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Abstract

Size fair and homologous crossover genetic
operators for tree based genetic program-
ming are described and tested. Both pro-
duce considerably reduced increases in pro-
gram size and no detrimental e�ect on GP
performance. GP search spaces are parti-
tioned by the ridge in the number of pro-
gram v. their size and depth. A ramped uni-
form random initialisation is described which
straddles the ridge. With subtree crossover
trees increase about one level per generation
leading to sub-quadratic bloat in length.

1 INTRODUCTION

It has been known for some time that programs within
GP populations tend to rapidly increase in size as the
population evolves. If unchecked this consumes exces-
sive machine resources. This is usually addressed ei-
ther by enforcing a size or depth limit on the programs
or by an explicit size penalty in the �tness measure,
although other techniques may be used. Both main
approaches have problems.

It has been shown that the protective e�ect of invi-
able code (which does not e�ect the �tness of the pro-
gram) is not su�cient to explain all cases of bloat.
Indeed there are at least two mechanisms involved [8].
However we also suggest these are manifestations of
an underlying cause: any stochastic search technique,

such as GP, will tend to �nd the most common pro-

grams in the search space of the current best �tness.

Since in general there are more of these which are long
than there are which are short (but GP starts with
the shorter ones) the population tends to be �lled with
longer and longer programs. The exponential growth
in the number of programs with size is a very strong

driving factor. It may be the cause of bloat even if the
�tness function changes rapidly or we penalise pro-
grams with the same �tness as their parents [7].

Using this argument we devised an unbiased tree mu-
tation operator which carefully controls variation in
size and produces much less bloat [8]. In Section 2 we
describe the corresponding crossover operator and in
Section 3 we describe means of extending it to increase
the chance of crossover between like parts of parent
trees yielding a more homologous operator. We com-
pare the evolution of tree size and depth for the three
crossover operators starting from three types of ini-
tial random populations: standard \ramped half-and-
half" [4, pages 92{93] \ramped half-and-half" with
bigger initial trees and ramped uniform random (de-
scribed in Section 4). In Section 5 we compare both
new operators with standard subtree crossover on two
continuous domain problems (symbolic regression of
the quintic and sextic polynomials) and two discrete
problems (Boolean 6 multiplexor and 11 multiplexor).
This is followed by a discussion in Section 6 and we
conclude in Section 7.

2 SIZE FAIR CROSSOVER

In size fair crossover we select in the normal way two
parents and the crossover point in the �rst parent,
i.e. the one which supplies the root node. The dif-
ference is the choice of the second crossover point.
The size of the subtree to be deleted from the �rst
parent is calculated and this is used to guide the ran-
dom choice of the second crossover point. The size
of every subtree in the second parent is calculated.
Those bigger than 1+2� jsubtree to be deletedj are
excluded. Note each o�spring will be no more than
jsubtree to be deletedj + 1 nodes longer than its �rst
parent. For the remainder, we count the number that
are shorter (n

�

), the same (n0) and longer (n+) than
the subtree to be deleted. We also calculate the mean



size di�erence for both smaller (mean
�

) and bigger
(mean+) subtrees. If there are no smaller or no bigger
trees then the size of the inserted subtree will be equal
to that of the subtree to be deleted. Note a terminal
is always replaced by another terminal.

We use a biased roulette wheel to select the length
of the subtree. If there is more than one subtree
of the desired length, we choose between them uni-
formly at random. Thus the chance of a subtree be-
ing selected falls in proportion to the number of other
subtrees in the second parent of the same size. The
probability fair crossover make no change in size is
p0 = 1=jsubtree to be deletedj. All the shorter lengths
have the same probability of being selected, as do
all the longer lengths. However we use the mean
size di�erence to balance these two probabilities so
that on average there is no change of length. I.e.
p+ = 1�p0

n+(1+mean+=mean
�

)

3 HOMOLOGOUS CROSSOVER

Standard GP crossover moves code fragments from one
program to another. It is assumed that since the code
fragment has survived the selection process, it must
have some worth and so using it to create a new pro-
gram is more likely to produce a better program. How-
ever it can be anticipated that the worth of a code
fragment will depend upon the context within which
it is executed. Moving into a di�erent program at a
random location may destroy this context [10]. Sec-
ondly the presence of bloat may indicate that the code
fragment is not good, only that has survived the se-
lection process by being not harmful. With this in
mind several context preserving crossovers have been
suggested [2, 11] (and [9] for linear GP). These aim
to increase the chance of moving the code fragment to
a (syntactically) similar part of the recipient program
and thus preserve its context and so worth. Some of
these have only had mixed success and so we propose
a new homologous crossover operator.

The homologous crossover operator works identically
to the size fair crossover operator up to the last step.
Instead of randomly choosing between all the available
subtrees in the second parent of the desired size in ho-
mologous crossover we deterministically choose the one
closest to the subtree in the �rst parent. We de�ne
the distance between the two crossover points using
only their locations and the shapes of the two trees.
The closeness of two points within the trees is given
by the depth at which their routes back to the root
diverge. Note homologous crossover on two identical
trees will produce an identical o�spring if the o�spring
is of the same size. On average in quintic polynomial

runs with standard initial populations 16% of homol-
ogous crossovers produced an o�spring identical to its
�rst parent. In contrast only 7% of fair and 5% stan-
dard crossovers did.

4 RAMPED UNIFORM INITIALISE

In [14] binary tree populations are shown evolving
away from both full or sparse trees. In fact towards
the most common tree shape [8]. In this section we de-
scribe a new means of creating the initial population
in which the population starts with common trees of a
range of lengths. We anticipate that such a population
will evolve to bigger trees but remain near the most
common tree shape (for a given length).

Uniform sampling as described by Iba [3] not only
ensures almost all the initial population has one of
the common shapes but also ensures they are near
the maximum possible length. Instead we adopt a
more gradualist approach similar to \ramped half-
and-half" and instead generate a uniform range of
program sizes. Our algorithm is similar to Iba's
but is fast and stable even for large trees. The
algorithm to generate a random tree of a given
length is based upon Alonso's bijective algorithm [1].
C++ code can be found at ftp.cs.bham.ac.uk

/pub/authors/W.B.Langdon/gp-code/rand tree.cc.

Firstly a program length is chosen at random. Next
one of the combinations of numbers of function arities
which can create trees of this size is chosen at ran-
dom. Since each combination of arities corresponds to
a di�erent number of programs, the choice is biased
in proportion to this number. Then a random tree is
created and converted to a random program by label-
ing its internal nodes with functions of the same arity
chosen at random from the function set and its leafs
are labeled with random terminals. (In the symbolic
regression problems the chance of choosing x is 50%).
Ramped uniform produces programs with shapes near
the ridge in the search space, while \ramped half-and-
half" produces many more large full trees.

5 EXPERIMENTS

The four bench mark problems are symbolic regres-
sion of the quintic polynomial [5] symbolic regres-
sion of the sextic polynomial [5] learning the Boolean
6-multiplexer [4, page 187] and the Boolean 11-
multiplexer functions [4]. Apart from the absence of
size or depth restrictions and the use of tournament
selection our GP runs are essentially the same as [4]
and [5]. Parameters are summarised in Tables 1 and 2



Table 1: GP Parameters for the Symbolic Regression

Objective quintic polynomial x5 � 2x3 + x (sextic
polynomial x6 � 2x4 + x2)

Terminals x and 250 random constants
Functions + � � % (protected division)
Fitness Mean error in 50 �tness cases
Hits Number �tness cases where error < 0:01
Selection Tournament 7, non-elitist, generational
Pop Size 4000
Parameters 90% one child crossover, no mutation.
Termination Maximum number of generations 50

Table 2: GP Parameters for Multiplexor Problems

Objective Evolve the Boolean 6 (11) multiplexor
Terminals D0 D1 D2 D3 (D4 D5 D6 D7) A0 A1 (A2)
Functions AND OR IF NOT
Fitness The 26 (211) combinations of the inputs
Pop size 500 (4000)

(Multiplexor is as Table 1 unless stated). We speed
up GP on the two Boolean problems by extending the
bit packing technique described in [12] to IF. This
enabled us to evaluate 32 �tness cases simultaneously.

To test the importance of the initial population we car-
ried out experiments with both the standard \ramped
half-and-half" method and also using it to create big-
ger trees with maximum depths between 5 and 8,
corresponding to binary (multiplexor) trees up to a
length of 255 (3280 in principle although the maxi-
mum observed was 611). Duplicate prevention was
not used. The range of random program sizes cre-
ated using the ramped uniform method was chosen to
have the same minimum size and similar mean size
to standard \ramped half-and-half". (Note \ramped
half-and-half" produces a small fraction of very big
trees; much bigger than the biggest we created using
ramped uniform).

For each of the four problems we performed 50 runs
for each combination of crossover type and means of
creating the initial population. The results of these
4� 50� 3� 3 runs are summarised in Table 3.

5.1 EVOLUTION OF SIZE

In all 36 cases we see the GP population bloats. (The
initial populations start with mean sizes near 14, or 75
for R 5{8). However there is a clear separation between
standard crossover and the two new crossovers. In
all cases standard crossover produces far bigger trees.
(The mean length of programs at the end of the runs

Table 3: Means of 50 runs with each crossover
Experiment num e�ort Sol size Final pop

sol 000 mean min{max mean max
Qu R2{6 stand 39 660 218 15{1205 752 3276

R2{6 fair 38 630 63 15{ 153 116 251
R2{6 homo 37 670 61 17{ 157 85 162

Qu R5{8 stand 29 1000 352 27{1871 815 3169
R5{8 fair 32 880 106 27{ 337 147 277
R5{8 homo 29 970 77 25{ 177 113 213

Qu U3{25 stand 42 520 337 15{1485 1188 5124
U3{25 fair 39 610 60 15{ 145 157 381
U3{25 homo 28 950 50 17{ 119 147 354

Sex R2{6 stand 13 3100 451 53{1209 735 2852
R2{6 fair 7 4400 75 15{ 139 119 251
R2{6 homo 9 3900 61 15{ 177 105 209

Sex R5{8 stand 32 920 408 31{1019 919 3415
R5{8 fair 26 1300 116 29{ 321 164 307
R5{8 homo 22 1300 88 27{ 181 122 219

Sex U3{25 stand 26 1300 633 61{2037 1332 5446
U3{25 fair 25 1300 123 35{ 235 190 408
U3{25 homo 19 1900 107 15{ 205 171 360

6M R2{6 stand 39 38 96 15{ 275 731 2573
R2{6 fair 47 24 47 10{ 160 138 260
R2{6 homo 46 32 42 10{ 114 121 236

6M R5{8 stand 45 42 205 34{ 845 852 2734
R5{8 fair 47 30 118 36{ 324 206 349
R5{8 homo 45 44 110 28{ 266 177 308

6M U3{25 stand 33 36 59 12{ 435 655 2781
U3{25 fair 26 64 36 14{ 104 133 283
U3{25 homo 24 75 35 10{ 189 128 277

11M R2{6 stand 37 750 292 57{1344 684 2832
R2{6 fair 49 270 93 35{ 228 176 368
R2{6 homo 47 290 79 25{ 207 156 338

11M R5{8 stand 10 4100 439 223{ 894 679 2349
R5{8 fair 43 540 212 83{ 452 248 481
R5{8 homo 32 960 221 77{ 504 244 463

11M U3{25 stand 36 680 251 90{ 896 686 3172
U3{25 fair 18 1400 86 50{ 116 179 399
U3{25 homo 24 930 86 53{ 142 173 390

is given in column 9 of Table 3. While the last column
gives the average size of the biggest program at the end
of the run). This is also reected in the fact that it
also produces bigger solutions. There isn't such a clear
cut di�erence between fair and homologous crossover.

Figure 1 shows the evolution of program lengths in the
population for the quintic symbolic regression prob-
lem starting from R 2{6 initial populations. It shows
the typical behaviour, where program size and the
spread of sizes in the population in runs using standard
crossover grow rapidly and non-linearly. In contrast
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Figure 1: Evolution of population program length from
R 2{6 populations. Error bars indicate standard devi-
ation in population. Mean of 50 runs of quintic poly-
nomial problem.

both fair crossover and homologous crossover show
the hoped for reduction in bloat. In both these cases
growth in program size is much slower and more linear.

5.2 EVOLUTION OF DEPTH

Figure 2 shows the evolution of program depths for the
same quintic runs as Figure 1. It shows the typical be-
haviour, where both program depth and the spread
of depths in the population in runs using standard
crossover grow rapidly but apparently linearly. Over
the last 3=4 of the run the mean growth is 1.2 layers
per generation. Which greatly exceeds 0.2 for fair and
homologous crossover runs.

Figure 3 shows the evolution of program depths for
each our four problems and each of the three meth-
ods of creating the initial population. It is evident
that the linear growth in program mean depth is not
a uke but may be an important property of standard
subtree crossover (in the absence of depth or size lim-
its). Table 4 gives the mean and max program depths
and their average rate of increase over the last 38 gen-
erations of the runs. While not problem independent,
Table 4 shows the rate of increase in depth is consis-
tently close to unity. As discussed in [8] this, together
with remaining close to the ridge in the number of
programs versus their shape leads to a prediction of
growth of sub-quadratic growth in program length (for

modest size programs we expect size O(gens1:3) rising
to a limit of quadratic growth for jprogramj � 1000.
Over the last 38 generations the measured values are
near O(gens

1:25
)).
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Figure 2: Evolution of population program depth. Er-
ror bars indicate standard deviation in population.
Means of 50 quintic polynomial runs.
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Figure 3: Evolution of population program depth.
Means of 50 runs with standard crossover for each
problem and initial populations.

Table 4: Program Depth, standard crossover 50 runs
Problem Initiali- Final pop Growth per gen

sation mean max mean max
Quintic R2{6 54 181 1.2 4.0

R5{8 43 128 0.8 2.4
U 3{25 101 332 2.2 7.0

Sextic R2{6 47 150 1.1 3.5
R5{8 45 131 0.9 2.5
U 3{25 98 312 1.9 5.8

6-Mux R2{6 39 101 0.8 2.1
R5{8 40 97 0.7 1.9
U 3{25 56 172 1.2 3.6

11-Mux R2{6 34 107 0.7 2.1
R5{8 32 90 0.5 1.4
U 3{25 45 157 0.9 2.9



5.3 EVOLUTION OF SHAPE

Figure 4 shows the average evolution of all 450 initial
populations used in the quintic polynomial problem
(the behaviour of the other three problems is similar).
For standard crossover (+) Figure 4 shows GP popu-
lation behave much as they do for other problems [8],
with programs tending both to grow bigger and deeper
but also tending to be near the combination of size and
depth for which there are most programs.

We see both fair (�) and homologous (2) crossover
producing trees of similar shapes as standard crossover
(+) (again near the peak number of programs) but
moving much more slowly along a similar trajectory.

As shown in [8] for very di�erent problems standard
crossover evolves the population towards the peak in
the distribution of programs versus their shape. How-
ever like [14] the population retains a long term mem-
ory of how it was initialised and the mean evolutionary
curves do not coalesce. This is consistent with the view
that on average populations follow the steepest gradi-
ent in the density of programs. Apart from nearly full
trees the gradient is almost parallel to the y-axis with
only a little component towards the ridge and so steep-
est ascent routes do not rapidly coalesce on the ridge.
(Note the population mean in individual runs wonders
considerably either side of the ridge).

Again we see fair and homologous runs show much
reduced bloat (the tick marks every �ve generations
are much closer together) and lie close to each other.
However both runs with bigger initial populations and
those produced by ramped uniform deviate from the
mean shape followed by standard crossover runs and
create deeper trees. This may be because, while size
change is carefully controlled, no speci�c restrictions
are placed on depth exploration, allowing the popu-
lation to move more freely in this direction. Future
genetic operators might consider this aspect of bloat.

5.4 SEARCH EFFICIENCY

As shown in Table 3 in all four problems most of
the nine experiments have similar search e�ciency
in terms of number of solutions found or \e�ort" [4,
page 194]. Even with 50 runs, there are two cases
where the di�erence can be thought statistically re-
liable, even though in others the di�erences may be
large. 1) all three crossover operators perform slightly
better with the two new means of creating the ini-
tial random programs in the sextic polynomial and 2)
in the 11-multiplexor problem standard crossover per-
forms slightly worse on large initial programs. I.e. the
new operators perform at least as well as the original.
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Figure 4: Evolution of mean population program
shape showing e�ect of three types of initial popula-
tions. Tick marks every 5 generations. The full tree
and minimal tree limits are shown with dotted lines, as
are the most likely shape (peak) and the 5% and 95%
limits (which enclose 90% of all programs of a given
size). Means of 50 of quintic polynomial runs. Note
log log scales.

5.5 HOMOLOGOUS MEASUREMENTS

It is disappointing that homologous crossover shows
little performance gain over fair crossover. We expect
it to increase the convergence of the GP populations.
In particular, in the multiplexor runs, we would hope
to see common trees evolving with combinations of ad-
dress bits as the �rst arguments of IF functions and
data bits as the second and third arguments. Using
population variety and number of duplicate children
produced we do see a little evidence for some conver-
gence but it doesn't appear to have a big impact on
the spread of �tness values or search e�ciency.

6 DISCUSSION

The impressive suppression of bloat produced by fair
crossover was expected as it concurs with our the-
ory of bloat [8] and similar results for fair mutation.
While they are both designed with a view to reduc-
ing bloat by carefully controlling how the search space
is sampled (i.e. by sampling programs of neighbour-
ing lengths) and alternative view of their success, is
by closely correlating the size of the inserted subtree
with that of the removed they suppress the \removal
bias" [15] bloat mechanism and remaining bloat is due
to some other mechanism probably inviable code [6].
It is also possible that reduced rate of growth derives
from the upper bound on the size of the replacement
subtree in both cases.



The simple linear growth in mean depth of near one
level per generation gives a simple problem indepen-
dent prediction of when a population will be severely
a�ected by a depth limit. The curve indicating the
ridge in the distribution of programs against their size
and shape is known for binary trees [13] and can be
precalculated for more complex function sets. Thus
given a predicted depth this may be converted into a
predicted program size. We predict that standard GP
will run into common depth (17 layers) or size limit
(which can be as low as 50 or 200 nodes), within a
few generations and certainly before the 50 genera-
tions commonly used.

7 CONCLUSIONS

We have presented and demonstrated on four bench
mark problems a new bloat reduced crossover opera-
tor, a new homologous crossover operator and a new
mechanism for creating random populations for tree
based genetic programming. The results in terms
of reduction in growth of both mean and maximum
program and solution sizes are impressive and are
achieved with out reduction in search e�ciency.

While we have demonstrated the homologous crossover
operator is e�ective at �nding solutions and reducing
bloat, we have not yet shown it to be greatly more
e�cient. Growth in program sizes was found not to
depend overly on the initial population however it
does have a dominant role in the evolution of program
shapes. The ridge in the distribution of programs for
each size and shape acts to divide the search space.
\Ramped half-and-half" does not search a large part of
the search space corresponding to long thin trees (and
vice-versa an initial population of long thin trees may
not search the part of the search space corresponding
to short bushy trees).

Average growth in program depth when using stan-
dard subtree crossover is near linear in these problems.
When combined with the known distribution of pro-
grams, this yields a prediction of sub-quadratic growth
in program size. This indicates GP populations using
standard crossover (and no parsimony techniques) will
quickly reach bounds on size or depth commonly used.
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