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Abstract

The idea that diversity in the population of a ge-
netic algorithm affects the algorithm’s search ef-
ficiency is widely accepted. However, little is
known about the amount of node level diversity
present in Genetic Programming (GP) runs. In
this paper, we introduce several techniques for
measuring the diversity of a population based on
the genetic history of the individuals. We then
apply these measures to the genetic histories of
several runs of four different problems. The re-
sults of this analysis show that a surprisingly
small amount of diversity is present in the final
population of a GP run. We conclude by sug-
gesting a variety of other potential applications
of these measures.

1 INTRODUCTION

Progress in evolution depends fundamentally on the exis-
tence of variation in a population. Unfortunately, a key
problem in many Evolutionary Computation (EC) systems
is the loss of diversity through premature convergence.
This lack of diversity often leads to stagnation, as the sys-
tem finds itself trapped in local optima, lacking the genetic
diversity needed to escape.

When Genetic Programming (GP) was introduced, many
hoped that the use of a (fairly) unrestricted tree structure
would reduce this tendency toward premature convergence.
Subsequent experience has suggested that while the tree
representation certainly has advantages, lack of diversity
in GP populations is indeed a significant issue.

1.1 MEASURING GENETIC DIVERSITY

One of the challenges, however, is getting a reasonable
measure of diversity. This is especially difficult in GP be-

cause the relationship between syntactic diversity (i.e., di-
versity of tree structures) and semantic diversity (i.e., di-
versity of behaviors) is typically quite complex. Ultimately
one wants diverse behaviors in order to find more fit behav-
iors. This has to be achieved, however, via manipulation of
specific tree structures, and so some sort of syntactic diver-
sity is necessary to obtain the desired semantic diversity.

While diversity was recognized as an issue from early on
(e.g., [Koza 1992]), little work has been done on quantify-
ing diversity in GP runs. Our goal in this paper is to develop
a set of measures that can be used to quantify various as-
pects of the syntactic diversity in a GP run. We are specifi-
cally interested in syntactic diversity, since its absence has
serious implications for semantic diversity. In particular,
we’re interested in diversity at a node level, which we will
call genetic diversity. This allows us to track the movement
of nodes and subtrees through the population over time, and
to determine which nodes and subtrees are shared among
individuals.

It’s important to note that a lack of genetic diversity (as
represented by nodes) doesn’t necessarily imply stagna-
tion. As long as every function and terminal occurs at least
once in a population, it is theoretically possible to construct
any possible tree via, for example, crossover. As a practi-
cal matter, however, certain structures are very difficult to
generate from a given set of structures and recombination
operators. The MAX problem, for example, is very sen-
sitive to the choice of operator at the root node, and once
that choice is made it is very hard to change using standard
subtree crossover [Gathercole and Ross 1996]. As another
example, Langdon and Poli have shown that it is extremely
difficult to move from one local maximum to another in the
Artificial Ant problem using just point mutation [Langdon
and Poli 1998].

Thus, while a lack of genetic diversity doesn’t logically im-
ply stagnation, it tends to lead to stagnation in practice. Ul-
timately, it isn’t sufficient for particular operators to exist
in the population. Instead specificnodesmust exist in the



population, placing particular operators (such as�) in spe-
cific locations (such as the root position) relative to other
nodes.

Note, also, that convergence is not a bad thingper se, as
there is an important tradeoff between exploration and ex-
ploitation [Holland 1975]. If a run converges strongly on
the “correct” answer, for example, that may be seen as a
good thing. The problem we’re concerned with isprema-
ture convergence, where a run converges on a non-optimal
solution, preventing further exploration.

Our primary interest here is measuring diversity when us-
ing just crossover. As a result we limited our recombination
to standard GP sub-tree crossover. As is discussed in Sec-
tion 6, one could extend this work in a variety of ways by
exploring the effect of other recombination operators.

In this paper we present several different methods of mea-
suring the actual genetic diversity in GP runs, and apply
these measures to multiple runs of four different problems.
In each case, we find that the genetic diversity in the popu-
lations is surprisingly low, providing further evidence that
diversity is indeed a serious problem in GP. As an extreme
example, in one run of the Artificial Ant Problemevery
node ofeveryindividual in the final population came from
a single individual in the initial population. Thus, while
several members of the initial population may have had de-
scendents in the final population, only one of them had any
surviving genetic material.

These new measures are also important because they pro-
vide new ways to quantitatively measure the impact of GP
variants on genetic diversity, as discussed in Section 6.

1.2 REVIEW OF RELATED WORK

Early on, [Koza 1992] presented the notion ofvariety to
show that throughout his GP runs, populations contained
a significant number of different trees (when considered
as S-expressions). This notion (and variations thereof)
has subsequently been used by many authors as thede
facto measure of diversity. Unfortunately, as is discussed
in [Rosca 1997], it’s not clear how semantically different
these trees really were, or to what degree they sampled the
space of possible trees (measured either syntactically or se-
mantically). In particular, many syntactically different GP
trees can have the same semantics (and therefore the same
fitnesses) through mechanisms like symmetry of operators
and the existence of introns.

Because of these difficulties Rosca suggests that we instead
measure variety with respect to semantic properties such as
fitness [Rosca 1997]. These measures provide useful high
level views of the state of the population, but don’t address
the actual diversity of genetic material in the population.

Population size 500, steady state
Selection Method Tournament selection

Tournament size t=10
Maximum Generation 50
Generative Method Ramped half-and-half,

max initial depth 4
Maximum created depth 10
Internal crossover rate 90%
Mutation rate 0
Reproduction rate 0
Random # generator Java 1.1

java.util.Random

Table 1: Common parameters for all runs

While there has been research tracking changes in the
size and shape of trees during a run (e.g., [Soule and
Foster 1997]), we are not aware of any previous research
that tracks diversity through a run at the node level.

2 EXPERIMENTAL SETUP

The measures described in this paper were applied to the
results of 20 runs each on a set of four problems: the MAX
problem, sequence induction on a quartic polynomial, the
Artificial Ant problem with the Santa Fe trail, and symbolic
regression on a quartic polynomial. Except where noted,
the parameters are those in Table 1.1

2.1 FITNESS REPRESENTATION

For all but the MAX problem we used lexical fitness, with
the tuple components listed in the respective tables. For
these non-MAX problems we implemented a parsimony
pressure by setting the last element of the fitness tuple to the
number of nodes in the individual (with fewer being better).
This always gives preference to an individual with better
performance on the problem, but selects the more parsimo-
nious among two individuals with equal performance. To
discourage early convergence to very small trees, the size
was normalized by setting this component to 0 if it was
less than a certain threshold arbitrarily determined for each
problem; these thresholds are listed in the parameter tables.

For the two regression problems (sequence induction and
quartic polynomial), we limit the total error accumulated
on the set of fitness cases to a maximum of1010. We also
set the total error to that maximum value if some test case
yields a NaN value (by, e.g., dividing by 0).

1 The parameters described here were not tuned for optimal
performance on the test problems; they simply provide a conve-
nient reference point.



Function set f+; �;�g
Terminal set fj, 0, 1, 2, 3g
Fitness cases j 2 f0; 1; 2; :::20g
Fitness measure (difference, hits, size)
Size normalization threshold 100

Table 2: Sequence Induction parameters

Function set fif-food-ahead ,
begin2 g

Terminal set f(move) ,
(turn-left) ,
(turn-right) g

Fitness measure (food eaten, size)
Size normalization threshold 30

Table 3: Artificial Ant parameters

2.2 THE MAX PROBLEM

The MAX problem was first described in [Gathercole and
Ross 1996]. It consists of the set of problems MAX-depth-
D-fFunction Setg-fTerminal Setg where the depth is re-
stricted to D and the goal is to maximize the tree value.
In these experiments, the MAX-depth-7-f*,+g-f0.5gprob-
lem was used. The ramped half-and-half generative method
was used with the maximum initial depth set to 5.

2.3 SEQUENCE INDUCTION

The sequence induction problem is an instance of the sym-
bolic regression problem in which the domain of the in-
dependent variable is constrained to the natural numbers
f0,1,2,3...g. We used the sequenceSj = 5j4 + 4j3 +
3j2 + 2j + 1, as described in [Koza 1992]. The fitness
measure used was the tuple(difference, hits,
size) . difference was the sum of the absolute values
of the difference between the individual and the target over
the casesj 2 f0; 1; 2; :::20g. hits represented the num-
ber of cases where the individual’s value exactly matched
the value of the target sequence. Other parameters for the
sequence induction problem are listed in Table 2.

2.4 THE ARTIFICIAL ANT PROBLEM

The Artificial Ant problem evolves a program which nav-
igates a near-sighted and motion-constrained artificial ant
along an irregular trail of food [Koza 1992]. There are sev-
eral well-known trails used for this problem; the experi-
ments described here use the Santa Fe trail, which lies on a
32 � 32 toroidal grid and contains 89 pieces of food. The
ant is constrained to 400 moves, where a move is one of
turning left, turning right, or moving straight ahead. The
available non-terminals wereif-food-ahead andbe-

Function set f+, -, *, /, sin,
cos, exp, log g

Terminal set fxg
Fitness cases 20 evenly spaced points

from the interval [-5, 5)
Fitness measure (difference, hits, size)
Size normalization threshold 100

Table 4: Symbolic regression with quartic polynomial as
target

gin2 . if-food-ahead takes two arguments and eval-
uates the first if there is food ahead and the second oth-
erwise. begin2 takes two arguments and evaluates them
sequentially. The terminals were the side-effecting thunks
(move) , (turn-right) , and(turn-left) .

2.5 QUARTIC POLYNOMIAL

The quartic polynomialx4+x3+x2+x [Koza 1992] was
used as the target for a symbolic regression problem. The
function set wasf+, -, *, /, sin, cos, exp,
log g.2 The terminal set consisted ofx , the independent
variable. Fitness was the ordered triple(difference,
hits, size) . difference was the sum of the ab-
solute values of the differences between the actual value
at each fitness case and the value of the individual at that
point. hits was the number of fitness cases in which
the difference between the actual value and the individual’s
value was less than 0.05. Other parameters for the Quartic
Polynomial problem are listed in Table 4.

3 NODES IN THE FINAL POPULATION

The simplest of our measures merely measure the number
of different nodes in the population. In crossover, some
nodes are copied untouched (i.e., the copy has the same
children as the original), while other nodes have one of
their children modified when they are copied. To be able
to distinguish between these two cases, we introduce the
notions of root and non-root parent.

In standard GP crossover, an individual has two parents.
One of these, which we will call theroot parent, contributes
the rooted portion of the tree. The other, which we will call
the non-root parent, contributes a subtree that is swapped
into the root parent. Figure 3, for example, depicts a tree re-
sulting from crossover between the trees in Figures 1 and 2.

2Instead of using protected division and log, we take advan-
tage of the fact that Java generates a NaN (Not a Number) value
in the cases of division by zero andlog 0. We then normalize
these NaN values to some very poor fitness (e.g., the maximum
error).
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Figure 1: The root parent for an example of genetic and
memory IDs. The labeling scheme isID :memID, with a
double outline around the crossover points

In the case where the crossover point is the root node, the
child gets its root (and indeed its entire structure) from the
other parent, and we call that parent the root parent.

Given these definitions, we note that the only new nodes
constructed in crossover are along the path from the root of
the root parent to the crossover point (indicated by a dashed
line in Figure 3). All other nodes are copied unchanged. To
distinguish these two cases we give every node two labels
(ID andmemID). Every node generated in the initial pop-
ulation is given a unique value which is used for bothID
andmemIDfor that node. When we perform crossover, any
node along the path from the root of the root parent to the
crossover point in the new individual is given the sameID
as the corresponding node in the root parent since the two
nodes share a common ancestry. Since these nodes rep-
resented new nodes (in the sense they have different chil-
dren), every newly constructed node receives a new, unique
memID. (See the labels in Figures 1, 2, and 3 for an exam-
ple of the process.) This scheme allows us to check two
nodes for common ancestry by comparing theirID s and to
compare theirmemIDs to determine whether two nodes are
indeed two copies of the same node.

Counting the number of distinct ID (eitherID or memID)
values present in the final population provides an indication
of the amount of genetic material present at the end of a run.
As Table 5 indicates, these counts are surprisingly small.

117:117116:116
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Figure 2: The non-root parent for an example of genetic
and memory IDs. The labeling scheme isID :memID, with
a double outline around the crossover point.

N ID s memIDs
Problem Avg. � Avg. �

MAX 20 27.05 5.78 3374 349
SeqInd 20 33.65 11.16 2096 580
Ants 20 18.30 8.82 1879 252
Quartic 20 16.90 4.44 1852 325
All 80 23.98 10.41 2300 741

Table 5: Number of runs (N), average (Avg) and stan-
dard deviation (�) of genetically distinct nodes and distinct
nodes in memory in the final population for each problem.

In fact, the average number of genetically distinct nodes in
the final population over all runs collected for this paper
was only 24, orless than 1%of the estimated 3128 distinct
nodes in the initial population. That this happened after
just 50 generations represents a dramatic loss of diversity
in relatively few generations.

4 INDIVIDUALS CONTRIBUTING
GENETICALLY

By tracking both parents of every individual, we can con-
struct the set of individuals from the initial population hav-
ing any descendents in the final population. However, it is
possible for one individual to be a descendent of another
individual without sharing any genetic material with that
ancestor, through a sequence of subtree swaps in the in-
termediate lineage which eliminate the ancestor’s contribu-
tion. Thus an indicator of the genetic diversity in the final
population is the number of individuals in the initial popu-
lation contributing genetic material to the final population.
If this number is relatively small, this indicates that the GP
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Figure 3: The child resulting from crossover of the trees in
Figures 1 and 2. The dashed line represents the path from
the root to the crossover point. The nodes along that path
(except for the crossover point) retain their originalID s,
but are assigned newmemIDs.

algorithm is spending most of its time permuting a small
number of (not necessarily optimal) individuals rather than
searching the space of possible programs.

By tracking both the root and non-root parents of every
individual, we traced each individual in the final popula-
tion back through all its ancestors to create the setS of
ancestors from the initial population for each run. Using
the setG of genetically distinct nodes (ID s) computed in
Section 3, we were able to determine for each individual
in S whether it contributed any genetic material to the fi-
nal population (by searching the tree forID s found in the
setG). The number of individuals inS contributing nodes
to G indicates how many of the initial individuals the al-
gorithm is still manipulating; as Table 6 indicates, these
numbers are surprisingly small. For all runs, the average
number of individuals contributing genetic material to the
final populations was less than 7. In one run of the artificial
ant problem,a single individualfrom the initial population
of 500 individuals accounted forall of the genetic material

Problem N Avg. �

MAX 20 5.10 1.33
SeqInd 20 7.80 2.59
Ant 20 5.05 2.56
Quartic 20 6.40 1.76
All 80 6.09 2.38

Table 6: Number of runs (N), Average number of initial
individuals contributing genetic material to the final popu-
lation (Avg), and standard deviation (�) for each problem.

present in the 50th generation, indicating that GP was no
longer taking advantage of the diversity present in the ini-
tial population. This one individual was sufficient to ensure
that the final population contained instances of all the ter-
minals and non-terminals, but since the best individual in
the run was non-optimal, it would appear that other sorts of
diversity (such as structural diversity) were lacking.

5 EVE: ANALYSIS OF THE PARENT
RELATION

Several researchers have noted an asymmetry between
the root portions of GP trees and the portions nearer the
leaves [Gathercole and Ross 1996, Rosca 1997, Poli and
Langdon 1998, McPheeet al. 1998]. In particular, there
is a marked tendency for populations to converge quickly
on a particular root structure, which is then used by the en-
tire population throughout the remainder of the run. In this
analysis we quantify certain aspects of this convergence,
finding that the population convergesverystrongly over a
substantial rooted section of the trees.

5.1 DEFINITION OF EVE

As mentioned in Section 3, every individual has both a root
and a non-root parent, and as a consequence every indi-
vidual in the final population has a linear sequence of root
ancestors that leads back to a single root ancestor in the ini-
tial population. One question, then, is how many individ-
uals from the initial population are root ancestors of some
member of the final population. Perhaps surprisingly, in 72
of our 80 runs there was asingleroot ancestor from which
every individual in the final population descended. This
means that all 500 root parent lineages from the final pop-
ulation eventually converge and then follow up together in
a single lineage to the initial population.

Each of the individuals from the point of convergence to the
initial population are then root ancestors of every member
of the final population. In runs where there is such a single
root ancestor in the initial population (i.e., these lineages do
converge), we call the common root ancestor at the point



of convergenceEve. Eve is then the latest individual (in
the evolutionary history) that is a common root ancestor of
every individual in the population.

5.2 MEASURING COMMONALITY WITH EVES

Given that 90% of our runs had an Eve, the question arises
of how much material is shared between these Eves and the
individuals in the final population. In order to determine
how extensive Eve’s influence was, we compared Eve to
every individual in the final population.

For a given individualt in the final population, we com-
pared Eve tot starting with the root node. To simplify the
presentation we use the standard heap numbering scheme
for binary trees, where the root node of a tree is labelled
1, and the left and right children of a node labelledn are
labelled2 � n and2 � n + 1, respectively.3 Given this la-
belling scheme, we use the following algorithm to quan-
tify the degree to which the rooted portion of Eve is du-
plicated in an individualt in the final population. Here
compare(n; t;Eve) comparest and Eve in a depth-first
fashion starting at node numbern, and updatescount as
long as node IDs match.

Procedurecompare (n, t, Eve)
if ID (t, n) = ID (Eve, n)

incrementcount[n]
compare (2 � n, t, Eve).
compare (2 � n+ 1, t, Eve).

fi.

The results of these calculations on the runs with a single
Eve are summarized up to depth four in Table 7. These re-
sults highlight the extreme lack of diversity at and near the
root node in the final populations. Substantial portions of
the population (mostly greater than 70%, and greater than
60% in all cases) share thetop four levelsof their tree with
Eve, in a system which constrains the trees to a maximum
depth of 10; in fact, well over half the population even share
their fifth level nodes with Eve. These numbers suggest that
it is enormouslydifficult for a population to change near the
root in the later generations of a run.

Also alarming is the speed with which the root appears to
converge. Among the runs in which there was a single Eve,
on average that Eve was the 8102st individual created in
the run (standard deviation 6726), indicating that the root
structure for the entire population was decided on average
by the 16th generation. In one run of the Artificial Ant
problem, Eve was the second individual created after the

3Note that the inclusion of unary operators in the Quartic Poly-
nomial problem causes some numbers to be skipped in this la-
belling scheme.

MAX Seq Ind Ants Quartic
N E O E O E O E O
1 20 499 20 497 18 496 14 497

2 20 498 19 484 16 429 12 446
3 20 499 20 484 18 477 14 486

4 20 496 18 432 13 322 11 414
5 20 498 19 460 13 390 9 436
6 20 498 20 477 17 443 12 409
7 20 498 19 454 17 437 12 394

8 20 488 16 403 8 319 8 394
9 20 494 15 401 7 318 7 382
10 20 495 18 404 7 437 5 450
11 20 496 18 424 8 427 6 455
12 20 496 16 371 13 437 9 349
13 20 494 17 461 14 434 9 360
14 20 492 14 406 12 421 9 301
15 20 496 15 448 14 423 8 334

Table 7: Number of runs containing Eves, and number of
individuals sharing nodes with those Eves for four prob-
lems. TheN column is the node number as described in the
text (N=1 is the root node,N=2 or 3 is the second level, 4-7
are the third level, etc.). TheE column is the number of
runs (out of 20) having a single Eve whose structure from
the root to nodeN has been passed unchanged to at least
one individual in the final population. TheO column is the
average number of individuals (out of 500) which share this
structure from the root to nodeN.

initial population, so that the root structure of the majority
of the population was essentially unchanged for the dura-
tion of the run. Fixing this root structure at such an early
stage likely makes it difficult for the run to escape local
optima in later generations; the phenomenon also seems to
reduce GP to essentially blind random search of the permu-
tations at depths below 5 for the remainder of the run.

6 CONCLUSIONS: MAJOR LOSS OF
DIVERSITY

The data presented in the preceding sections clearly indi-
cates that, at least on these four test problems, the loss of
diversity is typically both rapid and dramatic.

� In Section 3 we found that less than 1% of the nodes
generated in the initial population survive to the final
population.

� In Section 4 we found that on average less than seven
out of the 500 individuals from the initial population
contributedany genetic material to the final popula-
tion. In one extreme example, we found that onlyone



individual from the initial population contributed any
genetic material to the final population.

� In Section 5 we found that in 90% of our runs, there
was a single individual (Eve) who was the root ances-
tor of every individual in the final population. Further,
we found that the majority of the final population typ-
ically shared as much as the top five levels (out of a
rarely reached maximum of 10) with Eve.

These results clearly show strong convergence, but is it
truly prematureconvergence? A quick look at the fitnesses
of the best individuals from the runs suggests strongly that
for the most part this convergence was indeed premature.
In 80 runs, only 15 actually found an optimal solution, over
half of which (8) were from the much easier MAX problem.

In short, standard GP with basic subtree crossover as its
only recombination operator appears unable to take advan-
tage of more than a tiny fraction of the genetic material
present in the initial population.4

In light of the data presented in the preceding sections,
there are several important questions to be answered about
diversity and GP: What causes this lack of diversity? What
impact does this have on performance? How might these
measures be used to improve the situation?

6.1 CAUSES OF DIVERSITY LOSS

It’s unclear why we’re seeing such a dramatic loss in diver-
sity across these 80 runs, but the most likely culprits seems
to be hitchhiking and genetic drift.5

The key idea in hitchhiking is that not all loci for ge-
netic material have the same significance. Thus individuals
which have the “correct” genetic material in the most sig-
nificant loci tend to do well, especially in the early stages of
a run when significant variation in fitness exists. The ben-
efit of this is that the population is quickly dominated by
individuals with “correct” material in those significant loci.
The problem, though, is thatall the material from those in-
dividuals tends to spread through the population, including
“incorrect” material from less significant loci.

In the MAX problem, for example, imagine an individual
from the initial population with a large number of multi-
plications near the root. Such an individual is likely to do
well, and its root structure could easily spread through the

4Note also that it is possible (if not likely) that the presence of
introns could cause some of our measures to in some casesover
estimate the diversity offunctionalnodes.

5One anonymous reviewer pointed out that our results resem-
ble those obtained in biology using coalescent theory. While we
haven’t had time to fully explore the connection, it appears that
coalescent theory may indeed prove valuable in better understand-
ing these results, especially in terms of genetic drift.

population. If, however, it had a single “incorrect” addition
near the root, this would also spread, even though it is not
optimal. Worse, once it had spread, the dynamics of the
problem would make the “mistake” extremely difficult to
fix.

It may well be that this sort of hitchhiking is one of the main
causes of the observed lack of diversity. One way to test
this conjecture would be to explore the effect of different
selection pressures on genetic diversity (by, e.g., changing
the tournament sizes). Another approach would be to study
the effects of altering the tree representation or the set of
recombination operators in an effort to alter the effects of
hitchhiking (e.g., AppGP [McPheeet al.1998]) or kinds of
hitchhiking (e.g., Stack-Based GP [Perkis 1994]).

Another likely culprit here is genetic drift, since the size
of the set of different nodes in the population is non-
increasing. As a simple example, the initial population of
a Quartic Polynomial run will contain a large number ofX
nodes, sinceX is the only terminal in that problem. Over
time, however, the number ofdifferentX’s will tend to de-
crease, since once the last copy of a givenX is lost, there is
no way to retrieve it using just crossover.

The measures of the number of different nodes in the fi-
nal population (Section 3) would seem to be particularly
affected by this. Two runs of the Quartic Polynomial prob-
lem, for example, had only 10 distinct nodes in the final
population. In each case four of the eight different func-
tions had been lost, and in each case the large number ofX
nodes in the initial population (well over 1,000) had been
reduced to five different survivingXnodes. While hitchhik-
ing probably causes much of the initial loss (Xs attached to
successful root sections spread, whileXs attached to unsuc-
cessful root sections are eliminated), drift probably contin-
ues to whittle this number down asXs are replaced by other
Xs via crossover.

6.2 IMPACT OF DIVERSITY ON PERFORMANCE

As mentioned in Section 1.1, this loss of diversity doesn’t
logically necessitate stagnation, but as a practical matter
it does appear to have a variety of negative effects. The
Eve measurements, for example, strongly suggest that the
higher levels of GP trees tend to become fixed fairly early,
and that as the run progresses more and more levels become
fixed. The stability of these “fixed” sections implies that
rarely is crossover in the fixed section of the tree success-
ful. Since this fixed section tends to grow downward with
time, successful crossovers will be increasingly restricted
to swapping small subtrees. In the extreme case this re-
duces GP to a blind search where, given the fixed rooted
structure, GP attempts to discover the “best” set of small
subtrees (including leaves) to graft onto that structure by



randomly shuffling small subtrees around the population.

It seems plausible that this loss of diversity corresponds to
the common tendency for fitnesses in a run to flatten out.
The early improvements in fitness likely correspond to the
part of the run where the population is still fairly diverse.
The flattening out of the fitnesses in the later parts of the run
would then result from a loss of diversity in the population,
and the corresponding reduction of GP to something like a
blind search mechanism. Further research would, however,
be necessary to confirm this hypothesis.

6.3 APPLICATIONS OF THESE MEASURES

There have been many techniques proposed for improving
the performance of GP, and many have specifically claimed
improved diversity as an advantage. If diversity is mea-
sured empirically, however, it is typically in terms of vari-
ety (an extremely coarse grained measure) or fitness (which
cannot address the structural specifics of a run). One po-
tentially valuable application of these measures would be
to quantify the effect these GP variants have on genetic di-
versity.

In the following we discuss several changes that have been
proposed specifically to address the issue of diversity, or
which we think might have a significant effect on genetic
diversity.

6.3.1 Alter the population size

One possibility is that the results we present are artifacts
of our choice of population size (500 individuals), and it
would perhaps be useful to repeat these experiments with
a variety of different population sizes. Preliminary results,
based on five runs of Quartic Polynomial with 1000 indi-
viduals, suggest that doubling the population size does not
lead to corresponding increases in diversity. For example,
the average number of individuals from the initial popu-
lation contributing genetic material to the final population
was 9.0 (compared to 6.4 for our runs with 500 individu-
als). As a percentage of the number of individuals in the
initial population, this is in fact smaller than for the runs
with 500 individuals.

6.3.2 Alter the parsimony pressure

It has been suggested that introns might be a source of ge-
netic diversity in GP runs (e.g., [Angeline 1994]). Since
we used a parsimony pressure in these experiments (which
would tend to reduce the number and size of introns), it’s
possible that this parsimony pressure is partly responsible
for the reported loss of diversity. As a preliminary attempt
to asses this effect, we ran five runs of Quartic Polynomial
without parsimony pressure and found that there was no

statistically significant difference between these results and
those with parsimony pressure.

6.3.3 Alter the selection pressure

As mentioned above, selection pressure affects conver-
gence rates, and could well affect the genetic diversity.

6.3.4 Add mutation

In these experiments we restricted recombination to stan-
dard subtree crossover. Adding mutation (as described,
e.g., in [O’Reilly and Oppacher 1996]) would no doubt
change many of these results. Mutation, for example, can
make it possible for a node that had disappeared to reap-
pear later in the run. The diversity measures presented here
should be useful in assessing the actual impact of different
mutation schemes. As an example, mutation that simply
replaces a subtree with a new, randomly generated subtree
would be unlikely to successfully alter the common rooted
section of the tree. Point mutation, on the other hand, might
be better able to “fix” nodes near that root that had con-
verged to “incorrect” choices.

6.3.5 Decimation

One approach to periodically increasing the diversity dur-
ing a run is decimation [Koza 1992], where a substantial
percentage of the population is eliminated (either at regular
intervals or in response to a lack of progress) and replaced
by new, randomly generated individuals. While this would
clearly lead to large jumps in some of our diversity mea-
sures, it’s possible that these jumps would in fact be quite
temporary and have little lasting effect. In the case of the
Eve measures, for example, it seems unlikely that a large
group of randomly generated (and presumably not terribly
fit) individuals would be able to alter the previously “set-
tled” root structure.

6.3.6 Demes

It seems likely that the use of separate sub-populations
(demes) with limited interaction between demes would af-
fect the diversity as measured here. In particular, the use of
demes might better enable GP to explore a variety of pos-
sible root structures. Each deme would presumably settle
initially on a single root structure, but the sharing between
demes would introduce individuals with high fitnesses but
different root structures. If the fitnesses of the different in-
dividuals were close, both alternatives would have an op-
portunity to persist long enough to perhaps trade some use-
ful genetic material. This differs from decimation, where
the fitnesses of the newly created individuals are likely to
be much lower than those of the survivors.



6.3.7 Different GP representations and
recombination operators

Over the years a wide variety of different GP represen-
tations and recombination operators have been proposed,
several of which specifically claim to address diversity is-
sues. The measures presented here would be a useful tool
for assessing these claims and, more generally, providing
a quantitative measure of the impact of these variants on
genetic diversity.

6.4 IN SUMMARY. . .

In this paper we presented a collection of measures that
allow us to quantify various aspects of node level genetic
diversity in a GP population and its genetic history. Ap-
plying these measures to the results of a number of runs on
several test problems clearly shows a profound loss of di-
versity over the course of the runs, indicating that standard
GP with basic subtree crossover as its only recombination
operator is unable to take advantage of more than a tiny
fraction of the genetic material present in the initial popu-
lation. These measures should also prove useful in helping
compare the effects the many proposed GP variants have
on population diversity.
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