
even find some excellent HODE models whose structures
are unimaginable to human minds.
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