
Large Populations Are Not Always The Best Choice In
Genetic Programming

Matthias Fuchs

Automated Reasoning Project, RSISE
Australian National University

Canberra ACT 0200, AUSTRALIA
Email: fuchs@arp.anu.edu.au, URL: http://arp.anu.edu.au:80/~fuchs

Abstract

In genetic programming a general consensus
is that the population should be as large as
practically possible or sensible. In this pa-
per we examine a batch of problems of com-
binatory logic, previously successfully tack-
led with genetic programming, which seem to
defy this consensus. Our experimental data
gives evidence that smaller populations are
competitive or even slightly better. More-
over, hill-climbing appears to exhibit the best
performance. While these results are in a way
unexpected, theoretical considerations pro-
vide a possible explanation in terms of a spe-
cial constellation rather than a general mis-
conception as to the bene�ts of large popula-
tions or genetic programming as such.

1 Introduction

Genetic programming (GP) [Koza, 1992] is an evolu-
tionary search technique based on the genetic algo-
rithm [Holland, 1992]. Given the problem-dependent
�tness measure, the search behaviour of GP depends
on the genetic operators , the selection strategy , and
the size of the population (and, to a lesser extent, on
how the initial random generation G0 is produced).

From the beginning, crossover was the predomi-
nant genetic operator. Recent work, however, has
shown that alternative genetic operators, in partic-
ular variants of mutation, can perform just as well
or even better [Angeline, 1997; Harries and Smith,
1997; Hooper et al., 1997; Luke and Spector, 1998;
Fuchs, 1998]. A variety of selection strategies is be-
ing utilised in numerous implementations of GP (e.g.,
�tness-proportionate selection, various forms of tour-
nament selection, elite selection, etc.). Similar to the

genetic operators, the way the selection strategy af-
fects the search behaviour is hard to predict, and its
appropriateness depends on the given circumstances.

As for the population size, a general rule in GP is
to use a population which is as large as practically
possible or sensible. Results presented in [Gathercole
and Ross, 1997] showed that large populations can be
outperformed by smaller ones. Thus, a suitable pop-
ulation size also appears to depend on the problem
to be solved (and the choices made for all the other
components of GP).

[Fuchs et al., 1997] demonstrated a very successful
application of GP to theorem proving in the context
of combinatory logic (CL). The experiments given in
[Fuchs et al., 1997] showed that the search e�ort of GP
(i.e., the number of individuals that need to be pro-
cessed to obtain a successful individual with a prob-
ability of 0.99) was roughly the same for population
sizes 500, 1000, and 2000. In this paper, we present
empirical evidence which indicates that the perfor-
mance of GP does not deteriorate even when reducing
the population size to 50 (in the context of crossover)
or when using the most extreme form of mutation,
namely random hill-climbing .

While the experimental results are interesting in
themselves, we also examined these problems theoreti-
cally to shed some light on the somewhat peculiar and
in a way unexpected behaviour of GP. The theoretical
considerations provide possible explanations as to why
smaller populations can perform as well as, or even
better than, larger populations. This is particularly
helpful and reassuring in view of the possibly inade-
quate and consequently unreliable experimental data
obtained in connection with GP [Daida et al., 1997].
While isolated experimental data may entice people
to jump to conclusions ([Lang, 1995] countered by
[Koza, 1995]), theoretical investigations provide a safer
ground for drawing valid conclusions, and often make
it possible to identify disturbances of general trends as



particular constellations rather than evidence of mis-
conception or basic 
aws. Thus, the main purpose of
this paper is to demonstrate that, on the one hand,
there are situations and problems that do not conform
with common believes. On the other hand, the paper
shows that these situations do not constitute a reason-
able cause for discrediting common believes regarding
GP or even GP itself.

We begin with a short introduction to CL and the
way it is tackled with GP.

2 Combinatory Logic and GP

Problems of CL are fundamental for studying theoret-
ical and practical aspects of functional programming
[Peyton Jones, 1987]. Such problems are typically
tackled with automated theorem provers. [Fuchs et al.,
1997] introduced a method for solving certain prob-
lems of CL with GP and examined its performance on
30 problems. The method performed very well, solv-
ing 27 of the 30 problems. As a matter of fact, GP
clearly outperformed theorem provers regarding these
problems, which was also acknowledged by the theo-
rem proving community [Fuchs, 1997].

In [Barendregt, 1981] CL is de�ned by equational
axioms for the combinators S and K: Sxyz = xz(yz)
and Kxy = x. Expressions are implicitly left-

associated, i.e., xyz
def

= (xy)z. x, y, and z denote
variables. Besides combinators S and K various other
combinators can be studied. The general idea is that
combinators represent (functional) programs that are
speci�ed by de�ning equations. For an arbitrary in-
stantiation of the variables on the left-hand side of the
equation these programs produce the correspondingly
instantiated expression on the right-hand side as out-
put. A given set of combinators is called a basis .

The problems we are dealing with here can be char-
acterised as follows: Given a basis B, the question
is whether the elementary combinators in B can be
combined so that the resulting compound combinator
exhibits a desired input-output behaviour. (Hence-
forth, elementary and compound combinators will not
be distinguished and simply referred to as combina-
tors.) Consider, for instance, B = fB;Wg where
Bxyz = x(yz) and Wxy = xyy. The question is
whether there is a combinator � composed of Bs
and Ws that satis�es �xy = x(yy). As a matter of
fact, � = BWB is a solution of this problem since
BWBxy =W (Bx)y = Bxyy = x(yy).

In order to solve such problems of CL, GP is em-
ployed to search for combinators with the desired
input-output behaviour. To this end we represent
combinators with \proper" trees by introducing a bi-
nary function symbol a (\apply"). E.g., the com-

binators BWB and B(WW ) given in short notation
then read as a(a(B;W ); B) and a(B; a(W;W )), re-
spectively. Thus, the set of function symbols F = fag
and the set of terminal symbols T = B. The search
space is the set of all (complete) binary trees with in-
ternal nodes labelled by a and leaves labelled by ele-
ments of B.
We employed the following variant of GP: The ini-

tial random population or generation G0 is generated
with the grow method (cp. [Koza, 1992]). More pre-
cisely, a random binary tree is created by placing either
the symbol a at the root with probability pa or a com-
binator from B with probability (1 � pa) � pC , where
pC = 1=jBj. If symbol a is put at the root, we recur-
sively proceed for both subtrees. The maximal depth
of random trees is 10 (cp. [Fuchs et al., 1997] or [Fuchs,
1997]). In all our experiments we used pa = 0:5.
A successor generation Gi+1 is computed by using

elite or truncate selection. In our experiments, the
30% �ttest individuals of generation Gi are copied
to Gi+1. These surviving individuals S then serve as
parents for producing o�spring to restock Gi+1. O�-
spring can be produced with crossover or mutation.
We apply \standard" one-point subtree crossover .
That is, crossover selects two (not necessarily distinct)
parents from the pool of surviving individuals S . (Note
that all individuals in S have the same chance to be-
come a parent.) In each parent a subtree is chosen at
random, and two \children" are produced by copying
the parents and exchanging the subtrees.
The mutation operator performs a simple random

mutation (one-point mutation). A parent is drawn
from S, and a child is produced by copying the parent
and replacing a randomly chosen subtree with a ran-
dom tree. This random tree is created exactly like the
random trees in generation G0. The maximal depth of
trees produced by crossover or mutation is 17.
The �tness measure � checks how well a combina-

tor � realizes the desired input-output behaviour. To
this end, the actual output of � is compared with the
desired output using a simple tree-di�erence measure.
If �(�) = 0 then � is a solution. Consequently, the
success predicate is 9� 2 Gi : �(�) = 0. (Due to
space limitations we have to refer the reader to [Fuchs
et al., 1997] or [Fuchs, 1997] for more details on �.)

3 Experimental Results

In [Fuchs et al., 1997] (and [Fuchs, 1997]) 30 prob-
lems of CL were investigated. (These problems can be
found in the domain COL of the public TPTP library
[Sutcli�e et al., 1994], a large collection of problems
for theorem provers.) In this paper we concentrate on
18 of those 30 problems, omitting problems COL006-1,
COL037-1, COL042-1, COL043-1, COL057-1, COL067-1,



and COL072-1, because the success rate for these prob-
lems is so low (even 0 for three of these problems)
that they cannot provide useful data for statistical
and comparative analyses regarding search e�ort. We
also omitted problems COL029-1 through COL033-1,
because they are mostly solved by producing a ran-
dom generation G0, and therefore do not contribute
useful information to comparative studies concerning
population size.
The search e�ort is determined based on the (em-

pirically obtained) number I(M;G; z) of individuals
that need to be processed to produce a successful in-
dividual by generation G with a probability z, given
a population of size M (cp. [Koza, 1992]). Follow-
ing [Koza, 1992], we let z = 0:99. Furthermore,
M 2 f50; 100; 500; 1000; 2000g. For a given problem,
100 runs of GP are executed which provide us with the
(empirical) probabilities P (M;G) to succeed by gen-
eration G. Each run is limited to Gmax = 50; 000=M
generations. The number of runs R(M;G; z) required
to produce at least one successful individual by gen-
eration G with probability z, given a population of
size M , can be determined with the help of

1� (1� P (M;G))R(M;G;z) = z

which gives us

R(M;G; z) =
log(1� z)

log(1� P (M;G))

and

I(M;G; z) =M � R(M;G; z) � (G+ 1):

The search e�ort is measured by

I�(M; z) = minfI(M;G; z) j 0 � G � Gmaxg:

(For M = 50, we let Gmax = 500 for practical rea-
sons: The experiments in particular withM = 100 and
M = 500 had shown that the generation G� account-
ing for the minimal search e�ort, that is I�(M; z) =
I(M;G�; z), occurred clearly before Gmax. Hence,
Gmax = 1000 appeared to be an unnecessarily large
value, which was sustained by G� � 51 in our ex-
periments with M = 50. See also Section 5.) In all
our experiments we used elite selection with a 30%
survival rate, and the random generation G0 was pro-
duced with the grow method as described in Section 2.
Table 1 shows the search e�ort required when em-

ploying one-point crossover. The �rst column lists the
problem names, and the remaining columns show the
respective value of I�(M; 0:99), where the value of M
is given in the head of the columns. (The results for
M 2 f500; 1000; 2000g are taken from [Fuchs et al.,

Table 1: Search e�ort required when using crossover.

Problem 50 100 500 1000 2000
COL003-1 90,000 304,000 140,000 200,000 196,000
COL004-1 | 258,400 787,500 360,000 476,000
COL034-1 45,900 96,800 135,000 225,000 180,000
COL035-1 34,200 27,000 37,500 40,000 34,000
COL036-1 129,200 688,500 684,000 784,000 704,000
COL038-1 285,000 240,000 704,000 667,000 880,000
COL039-1 10,850 6,400 8,000 10,000 12,000
COL041-1 45,200 47,500 62,500 72,000 90,000
COL044-1 62,000 67,500 81,000 75,000 100,000
COL046-1 582,800 172,500 241,000 220,000 320,000
COL049-1 56,500 52,500 87,000 113,000 168,000
COL060-1 11,250 12,800 11,000 10,000 12,000
COL061-1 9,100 10,000 12,000 8,000 12,000
COL062-1 38,850 45,900 57,000 64,000 60,000
COL063-1 33,350 32,500 35,000 30,000 40,000
COL064-1 101,700 76,800 201,500 320,000 208,000
COL065-1 57,000 456,000 560,000 720,000 680,000
COL066-1 56,350 55,800 63,000 66,000 48,000

1997].) Note the entry `|' in column 50 (i.e.,M = 50)
for problem COL004-1 which indicates that no success-
ful individual could be produced in 100 runs.
Table 2 lists the results for one-point mutation anal-

ogously to Table 1. In connection with mutation, we
omitted the experiments with population sizeM = 50.
Instead, we ran experiments with hill-climbing (HC)
(see column `HC' in Table 2). Hence, we pushed things
to the limit since, essentially, hill-climbing corresponds
to mutation with M = 1: In the beginning, a random
individual is generated. Then the following process is
iterated until a maximal number of iterations, also de-
noted by Gmax, is reached, or a successful individual
is produced. In each iteration, one o�spring is ob-
tained by applying one-point mutation. The parent
is replaced with the o�spring if the o�spring is �tter
than the parent. If the �tness is the same, the parent
is replaced with a probability of 0.5.
For a given problem, the probability P (G) for HC

to succeed by iteration G was determined based on
1000 runs of HC. Analogously to the search e�ort of
GP (for HC we have the special caseM = 1) we obtain

R(G; z) =
log(1� z)

log(1� P (G))
; I(G; z) = R(G; z) � (G+1)

and thus the search e�ort is

I�(z) = minfI(G; z) j 0 � G � Gmaxg:

In our experiments, we let Gmax = 2000. Similar to
M = 50 in connection with crossover, we preferred this



Table 2: Search e�ort required when using mutation.

Problem HC 100 500 1000 2000
COL003-1 116,596 105,000 149,000 208,000 240,000
COL004-1 345,681 292,500 392,000 468,000 456,000
COL034-1 65,600 91,200 147,000 160,000 238,000
COL035-1 16,107 30,000 28,000 36,000 38,000
COL036-1 185,504 179,200 1,024,000 735,000 864,000
COL038-1 158,912 262,400 229,500 459,000 840,000
COL039-1 4,603 9,300 11,000 10,000 10,000
COL041-1 23,548 45,900 80,000 84,000 120,000
COL044-1 45,436 86,400 96,000 112,000 126,000
COL046-1 118,286 126,900 204,000 260,000 380,000
COL049-1 59,527 64,000 87,000 135,000 144,000
COL060-1 6,929 10,800 13,500 11,000 14,000
COL061-1 6,027 9,600 10,000 9,000 16,000
COL062-1 39,196 74,800 82,500 76,000 84,000
COL063-1 22,270 34,100 45,000 36,000 40,000
COL064-1 63,270 157,500 237,500 234,000 240,000
COL065-1 232,517 1,596,000 798,000 551,000 714,000
COL066-1 32,221 61,600 85,000 78,000 80,000

value toGmax = 50; 000 for practical reasons, and used
the released time for more runs (1000 instead of 100).
See also Section 5 in this context.

When comparing the search e�ort for the various
population sizes and HC we can detect no advantage
on the parts of larger populations. As a matter of
fact, HC appears to perform better than GP, which in
turn appears to have a slightly better performance for
smaller populations in connection with both crossover
and mutation. (Note that our results here sustain the
results presented in [Fuchs, 1998] as to a comparable
performance of crossover and mutation for problems of
CL.) A few runaways can be attributed to the statisti-
cal inadequacy of our data due to a restricted number
of runs to obtain P (M;G) or P (G). The restriction
is of course necessary for practical reasons. (Execut-
ing 100 runs with a certain populations size M for all
18 problems took ca. 24 hours on a SPARCstation Ul-
tra.) Thus, the fact that no successful individual was
found by crossover in 100 runs with M = 50 for prob-
lem COL004-1, or the superior performance of the same
setting for problem COL065-1, should not be overrated.

The entirety of the statistical data for all 18 prob-
lems, however, draws a rather clear picture in favour
of HC. We underline this observation with a brief sta-
tistical analysis. The search e�ort of HC is compared
with the search e�ort of GP using mutation and M 2
f100; 500; 1000; 2000g (cp. left-hand side of Table 3).
Given a certain M (see the �rst column of Table 3),
the data pairs (I�1 (z); I

�

1 (M; z)); : : : ; (I�18(z); I
�

18(M; z))

Table 3: Comparing HC with mutation, and crossover
(M = 50) with crossover, for various population sizes
M 2 f100; 500; 1000; 2000g.

HC crossover with M = 50
pop. size corr. slope o�set corr. slope o�set

100 0.57 2.24 -11,965 0.25 0.34 107,783
500 0.72 2.14 23,028 0.42 0.69 116,532
1000 0.86 1.96 35,166 0.33 0.61 154,221
2000 0.78 2.37 54,595 0.45 0.88 135,199

representing the search e�ort of HC and mutation for
the 18 problems are subject to linear regression re-
sulting in a slope and o�set value given in the respec-
tive columns of Table 3, expressing the search e�ort
of mutation as a linear function of the search e�ort
of HC. We also computed the correlation coe�cient
for the data pairs. Especially for M � 500 we have
a rather good positive correlation, a slope of approxi-
mately 2, and a positive o�set. The same comparison
between crossover with M = 50 and crossover with
M 2 f100; 500; 1000; 2000g is not as impressive (cp.
right-hand side of Table 3), but it does not reveal a
clearly inferior performance for M = 50. (We omitted
COL004-1 from this comparison.)
In view of our experimental results the bene�ts of

large populations are questioned. In the following sec-
tion we try to shed some light on these in a way un-
expected observations with theoretical considerations.

4 Theoretical Considerations

In this section we give possible explanations for the ob-
servations made in conjunction with our experiments
in Section 3. According to these experiments (see also
[Fuchs, 1998]) crossover and mutation do not cause GP
to have a considerably di�erent performance. There-
fore, we shall concentrate on the e�ects population size
has on GP when using mutation as the sole genetic op-
erator, and we shall later comment on crossover.
In view of the excellent performance of HC we want

to examine if we can gain anything with respect to
search e�ort if we have a population of M parallel
and independent \hill-climbers". Given the probabil-
ity P (G) for one hill-climber to succeed by genera-
tion G, the probability Q(M;G) that at least one of
the M hill-climbers succeeds by generation G is

Q(M;G) = 1� (1� P (G))M :

Hence we have

R(M;G; z) =
log(1� z)

log(1�Q(M;G))
=

log(1� z)

M � log(1� P (G))



and consequently

I(M;G; z) = M �R(M;G; z) � (G+ 1)

= R(G; z) � (G+ 1)

= I(G; z):

That is, we cannot expect any gains w.r.t. search e�ort
if we deployM parallel and independent hill-climbers.

The search conducted by both HC and GP is char-
acterised by exploration and exploitation. Exploration
is a more dynamic process that samples large areas
of the search space to open up areas of high �tness,
whereas exploitation is a more static process that ex-
amines the search space in the \vicinity" of individ-
uals with high �tness. In connection with HC, the
distinction between an initial (and quick) exploration
phase (\rushing up or down a hill") and the subsequent
(much longer lasting) exploitation phase (\slowly wan-
dering around on a plateau") is rather clear, with a
kind of sudden transition between the two phases.
For GP, the transition from exploration to exploita-

tion is more of a continuous nature, emphasising explo-
ration and massive changes in the population during
the initial stages of the search. The exploration aspect
gradually diminishes, giving way to more and more
exploitation with a more stable population. However,
assuming that convergence has not occurred, there is
always a certain amount of exploration going on that is
missing in HC once a plateau has been reached. These
remaining exploration capabilities are responsible for
GP having a better chance to escape from local optima
than HC, without sacri�cing the bene�ts of exploiting
high-�tness areas. For larger populations, this prop-
erty becomes more and more notable and e�ective.

When searching on a plateau, which can be consid-
ered exploitation, GP (using mutation) and HC do not
di�er. This becomes particularly clear in the extreme
case where the �tness landscape is one huge plateau
with very few \holes" representing solutions. In this
case the chance to �nd a solution increases with the
number of trial solutions tested. (\After wandering
around the plateau long enough one may eventually
step into a hole.") That is, we basically have the same
situation as in the case ofM hill-climbers (GP searches
in a di�erent, but not more e�ective way), and conse-
quently the population size does not matter. (Under
these circumstances random search should be just as
e�ective. However, our �tness measure does not pro-
duce such a monotonous �tness landscape, and as a re-
sult random search is not competitive as experiments
presented in [Fuchs, 1997] have shown.)

HC gains an advantage over GP if the exploration
aspect still present in GP later in the search is not
useful. That is, focusing on the plateau the search has

reached is the best way to continue the search. Under
these circumstances, exploration results in wasted ef-
fort. (Preliminary experimental results indicate that
this seems to play a role in our case, but a more
thorough examination is required before de�nite state-
ments can be made.)
Thus, there are situations conceivable where HC

performs better than or as well as GP, and larger pop-
ulations do not pay o�. Consequently, we are able
to provide possible explanations as to why GP with
larger populations does not produce the results com-
monly expected. These explanations centre on certain
unfavourable conditions, rather than general 
aws of
GP and the use of large populations.
In the context of crossover, larger populations are

preferred not only because they promise advantages
concerning the search behaviour as such, but also be-
cause larger populations provide more genetic material
and thus the fundamental pieces for potential building
blocks . For problems of CL, however, there is only
one function symbol and usually two or three termi-
nal symbols. Furthermore, [Fuchs, 1998] showed that,
in order to create a successful individual, the sub-
terms exchanged by crossover or replaced by muta-
tion are, on average, rather small (mostly of size 7 or
less). Consequently there is no need for a large pop-
ulation in order to supply su�cient genetic material.
This, and the fact that crossover and mutation seem
to perform equally well for problems of CL (cp. [Fuchs,
1998]), help to explain the experimental results regard-
ing crossover in a way that is consistent with what was
said in connection with mutation above.

5 Discussion

In this paper we have given experimental evidence that
large populations (the \default rule" in GP) sometimes
do not perform better than small populations. Theo-
retical considerations have provided possible explana-
tions for this behaviour in that the shortcoming of GP
can be attributed to certain unfavourable conditions,
which is not a sign of weakness of GP, but rather an
inevitable fact of search-based problem-solving tech-
niques (\no free lunches").
Our main performance criterion was the search ef-

fort expressed by the (minimal) number of individuals
that need to be processed to produce a solution with
a probability of 0.99. To obtain reliable data for the
search e�ort requires a rather large number of runs.
Conclusions drawn on the basis of few runs run the risk
of being misleading or just plain wrong. In this con-
text we want to recant the statement made in [Fuchs
et al., 1997] which basically stated that the perfor-
mance of GP (employing crossover) degrades signi�-
cantly for a population size of 100 (or less). According



to our now available more reliable data this is not the
case. Similarly, we advise to be cautious with \one
or two exploratory runs" suggested in [Gathercole and
Ross, 1997] to determine whether or not a smaller pop-
ulation is more appropriate than a larger one.

Di�culties with empirical comparisons in connec-
tion with GP arise on many levels (cp. [Daida et al.,
1997]). One di�culty is the choice of Gmax. Cutting
o� the evolutionary process at that point may pre-
vent us from obtaining the \true" (minimal) search
e�ort. For our experiments, this concern is rather
weak, since the generation associated with the search
e�ort I� mostly occurs well before Gmax. Naturally,
this empirically established fact cannot guarantee that
the search e�ort does not become even smaller if we
go beyond Gmax, but at least it is good evidence that
this contingency is very unlikely.

An interesting topic for future research is to put the
theoretical considerations given in this paper, which
were partly given in \prose", on a more solid mathe-
matical basis. That is, from a theoretical point of view,
it is an interesting subject to �nd ways to analyse the
interplay between �tness measure and the resulting �t-
ness landscape as well as the selection strategy and the
genetic operators in order to be able to explain more
formally the consequences for the search behaviour of
GP. From a practical point of view, these studies may
eventually provide the possibility to choose an appro-
priate selection strategy and suitable genetic operators
based on the given �tness measure, or even to suggest
alternative, better suited, search methods.

References

Angeline, P. (1997). Subtree crossover: Building
block engine or macromutation? In Proc. 2nd An-
nual Conference on Genetic Programming (GP-97),
pages 9{17. Morgan Kaufmann.

Barendregt, H. (1981). The Lambda Calculus: Its Syn-
tax and Semantics. North-Holland, Amsterdam.

Daida, J., Ross, S., McClain, J., Ampy, D., and Hol-
czer, M. (1997). Challenges with veri�cation, re-
peatability, and meaningful comparisons in genetic
programming. In Proc. 2nd Annual Conference on
Genetic Programming (GP-97), pages 64{70. Mor-
gan Kaufmann.

Fuchs, M. (1997). Evolving combinators. In Proc.
14th Conference on Automated Deduction (CADE-
14), LNAI 1249, pages 416{430. Springer.

Fuchs, M. (1998). Crossover versus mutation: An em-
pirical and theoretical case study. In Proc. 3rd An-
nual Conference on Genetic Programming (GP-98),
pages 78{85. Morgan Kaufmann.

Fuchs, M., Fuchs, D., and Fuchs, M. (1997). Solv-
ing problems of combinatory logic with genetic pro-
gramming. In Proc. 2nd Annual Conference on Ge-
netic Programming (GP-97), pages 102{110. Mor-
gan Kaufmann.

Gathercole, C. and Ross, P. (1997). Small populations
over many generations can beat large populations
over few generations in genetic programming. In
Proc. 2nd Annual Conference on Genetic Program-
ming (GP-97), pages 111{118. Morgan Kaufmann.

Harries, K. and Smith, P. (1997). Exploring alterna-
tive operators and search strategies in genetic pro-
gramming. In Proc. 2nd Annual Conference on Ge-
netic Programming (GP-97), pages 147{155. Mor-
gan Kaufmann.

Holland, J. (1992). Adaptation in Natural and Arti�-
cial Systems. Ann Arbor: Univ. of Michigan Press,
2nd edition.

Hooper, D., Flann, N., and Fuller, S. (1997). Recom-
binative hill-climbing: A stronger search method for
genetic programming. In Proc. 2nd Annual Confer-
ence on Genetic Programming (GP-97), pages 174{
179. Morgan Kaufmann.

Koza, J. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press.

Koza, J. (1995). A response to the ML-
95 paper entitled \Hill-climbing beats genetic
search on a Boolean circuit synthesis problem of
Koza's". http://www-cs-faculty.stanford.edu/
~koza/hill climb.html. Distributed at ML-95.

Lang, K. (1995). Hill-climbing beats genetic search
on a Boolean circuit synthesis problem of Koza's.
In Prieditis, A. and Russell, S., editors, Machine
Learning: Proceedings of the Twelfth International
Conference (ML-95), pages 340{343. Morgan Kauf-
mann.

Luke, S. and Spector, L. (1998). A revised comparison
of crossover and mutation in genetic programming.
In Proc. 3rd Annual Conference on Genetic Pro-
gramming (GP-98), pages 208{213. Morgan Kauf-
mann.

Peyton Jones, S. (1987). The Implementation of Func-
tional Programming Languages. International Series
in Computer Science. Prentice-Hall.

Sutcli�e, G., Suttner, C., and Yemenis, T. (1994). The
TPTP problem library. In Proc. 12th Conference on
Automated Deduction (CADE-12), LNAI 814, pages
252{266. Springer. See also http://www.cs.jcu.

edu.au/~tptp.


