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Abstract

This paper presents a new idea of modeling one-
dimensional dynamic systems by higher-order
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limited range of dynamic processes. Considering that the
ARMA Models are linear difference equations in essence,
we present a new idea of modeling one-dimensional
dynamic systems by higher-order ordinary differential

ordinary differential equation (HODE) models in equation (HODE) models in stead of by the ARMA Models.

stead of by the ARMA models used in the
traditional time series analysis. Accordingly,
based on the idea of hybrid evolutionary
modeling, we modify the HEMA algorithm in
(Cao et al., 1998a; Cao et al., 1998b) to approach
the modeling problem of HODEs for dynamic
systems. Two applications of time series are used
to demonstrate its effectiveness and advantages.

We have ever proposed a two-level hybrid evolutionary
modeling algorithm called HEMA to approach the modeling
problem of systems of ordinary differential equations
(ODEs) whose main idea is to embed a genetic algorithm
(GA) (Holland, 1975) in genetic programming (GP)
(Cramer, 1985; Koza, 1992; Koza, 1994; Banzhaf et al.,
1997) where GP is employed to optimize the structure of a
model (upper level), while a GA is employed to optimize
the parameters of a model (lower level) (Cao et al., 1998a;
Cao et al., 1998b). Some numerical experiments were done
Many complex systems and nonlinear phenomena whickt10 test HEMA's effectiveness. In this Paper, .based on Fhe
dynamically change with time exist in real world. It has idea .Of HEMA, we. make some _mod|f|cat|ons to_this
long been a great issue for people to build .dynami algorithm and adjust it to the modeling problem of HODEs
% converting a HODE into a system of ODEs. The

mathematical m.odelsl for th_ose systems bas?d upon t odified algorithm is applied to two practical examples of
observed data (i.e., time series) so as to provide basis f?.r

system analysis, design and prediction. The three kinds o{’me series to testify its effectiveness.
models people have used most in traditional time serie

1 INTRODUCTION

. : . This paper is organized as follows. The problem is defined
analysis are Autoregressive (AR) Models, Moving Averagein Section 2. In Section 3, we present the structure of

(MA) Models anq ARMA Models (Xiang et al., 1988; Gan, HEMA for HODEs and give some detailed descriptions. In
1991). Some variations based on those three models are al§%ction 4, two typical examples are used to test the
studied, such as Autoregressive Integrated Moving Averaggffectivenéss of the algorithm. Finally, conclusions are
(ARIMA) Models (Ozaki, 1977; Box & Jenkins, 1976), summarized in Section 5 ' '

Bilinear Models (Granger & Andersen, 1978; Gabr & Rao, '

1981), Threshold Autoregressive (TAR) Models (Tong,

1978) and TARMA Models (Wang et al., 1984). The2 PROBLEM STATEMENT

traditional methods for solving the modeling problem of that . £ ob d dat lected f

dynamic systems are to choose a model structure for th@UPPOSe that a series of observed data collected from a one-
system initially, including the type and the order of thedimensional system X(at successiventime steps can be

model, determine the parameters contained in the moddyritien as

subsequently, and test the validity of the model finally gx(te) g

(Brockwell & Davis, 1986; Anderson, 1975). However, it is X=pgx(t,) O @)
usually difficult for people to choose a suitable model 0: 0
structure without sufficient domain details and human ﬁx(tm )ﬁ

expertise, and the determination of parameters also require
the modeler have rich mathematical knowledge an
professional skills. Additionally, the traditional ARMA

Models are linear models which can only reflect a very

Shereti =t, +i*At(i=0, 1, 2,..., m), t, denotes the starting
time, At denotes the interval between two observations. The
modeling problem of HODEs for the dynamic systent) X(



is to find a model ofnth-order
equation (ODE)

« (M . . L , (0D
x @®)=ftx{),x t),x (t),...,X ®) @
to describe the system such tfiat” — X || is minimized and

ordinary differential

reliable predictions of the system can also be given based

on the model. Here || X" — X || is defined as

IX =X || = \/i[x*(ti)—x(ti)]z

®3)

f is composed of some elementary functions including
triangle functions, exponential functions and power

functions.
For simplicity, thenth-order ordinary differential equation

model with the form of (2) is called OD&)( model in
following sections.

3 HEMA FOR HODES

Base on the idea of two-level evolutionary modeling, the

structure of HEMA for HODEs can be described in

pseudo code as follows:

Procedure HEMA for HODEs;

begin
input original data X © .
preprocess X © and get X
input the order of ODE models;
compute  the conversion matrix Yof X ;
initialize the ODE model population

(1) :

H0);
evaluate A0);
s :=0;
repeat
simplify A s);
normalize A(s);
for i :=1to popsize do
begin
if(structure( p;) Loptimized)
begin
checkoutalltheconstants
contained in Pi;
initialize the parameter
population Qo);
evaluate d0);
t =0
repeat
select qt+1)from t)
according to fitness and selection
strategy;
recombine qt+l) by
using genetic  operators(crossover,
mutation and reproduction);
evaluate d t+1);
t = t+1,
until termination

criterion Il;
replace all the parameters

in p;, with the best individual in dt);
end
end
select P(s+l)from A s)according

to fitness and selection strategy;

recombine P( s+1) by using genetic
operators(crossover, mutation and
reproduction);
evaluate P s+1);
S:= S+1;

until termination criterion I;

make system prediction based on the best

individual in A(s);
end
To avoid repeated descriptions, we will give some

explanations about those details which differ from the
HEMA for system of ODEs in following subsections.
Interested readers are strongly recommended to refer to
(Cao et al., 1998a; Cao et al., 199&byet more details.

3.1 DATA PREPROCESSING

As for the original data, we apply low-pass filtering to
eliminate noise at high frequencies by means of the discrete
Fourier transform.

3.2 CONVERSION OF HODE

Suppose that a HODE has the form of

X () = f(t,x(t),x () ,x (©),...,x" (1) (4)
In order to calculate the approximate valuex afi a time
series fromt, to t, by means of numerical integration of
system of ODEs, thus to evaluate the fitness of the model
subsequently, we first convert it into a sehafoupled first-
order ordinary differential equations having the form of

Byly =Y

Oy ' =
Yy, =Y
B ’
[

(5)

'

O

Dyn—l = yn

O i

@yn f (t, yl’
by the replacement of variables

V=X, y, =%, y,=x" e,y =X

and compute the conversion matrix Y dbPX
AYi(to). Y2 (to), Y (o)
oy (t), Yo (ty), Yo (1)

DZ . . 0
Eyl(tm)i yz(tm)! !yn(tm) ﬁ
If we denote Y= (yi(to), Vi(t), =, yi(t,))" then Y,=X®,
and Y for i=2, 3, ->-, n, which are the i{l)st-order
derivatives ofx in a time series from, to t,, respectively,

Yo s Ya)

-1)

(6)

Y= SN



can be figured out approximately by means of numericaB.4 FITNESS EVALUATION OF THE MODEL

differentiation. For example, fon<<4, we can use the

following formulae of ordeh? error:
» forward difference formula:
"= X A%, — 3X

POPULATION

Suppose that the corresponding system of ODEs of an

arbitrary individualp, in the model population has the

X, = on general form of (5), the fitness pf can be calculated as
follows:
X "= Xiws T 4AX., — 5%, — 2X, (8)
i h? Procedure cal_fitness;
w_ = 3X,, +14X,, — 24x,,, +18X,,, - 5X, begin
Xi = TE let X" and AX be both ( m+1)-dimensional
« central difference formula: column VectorS, Y : be a ( mi-l) Xn empty
C Xy — X, matrix ,
Xi = — on assignthefirstrowof Y tothatofY "
T Ko 2% + X, (9) Loer o =2to mr1 do
o= - gin
h integrate the system (5) for a step
wme Xisog = 2Xi + 2% = Xy with some numerical methods by taking the
' 2h?® (i -1)strowofY astheinitialconditions;
» backward difference formula: assignthesolutiontothe i throwof
r3% —4AXi. t X, Y
X, =
' 2h end
n2% = 5%, + A%, — X, (20) X =Y {Y . . denotesthe .
Xj = e vector composed of the first column of Y }
=Y @O -
wm_ OX, = 18X, +24X,_, —14X,_5; +3X,_, . AX =X X .
Xi = TE fitness (p):= | &AX |;{Thenotation* IS

represents the norm of a vector }
3.3 ENCODING OF THE MODEL POPULATION end
Once a HODE is converted into a system of ODESs, We_Obwously, here the lower the fitness is, the better the

: . individual is. During the fithess evaluation, we use the
notice that the only c_in‘ferer’]ce between two  HODE fourth-order Runge-Kutta method with fixed stepsize 0.01
models is thenth equationy = f(t,y,,V¥,,...,Y,)

to integrate the system and build ODE(1) models, ODE(2)
namely the right-hand function of HODE. When initializing models, ODE(3) models and ODE(4) models for two
the model population, the THEMA generafespsizesuch ~ examples of time series respectively.

individuals randomly and each individual is represented as

a binary tree. For example, given a fourth-order ODE 3.5 SIMPLIFICATION AND NORMALIZATION OF

x@ = 3x" +sin(x") —tx + x€, its corresponding equation MODELS

y, =3y, +sinf,) —ty, +y,€ can be represented as a binary The simplification of models is that of simplifying the tree
tree shown in Fig. 1. Besides this, the maximum depth ofstructures of each individual in the model population by
per tree is restricted by a const@naind the complexity of replacing some subtrees which consist of some arithmetic
a model is measured by the number of nodes contained iaperations between constants with calculable values. This
each tree. operation is performed on all individuals in every generation
O which will affect the number of parameters to optimize but
not change the fitness of individuals.

The normalization of models is that of adjusting the
structure of such subtree in the model whose root is  “+”
(plus) or “*" (multiplication) and whose left branch or right
branch is a constant to ensure that the constant always lies
on the right of “+” or “*” in the S-expression of the model.
This operation is helpful to distinguish the model structures
correctly so thatd+x” and “x+a” or “a*x” and “x*a” will

not be regarded as different structures to do the optimization

Fig. 1. An example of the representation
of a HODE model



process redundantly. + average number of nodes (AMN) which is the mean
value of the number of nodes of the HODE models obtained

3.6 SYSTEM PREDICTION in ten runs.

) ) _ * number of success (), namely the number of runs in
Once the best evolved model is obtained in one run, we th&jhich the best evolved model can give reasonable
take the last row of Y as the initial conditions, integrate theredictions. If the best evolved model in one run can not
corresponding system of ODEs for several steps by usingyake system predictions at all or its prediction error are
the fourth-order Range-Kutta method with stepsize 0.01 andnormously large, we declare it a failure; or else a success.
get the predicted series of.YThe first column of Yis just

the predicted series of the dynamic system based on ﬂ]ﬁz EXAMPLE |: LEOPARD CAT QUANTITY OF

model. CANADA
4 COMPUTATIONAL EXPERIMENTS The experimental data are cited from (Xiang et al., 1988)
which are about the quantity of the leopard cats of Canada
4.1 PARAMETER SETTINGS AND MEASURES from 1831 to 1944. Many statisticians have ever shown

great interests to the dynamic data. We now take the
To examine the effectiveness of the HEMA for HODESs, observed data of the first 110 years as history data to build
we apply it to two practical examples of time series andHODE models and predict the values of the last four years.
build ODE(1) models, ODE(2) models, ODE(3) models
and ODE(4) models for each example respectively. Tes the amplitude of original data leaps greatly, we first
runs are conducted independently for ODE models witttompute their values of common logarithm and take the
different order. All the experiments are performed ontransformed data as input to build HODE models.
Pentium Il (266Mhz) using Visual C++ Compilers. The

parameter settings are as follows: The statistical results of ten runs for Example | are shown in
* For the evolutionary modeling process: Table 1.
We use the function set F = {-, * /, [0, sin, cos Table 1. The Statistical Results of Modeling by ODE
exp In} where x*n  symbolizes X" (0<n<5), the Models for Example I (10 runs)
terminal set T =¥;, ***, ¥, t, ¢} wherenis the order of

ODE andc is a random constant, a population size of 50| Model | ODE(1) | ODE(2) | ODE(3) | ODE(4)
a maximum tree depth of 4 and a maximum of 50 AFE  [3.561151] 1.243644] 0.124922 0.507806

generations per run. APE 0.852183| 0.522207 0.264809 0.574626
* For the parameter optimization process: ' ' ) ) P

We use a population size of 20, a 60% crossover rateAN oges 9.2 8.4 8.4 8.8
a 30% mutation rate and a 10% reproduction rate, and te\jaan 2280 3064 2325 1397
termination criterion of that the fitness value of the bes Time(sec,
individual has remained unchanged for 3 generations. NI 10 10 10 10

In addition, the following measures are applied to ) . ] )
compare the modeling results of HODEs with differentObviously, the ODE(3) model is most desirable to describe
order for two examp|es: the SyStem as both its AFE and APE are much smaller than

- fitting error (FE) and prediction error (PE) which are those of other three models. We show the best ODE(3)
model in ten runs in Table 2 and illustrate its curves of

defined as o T
— — fitting and prediction in Fig. 2.
FE = Z()A(u - %;)? PE = Z()’ZI -%)? (11) .
= P4 Table 2.The Best ODE(3) Model in Ten Runs for Example |
where X denotes the observed value; denotes the _ Cdy, /dt =y,
. . Evolutionary | Ly /gt =
fitting value and the predicted value of the HODE model g tion cdy, =Y
for FE and PE respectivelm is the number of observed Eply3 /dt =y, /(y, —(-0.143929))
data to build a model and is the number of time steps Equivalent ODE X" = x" /(X +0.143929
required to predict. To be specific, for Example110, 3
n=4; for Example 11/m=220,n=6. EE ?);63322
« average fitting error (AFE) and average predictio :

¢ Observed Valug 3.000000 3.201397 3.424pB92 3.53()968
2.9998%52 3.219896 3.482772 3.78B497

error (APE) which are the mean values of FE and PE g
the HODE models obtained in ten runs respectively.

"Predicted Valug

A1
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Fig. 2. The fitting and prediction curves of the best ODE(3) models for Example |

We can see that both the fitting values and the predicted Table 3. The Statistical Results of Modeling by ODE
values are pretty good and, more importantly, the model is Models for Example Il (10 runs)
quite simple in structure. In (Xiang et al., 1988), a TAR(2,

2; 8, 3) model has been built for the dynamic data, but its Model ODE(1)| ODE(2) | ODE(3)] ODE(4)

structure is rather complicated. AFE | 3.272348 0.93879] 0.0832p8 0.387948

4.3 EXAMPLE II: CHEMICAL REACTION APE 3.77376% 1.679618 3.648006 2.104190
TEMPERATURE AN e 7 7 8.4 6.6

The experimental data are cited from (Box & Jenkins| Meéan | 4303 5299 4432 3488

1976) which are about the centigrade temperature of sonp&ime(sec.

chemical reaction process recorded every other minute. |n Nsuce 10 10 10 7

this experiment, we take the recorded data of the first 220

minutes as history data to build HODE models andrrom the results we see that of the four models, the ODE(1)

predict the values of the last 6 minutes. model is the worst as it has the largest AFE and APE; the
ODE(3) model has a minimal AFE but its APE is large; for

The Sl‘atiStica| reSUItS Of ten runs fOI’ EXampIe Il arethe ODE(4) modeL its AFE and APE seem good’ but it has

shown in Table 3. only a 70% rate of success. As a tradeoff of fitting and
prediction, we think that the ODE(2) model is superior to
other models in describing this time series whose order is
identical to the AR(2) model built in (Gan, 1991)

x=1.80668%,, - 0.80668168., + a,(g > =0.02774) (12)

The results of the best ODE(2) model in ten runs are shown
in Table 4 and its fitting and prediction curves are illustrated
in Fig. 3.

Table 4. The Best ODE(2) Model in Ten Runs for Example II

Evolutionary Ody, /dt =y,
Solution qdy, /dt =y, /cos(y, * 1.219242 )
Equivalent ODE X" = x'/cos(1.219242x)
FE 0.943623
PE 1.566485
Observed Value 20.2 19.7 19.3 19.1 19.0 18.9
Predicted Value 20.25084f7 19.711464 19.179573 18.653486 18.121416 17.989474
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Fig. 3. The fitting and prediction curves of the best ODE(2) model for Example II

It is surprising to see that the fitting values of the model canAcknowledgements
coincide with the observed data so well and its predicted
values are also good. Moreover, the model is a complexThe authors would like to thank the anonymous referees for
nonlinear differential equation which contains cosine their comments on the paper. This work was supported in
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complex models whose structures are usually unimaginableChina.
to human minds.
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